opentelemetry_sdk/trace/span_processor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
//! # OpenTelemetry Span Processor Interface
//!
//! Span processor is an interface which allows hooks for span start and end method
//! invocations. The span processors are invoked only when
//! [`is_recording`] is true.
//!
//! Built-in span processors are responsible for batching and conversion of spans to
//! exportable representation and passing batches to exporters.
//!
//! Span processors can be registered directly on SDK [`TracerProvider`] and they are
//! invoked in the same order as they were registered.
//!
//! All `Tracer` instances created by a `TracerProvider` share the same span processors.
//! Changes to this collection reflect in all `Tracer` instances.
//!
//! The following diagram shows `SpanProcessor`'s relationship to other components
//! in the SDK:
//!
//! ```ascii
//! +-----+--------------+ +-----------------------+ +-------------------+
//! | | | | | | |
//! | | | | (Batch)SpanProcessor | | SpanExporter |
//! | | +---> (Simple)SpanProcessor +---> (OTLPExporter) |
//! | | | | | | |
//! | SDK | Tracer.span()| +-----------------------+ +-------------------+
//! | | Span.end() |
//! | | |
//! | | |
//! | | |
//! | | |
//! +-----+--------------+
//! ```
//!
//! [`is_recording`]: opentelemetry::trace::Span::is_recording()
//! [`TracerProvider`]: opentelemetry::trace::TracerProvider
use crate::export::trace::{ExportResult, SpanData, SpanExporter};
use crate::resource::Resource;
use crate::runtime::{RuntimeChannel, TrySend};
use crate::trace::Span;
use futures_channel::oneshot;
use futures_util::{
future::{self, BoxFuture, Either},
select,
stream::{self, FusedStream, FuturesUnordered},
StreamExt as _,
};
use opentelemetry::global;
use opentelemetry::{
trace::{TraceError, TraceResult},
Context,
};
use std::cmp::min;
use std::sync::{Arc, Mutex};
use std::{env, fmt, str::FromStr, time::Duration};
/// Delay interval between two consecutive exports.
const OTEL_BSP_SCHEDULE_DELAY: &str = "OTEL_BSP_SCHEDULE_DELAY";
/// Default delay interval between two consecutive exports.
const OTEL_BSP_SCHEDULE_DELAY_DEFAULT: u64 = 5_000;
/// Maximum queue size
const OTEL_BSP_MAX_QUEUE_SIZE: &str = "OTEL_BSP_MAX_QUEUE_SIZE";
/// Default maximum queue size
const OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT: usize = 2_048;
/// Maximum batch size, must be less than or equal to OTEL_BSP_MAX_QUEUE_SIZE
const OTEL_BSP_MAX_EXPORT_BATCH_SIZE: &str = "OTEL_BSP_MAX_EXPORT_BATCH_SIZE";
/// Default maximum batch size
const OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT: usize = 512;
/// Maximum allowed time to export data.
const OTEL_BSP_EXPORT_TIMEOUT: &str = "OTEL_BSP_EXPORT_TIMEOUT";
/// Default maximum allowed time to export data.
const OTEL_BSP_EXPORT_TIMEOUT_DEFAULT: u64 = 30_000;
/// Environment variable to configure max concurrent exports for batch span
/// processor.
const OTEL_BSP_MAX_CONCURRENT_EXPORTS: &str = "OTEL_BSP_MAX_CONCURRENT_EXPORTS";
/// Default max concurrent exports for BSP
const OTEL_BSP_MAX_CONCURRENT_EXPORTS_DEFAULT: usize = 1;
/// `SpanProcessor` is an interface which allows hooks for span start and end
/// method invocations. The span processors are invoked only when is_recording
/// is true.
pub trait SpanProcessor: Send + Sync + std::fmt::Debug {
/// `on_start` is called when a `Span` is started. This method is called
/// synchronously on the thread that started the span, therefore it should
/// not block or throw exceptions.
fn on_start(&self, span: &mut Span, cx: &Context);
/// `on_end` is called after a `Span` is ended (i.e., the end timestamp is
/// already set). This method is called synchronously within the `Span::end`
/// API, therefore it should not block or throw an exception.
fn on_end(&self, span: SpanData);
/// Force the spans lying in the cache to be exported.
fn force_flush(&self) -> TraceResult<()>;
/// Shuts down the processor. Called when SDK is shut down. This is an
/// opportunity for processors to do any cleanup required.
///
/// Implementation should make sure shutdown can be called multiple times.
fn shutdown(&self) -> TraceResult<()>;
/// Set the resource for the log processor.
fn set_resource(&mut self, _resource: &Resource) {}
}
/// A [SpanProcessor] that passes finished spans to the configured
/// `SpanExporter`, as soon as they are finished, without any batching. This is
/// typically useful for debugging and testing. For scenarios requiring higher
/// performance/throughput, consider using [BatchSpanProcessor].
