lexical_parse_float/
number.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
//! Representation of a float as the significant digits and exponent.
//!
//! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust),
//! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust.

#![doc(hidden)]
#![allow(clippy::exhaustive_structs)] // reason = "only public for testing"

use lexical_util::format::NumberFormat;

use crate::float::RawFloat;
use crate::fpu::set_precision;

/// Representation of a number as the significant digits and exponent.
///
/// This is only used if the exponent base and the significant digit
/// radix are the same, since we need to be able to move powers in and
/// out of the exponent.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
pub struct Number<'a> {
    /// The exponent of the float, scaled to the mantissa.
    pub exponent: i64,
    /// The significant digits of the float.
    pub mantissa: u64,
    /// If the float is negative.
    pub is_negative: bool,
    /// If the significant digits were truncated.
    pub many_digits: bool,
    /// The significant integer digits.
    pub integer: &'a [u8],
    /// The significant fraction digits.
    pub fraction: Option<&'a [u8]>,
}

impl Number<'_> {
    /// Detect if the float can be accurately reconstructed from native floats.
    #[must_use]
    #[inline(always)]
    pub fn is_fast_path<F: RawFloat, const FORMAT: u128>(&self) -> bool {
        let format = NumberFormat::<FORMAT> {};
        debug_assert!(
            format.mantissa_radix() == format.exponent_base(),
            "fast path requires same radix"
        );
        F::min_exponent_fast_path(format.radix()) <= self.exponent
            && self.exponent <= F::max_exponent_disguised_fast_path(format.radix())
            && self.mantissa <= F::MAX_MANTISSA_FAST_PATH
            && !self.many_digits
    }

    /// The fast path algorithm using machine-sized integers and floats.
    ///
    /// This is extracted into a separate function so that it can be attempted
    /// before constructing a Decimal. This only works if both the mantissa
    /// and the exponent can be exactly represented as a machine float,
    /// since IEE-754 guarantees no rounding will occur.
    ///
    /// There is an exception: disguised fast-path cases, where we can shift
    /// powers-of-10 from the exponent to the significant digits.
    // `set_precision` doesn't return a unit value on x87 FPUs.
    #[must_use]
    #[allow(clippy::missing_inline_in_public_items)] // reason = "only public for testing"
    #[allow(clippy::let_unit_value)] // reason = "intentional ASM drop for X87 FPUs"
    pub fn try_fast_path<F: RawFloat, const FORMAT: u128>(&self) -> Option<F> {
        let format = NumberFormat::<FORMAT> {};
        debug_assert!(
            format.mantissa_radix() == format.exponent_base(),
            "fast path requires same radix"
        );
        // The fast path crucially depends on arithmetic being rounded to the correct
        // number of bits without any intermediate rounding. On x86 (without SSE
        // or SSE2) this requires the precision of the x87 FPU stack to be
        // changed so that it directly rounds to 64/32 bit. The `set_precision`
        // function takes care of setting the precision on architectures which
        // require setting it by changing the global state (like the control word of the
        // x87 FPU).
        let _cw: () = set_precision::<F>();

        if self.is_fast_path::<F, FORMAT>() {
            let radix = format.radix();
            let max_exponent = F::max_exponent_fast_path(radix);
            let mut value = if self.exponent <= max_exponent {
                // normal fast path
                let value = F::as_cast(self.mantissa);
                if self.exponent < 0 {
                    value / F::pow_fast_path((-self.exponent) as usize, radix)
                } else {
                    value * F::pow_fast_path(self.exponent as usize, radix)
                }
            } else {
                // disguised fast path
                let shift = self.exponent - max_exponent;
                let int_power = F::int_pow_fast_path(shift as usize, radix);
                let mantissa = self.mantissa.checked_mul(int_power)?;
                if mantissa > F::MAX_MANTISSA_FAST_PATH {
                    return None;
                }
                F::as_cast(mantissa) * F::pow_fast_path(max_exponent as usize, radix)
            };
            if self.is_negative {
                value = -value;
            }
            Some(value)
        } else {
            None
        }
    }

    /// Force a fast-path algorithm, even when it may not be accurate.
    // `set_precision` doesn't return a unit value on x87 FPUs.
    #[must_use]
    #[allow(clippy::missing_inline_in_public_items)] // reason = "only public for testing"
    #[allow(clippy::let_unit_value)] // reason = "intentional ASM drop for X87 FPUs"
    pub fn force_fast_path<F: RawFloat, const FORMAT: u128>(&self) -> F {
        let format = NumberFormat::<FORMAT> {};
        debug_assert!(
            format.mantissa_radix() == format.exponent_base(),
            "fast path requires same radix"
        );

        let _cw = set_precision::<F>();

        let radix = format.radix();
        let mut value = F::as_cast(self.mantissa);
        let max_exponent = F::max_exponent_fast_path(radix);
        let mut exponent = self.exponent.abs();
        if self.exponent < 0 {
            while exponent > max_exponent {
                value /= F::pow_fast_path(max_exponent as usize, radix);
                exponent -= max_exponent;
            }
            value /= F::pow_fast_path(exponent as usize, radix);
        } else {
            while exponent > max_exponent {
                value *= F::pow_fast_path(max_exponent as usize, radix);
                exponent -= max_exponent;
            }
            value *= F::pow_fast_path(exponent as usize, radix);
        }
        if self.is_negative {
            value = -value;
        }
        value
    }
}