1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//! Create new `StreamCore`s connected to external inputs.

use std::rc::Rc;
use std::cell::RefCell;
use crate::{Container, Data};
use crate::container::{ContainerBuilder, CapacityContainerBuilder};

use crate::scheduling::{Schedule, ActivateOnDrop};

use crate::progress::frontier::Antichain;
use crate::progress::{Operate, operate::SharedProgress, Timestamp};
use crate::progress::Source;
use crate::progress::ChangeBatch;

use crate::dataflow::channels::pushers::{Counter, Tee};
use crate::dataflow::channels::pushers::buffer::{Buffer as PushBuffer, AutoflushSession};

use crate::dataflow::operators::{ActivateCapability, Capability};

use crate::dataflow::{Scope, StreamCore};

/// Create a new `Stream` and `Handle` through which to supply input.
pub trait UnorderedInput<G: Scope> {
    /// Create a new capability-based [StreamCore] and [UnorderedHandle] through which to supply input. This
    /// input supports multiple open epochs (timestamps) at the same time.
    ///
    /// The `new_unordered_input_core` method returns `((HandleCore, Capability), StreamCore)` where the `StreamCore` can be used
    /// immediately for timely dataflow construction, `HandleCore` and `Capability` are later used to introduce
    /// data into the timely dataflow computation.
    ///
    /// The `Capability` returned is for the default value of the timestamp type in use. The
    /// capability can be dropped to inform the system that the input has advanced beyond the
    /// capability's timestamp. To retain the ability to send, a new capability at a later timestamp
    /// should be obtained first, via the `delayed` function for `Capability`.
    ///
    /// To communicate the end-of-input drop all available capabilities.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::{Arc, Mutex};
    ///
    /// use timely::*;
    /// use timely::dataflow::operators::{capture::Extract, Capture};
    /// use timely::dataflow::operators::core::{UnorderedInput};
    /// use timely::dataflow::Stream;
    ///
    /// // get send and recv endpoints, wrap send to share
    /// let (send, recv) = ::std::sync::mpsc::channel();
    /// let send = Arc::new(Mutex::new(send));
    ///
    /// timely::execute(Config::thread(), move |worker| {
    ///
    ///     // this is only to validate the output.
    ///     let send = send.lock().unwrap().clone();
    ///
    ///     // create and capture the unordered input.
    ///     let (mut input, mut cap) = worker.dataflow::<usize,_,_>(|scope| {
    ///         let (input, stream) = scope.new_unordered_input();
    ///         stream
    ///             .container::<Vec<_>>()
    ///             .capture_into(send);
    ///         input
    ///     });
    ///
    ///     // feed values 0..10 at times 0..10.
    ///     for round in 0..10 {
    ///         input.session(cap.clone()).give(round);
    ///         cap = cap.delayed(&(round + 1));
    ///         worker.step();
    ///     }
    /// }).unwrap();
    ///
    /// let extract = recv.extract();
    /// for i in 0..10 {
    ///     assert_eq!(extract[i], (i, vec![i]));
    /// }
    /// ```
    fn new_unordered_input<CB: ContainerBuilder>(&mut self) -> ((UnorderedHandle<G::Timestamp, CB>, ActivateCapability<G::Timestamp>), StreamCore<G, CB::Container>);
}

impl<G: Scope> UnorderedInput<G> for G {
    fn new_unordered_input<CB: ContainerBuilder>(&mut self) -> ((UnorderedHandle<G::Timestamp, CB>, ActivateCapability<G::Timestamp>), StreamCore<G, CB::Container>) {

        let (output, registrar) = Tee::<G::Timestamp, CB::Container>::new();
        let internal = Rc::new(RefCell::new(ChangeBatch::new()));
        // let produced = Rc::new(RefCell::new(ChangeBatch::new()));
        let cap = Capability::new(G::Timestamp::minimum(), internal.clone());
        let counter = Counter::new(output);
        let produced = counter.produced().clone();
        let peers = self.peers();

        let index = self.allocate_operator_index();
        let address = self.addr_for_child(index);

        let cap = ActivateCapability::new(cap, address.clone(), self.activations());

        let helper = UnorderedHandle::new(counter);

        self.add_operator_with_index(Box::new(UnorderedOperator {
            name: "UnorderedInput".to_owned(),
            address,
            shared_progress: Rc::new(RefCell::new(SharedProgress::new(0, 1))),
            internal,
            produced,
            peers,
        }), index);

        ((helper, cap), StreamCore::new(Source::new(index, 0), registrar, self.clone()))
    }
}

struct UnorderedOperator<T:Timestamp> {
    name: String,
    address: Rc<[usize]>,
    shared_progress: Rc<RefCell<SharedProgress<T>>>,
    internal:   Rc<RefCell<ChangeBatch<T>>>,
    produced:   Rc<RefCell<ChangeBatch<T>>>,
    peers:     usize,
}

impl<T:Timestamp> Schedule for UnorderedOperator<T> {
    fn name(&self) -> &str { &self.name }
    fn path(&self) -> &[usize] { &self.address[..] }
    fn schedule(&mut self) -> bool {
        let shared_progress = &mut *self.shared_progress.borrow_mut();
        self.internal.borrow_mut().drain_into(&mut shared_progress.internals[0]);
        self.produced.borrow_mut().drain_into(&mut shared_progress.produceds[0]);
        false
    }
}

impl<T:Timestamp> Operate<T> for UnorderedOperator<T> {
    fn inputs(&self) -> usize { 0 }
    fn outputs(&self) -> usize { 1 }

    fn get_internal_summary(&mut self) -> (Vec<Vec<Antichain<<T as Timestamp>::Summary>>>, Rc<RefCell<SharedProgress<T>>>) {
        let mut borrow = self.internal.borrow_mut();
        for (time, count) in borrow.drain() {
            self.shared_progress.borrow_mut().internals[0].update(time, count * (self.peers as i64));
        }
        (Vec::new(), self.shared_progress.clone())
    }

    fn notify_me(&self) -> bool { false }
}

/// A handle to an input [StreamCore], used to introduce data to a timely dataflow computation.
#[derive(Debug)]
pub struct UnorderedHandle<T: Timestamp, CB: ContainerBuilder> {
    buffer: PushBuffer<T, CB, Counter<T, CB::Container, Tee<T, CB::Container>>>,
}

impl<T: Timestamp, CB: ContainerBuilder> UnorderedHandle<T, CB> {
    fn new(pusher: Counter<T, CB::Container, Tee<T, CB::Container>>) -> UnorderedHandle<T, CB> {
        UnorderedHandle {
            buffer: PushBuffer::new(pusher),
        }
    }

    /// Allocates a new automatically flushing session based on the supplied capability.
    #[inline]
    pub fn session_with_builder(&mut self, cap: ActivateCapability<T>) -> ActivateOnDrop<AutoflushSession<T, CB, Counter<T, CB::Container, Tee<T, CB::Container>>>> {
        ActivateOnDrop::new(self.buffer.autoflush_session_with_builder(cap.capability.clone()), cap.address.clone(), cap.activations.clone())
    }
}

impl<T: Timestamp, C: Container + Data> UnorderedHandle<T, CapacityContainerBuilder<C>> {
    /// Allocates a new automatically flushing session based on the supplied capability.
    #[inline]
    pub fn session(&mut self, cap: ActivateCapability<T>) -> ActivateOnDrop<AutoflushSession<T, CapacityContainerBuilder<C>, Counter<T, C, Tee<T, C>>>> {
        self.session_with_builder(cap)
    }
}