#[derive(Debug)]
pub struct SimpleSpanProcessor {
exporter: Mutex<Box<dyn SpanExporter>>,
}
impl SimpleSpanProcessor {
pub(crate) fn new(exporter: Box<dyn SpanExporter>) -> Self {
Self {
exporter: Mutex::new(exporter),
}
}
}
impl SpanProcessor for SimpleSpanProcessor {
fn on_start(&self, _span: &mut Span, _cx: &Context) {
// Ignored
}
fn on_end(&self, span: SpanData) {
if !span.span_context.is_sampled() {
return;
}
let result = self
.exporter
.lock()
.map_err(|_| TraceError::Other("SimpleSpanProcessor mutex poison".into()))
.and_then(|mut exporter| futures_executor::block_on(exporter.export(vec![span])));
if let Err(err) = result {
global::handle_error(err);
}
}
fn force_flush(&self) -> TraceResult<()> {
// Nothing to flush for simple span processor.
Ok(())
}
fn shutdown(&self) -> TraceResult<()> {
if let Ok(mut exporter) = self.exporter.lock() {
exporter.shutdown();
Ok(())
} else {
Err(TraceError::Other(
"SimpleSpanProcessor mutex poison at shutdown".into(),
))
}
}
fn set_resource(&mut self, resource: &Resource) {
if let Ok(mut exporter) = self.exporter.lock() {
exporter.set_resource(resource);
}
}
}
/// A [`SpanProcessor`] that asynchronously buffers finished spans and reports
/// them at a preconfigured interval.
///
/// Batch span processors need to run a background task to collect and send
/// spans. Different runtimes need different ways to handle the background task.
///
/// Note: Configuring an opentelemetry `Runtime` that's not compatible with the
/// underlying runtime can cause deadlocks (see tokio section).
///
/// ### Use with Tokio
///
/// Tokio currently offers two different schedulers. One is
/// `current_thread_scheduler`, the other is `multiple_thread_scheduler`. Both
/// of them default to use batch span processors to install span exporters.
///
/// Tokio's `current_thread_scheduler` can cause the program to hang forever if
/// blocking work is scheduled with other tasks in the same runtime. To avoid
/// this, be sure to enable the `rt-tokio-current-thread` feature in this crate
/// if you are using that runtime (e.g. users of actix-web), and blocking tasks
/// will then be scheduled on a different thread.
///
/// # Examples
///
/// This processor can be configured with an [`executor`] of your choice to
/// batch and upload spans asynchronously when they end. If you have added a
/// library like [`tokio`] or [`async-std`], you can pass in their respective
/// `spawn` and `interval` functions to have batching performed in those
/// contexts.
///
/// ```
/// # #[cfg(feature="tokio")]
/// # {
/// use opentelemetry::global;
/// use opentelemetry_sdk::{runtime, testing::trace::NoopSpanExporter, trace};
/// use opentelemetry_sdk::trace::BatchConfigBuilder;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// // Configure your preferred exporter
/// let exporter = NoopSpanExporter::new();
///
/// // Create a batch span processor using an exporter and a runtime
/// let batch = trace::BatchSpanProcessor::builder(exporter, runtime::Tokio)
/// .with_batch_config(BatchConfigBuilder::default().with_max_queue_size(4096).build())
/// .build();
///
/// // Then use the `with_batch_exporter` method to have the provider export spans in batches.
/// let provider = trace::TracerProvider::builder()
/// .with_span_processor(batch)
/// .build();
///
/// let _ = global::set_tracer_provider(provider);
/// }
/// # }
/// ```
///
/// [`executor`]: https://docs.rs/futures/0.3/futures/executor/index.html
/// [`tokio`]: https://tokio.rs
/// [`async-std`]: https://async.rs
pub struct BatchSpanProcessor<R: RuntimeChannel> {
message_sender: R::Sender<BatchMessage>,
}
impl<R: RuntimeChannel> fmt::Debug for BatchSpanProcessor<R> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BatchSpanProcessor")
.field("message_sender", &self.message_sender)
.finish()
}
}
impl<R: RuntimeChannel> SpanProcessor for BatchSpanProcessor<R> {
fn on_start(&self, _span: &mut Span, _cx: &Context) {
// Ignored
}
fn on_end(&self, span: SpanData) {
if !span.span_context.is_sampled() {
return;
}
let result = self.message_sender.try_send(BatchMessage::ExportSpan(span));
if let Err(err) = result {
global::handle_error(TraceError::Other(err.into()));
}
}
fn force_flush(&self) -> TraceResult<()> {
let (res_sender, res_receiver) = oneshot::channel();
self.message_sender
.try_send(BatchMessage::Flush(Some(res_sender)))
.map_err(|err| TraceError::Other(err.into()))?;
futures_executor::block_on(res_receiver)
.map_err(|err| TraceError::Other(err.into()))
.and_then(|identity| identity)
}
fn shutdown(&self) -> TraceResult<()> {
let (res_sender, res_receiver) = oneshot::channel();
self.message_sender
.try_send(BatchMessage::Shutdown(res_sender))
.map_err(|err| TraceError::Other(err.into()))?;
futures_executor::block_on(res_receiver)
.map_err(|err| TraceError::Other(err.into()))
.and_then(|identity| identity)
}
fn set_resource(&mut self, resource: &Resource) {
let resource = Arc::new(resource.clone());
let _ = self
.message_sender
.try_send(BatchMessage::SetResource(resource));
}
}
/// Messages sent between application thread and batch span processor's work thread.
