lexical_write_float/
write.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//! Shared trait and methods for writing floats.

#![doc(hidden)]

#[cfg(feature = "f16")]
use lexical_util::bf16::bf16;
#[cfg(feature = "f16")]
use lexical_util::f16::f16;
use lexical_util::format::NumberFormat;
use lexical_util::options::WriteOptions;
use lexical_util::{algorithm::copy_to_dst, constants::FormattedSize};
use lexical_write_integer::write::WriteInteger;

/// Select the back-end.
#[cfg(not(feature = "compact"))]
use crate::algorithm::write_float as write_float_decimal;
#[cfg(feature = "power-of-two")]
use crate::binary;
#[cfg(feature = "compact")]
use crate::compact::write_float as write_float_decimal;
use crate::float::RawFloat;
#[cfg(feature = "power-of-two")]
use crate::hex;
use crate::options::Options;
#[cfg(feature = "radix")]
use crate::radix;

/// Write an special string to the buffer.
#[inline(always)]
fn write_special(bytes: &mut [u8], special: Option<&[u8]>, error: &'static str) -> usize {
    // The NaN string must be <= 50 characters, so this should never panic.
    if let Some(special_str) = special {
        debug_assert!(special_str.len() <= 50, "special_str.len() must be <= 50");
        copy_to_dst(bytes, special_str)
    } else {
        // PANIC: the format does not support serializing that special.
        panic!("{}", error);
    }
}

/// Write an NaN string to the buffer.
fn write_nan(bytes: &mut [u8], options: &Options, count: usize) -> usize {
    count
        + write_special(
            bytes,
            options.nan_string(),
            "NaN explicitly disabled but asked to write NaN as string.",
        )
}

/// Write an Inf string to the buffer.
fn write_inf(bytes: &mut [u8], options: &Options, count: usize) -> usize {
    count
        + write_special(
            bytes,
            options.inf_string(),
            "Inf explicitly disabled but asked to write Inf as string.",
        )
}

/// Check if a buffer is sufficiently large.
#[inline(always)]
fn check_buffer<T, const FORMAT: u128>(len: usize, options: &Options) -> bool
where
    T: FormattedSize,
{
    let size = Options::buffer_size::<T, FORMAT>(options);
    len >= size
}

/// Write float trait.
pub trait WriteFloat: RawFloat + FormattedSize {
    /// Forward float writing parameters and write the float.
    ///
    /// This abstracts away handling different optimizations and radices into
    /// a single API.
    ///
    /// # Panics
    ///
    /// Panics if the number format is invalid, or if scientific notation
    /// is used and the exponent base does not equal the mantissa radix
    /// and the format is not a hexadecimal float. It also panics
    /// if `options.nan_string` or `options.inf_string` is None and asked
    /// to serialize a NaN or Inf value.
    ///
    /// [`FORMATTED_SIZE`]: lexical_util::constants::FormattedSize::FORMATTED_SIZE
    /// [`FORMATTED_SIZE_DECIMAL`]: lexical_util::constants::FormattedSize::FORMATTED_SIZE_DECIMAL
    #[cfg_attr(not(feature = "compact"), inline(always))]
    fn write_float<const FORMAT: u128>(self, bytes: &mut [u8], options: &Options) -> usize
    where
        Self::Unsigned: FormattedSize + WriteInteger,
    {
        // Validate our format options.
        assert!(check_buffer::<Self, { FORMAT }>(bytes.len(), options));
        let format = NumberFormat::<FORMAT> {};
        assert!(format.is_valid());
        // Avoid any false assumptions for 128-bit floats.
        assert!(Self::BITS <= 64);

        #[cfg(feature = "power-of-two")]
        {
            // FIXME: I believe this incorrectly handles a few cases.
            if format.radix() != format.exponent_base() {
                assert!(matches!(
                    (format.radix(), format.exponent_base()),
                    (4, 2) | (8, 2) | (16, 2) | (32, 2) | (16, 4)
                ));
            }
        }

        let (float, count, bytes) = if self.needs_negative_sign() {
            bytes[0] = b'-';
            (-self, 1, &mut bytes[1..])
        } else if cfg!(feature = "format") && format.required_mantissa_sign() {
            bytes[0] = b'+';
            (self, 1, &mut bytes[1..])
        } else {
            (self, 0, bytes)
        };

        // Handle special values.
        if !self.is_special() {
            #[cfg(all(feature = "power-of-two", not(feature = "radix")))]
            {
                let radix = format.radix();
                let exponent_base = format.exponent_base();
                count
                    + if radix == 10 {
                        write_float_decimal::<_, FORMAT>(float, bytes, options)
                    } else if radix != exponent_base {
                        hex::write_float::<_, FORMAT>(float, bytes, options)
                    } else {
                        binary::write_float::<_, FORMAT>(float, bytes, options)
                    }
            }

            #[cfg(feature = "radix")]
            {
                let radix = format.radix();
                let exponent_base = format.exponent_base();
                count
                    + if radix == 10 {
                        write_float_decimal::<_, FORMAT>(float, bytes, options)
                    } else if radix != exponent_base {
                        hex::write_float::<_, FORMAT>(float, bytes, options)
                    } else if matches!(radix, 2 | 4 | 8 | 16 | 32) {
                        binary::write_float::<_, FORMAT>(float, bytes, options)
                    } else {
                        radix::write_float::<_, FORMAT>(float, bytes, options)
                    }
            }

            #[cfg(not(feature = "power-of-two"))]
            {
                count + write_float_decimal::<_, FORMAT>(float, bytes, options)
            }
        } else if self.is_nan() {
            write_nan(bytes, options, count)
        } else {
            write_inf(bytes, options, count)
        }
    }
}

macro_rules! write_float_impl {
    ($($t:ty)*) => ($(
        impl WriteFloat for $t {}
    )*)
}

write_float_impl! { f32 f64 }

#[cfg(feature = "f16")]
macro_rules! write_float_as_f32 {
    ($($t:ty)*) => ($(
        impl WriteFloat for $t {
            #[inline(always)]
            fn write_float<const FORMAT: u128>(self, bytes: &mut [u8], options: &Options) -> usize
            {
                self.as_f32().write_float::<FORMAT>(bytes, options)
            }
        }
    )*)
}

#[cfg(feature = "f16")]
write_float_as_f32! { bf16 f16 }