// In this enum the size difference is not a concern because:
// 1. If we wrap SpanData into a pointer, it will add overhead when processing.
// 2. Most of the messages will be ExportSpan.
#[allow(clippy::large_enum_variant)]
#[derive(Debug)]
enum BatchMessage {
/// Export spans, usually called when span ends
ExportSpan(SpanData),
/// Flush the current buffer to the backend, it can be triggered by
/// pre configured interval or a call to `force_push` function.
Flush(Option<oneshot::Sender<ExportResult>>),
/// Shut down the worker thread, push all spans in buffer to the backend.
Shutdown(oneshot::Sender<ExportResult>),
/// Set the resource for the exporter.
SetResource(Arc<Resource>),
}
struct BatchSpanProcessorInternal<R> {
spans: Vec<SpanData>,
export_tasks: FuturesUnordered<BoxFuture<'static, ExportResult>>,
runtime: R,
exporter: Box<dyn SpanExporter>,
config: BatchConfig,
}
impl<R: RuntimeChannel> BatchSpanProcessorInternal<R> {
async fn flush(&mut self, res_channel: Option<oneshot::Sender<ExportResult>>) {
let export_task = self.export();
let task = Box::pin(async move {
let result = export_task.await;
if let Some(channel) = res_channel {
if let Err(result) = channel.send(result) {
global::handle_error(TraceError::from(format!(
"failed to send flush result: {:?}",
result
)));
}
} else if let Err(err) = result {
global::handle_error(err);
}
Ok(())
});
if self.config.max_concurrent_exports == 1 {
let _ = task.await;
} else {
self.export_tasks.push(task);
while self.export_tasks.next().await.is_some() {}
}
}
/// Process a single message
///
/// A return value of false indicates shutdown
async fn process_message(&mut self, message: BatchMessage) -> bool {
match message {
// Span has finished, add to buffer of pending spans.
BatchMessage::ExportSpan(span) => {
self.spans.push(span);
if self.spans.len() == self.config.max_export_batch_size {
// If concurrent exports are saturated, wait for one to complete.
if !self.export_tasks.is_empty()
&& self.export_tasks.len() == self.config.max_concurrent_exports
{
self.export_tasks.next().await;
}
let export_task = self.export();
let task = async move {
if let Err(err) = export_task.await {
global::handle_error(err);
}
Ok(())
};
// Special case when not using concurrent exports
if self.config.max_concurrent_exports == 1 {
let _ = task.await;
} else {
self.export_tasks.push(Box::pin(task));
}
}
}
// Span batch interval time reached or a force flush has been invoked, export
// current spans.
//
// This is a hint to ensure that any tasks associated with Spans for which the
// SpanProcessor had already received events prior to the call to ForceFlush
// SHOULD be completed as soon as possible, preferably before returning from
// this method.
//
// In particular, if any SpanProcessor has any associated exporter, it SHOULD
// try to call the exporter's Export with all spans for which this was not
// already done and then invoke ForceFlush on it. The built-in SpanProcessors
// MUST do so. If a timeout is specified (see below), the SpanProcessor MUST
// prioritize honoring the timeout over finishing all calls. It MAY skip or
// abort some or all Export or ForceFlush calls it has made to achieve this
// goal.
//
// NB: `force_flush` is not currently implemented on exporters; the equivalent
// would be waiting for exporter tasks to complete. In the case of
// channel-coupled exporters, they will need a `force_flush` implementation to
// properly block.
BatchMessage::Flush(res_channel) => {
self.flush(res_channel).await;
}
// Stream has terminated or processor is shutdown, return to finish execution.
BatchMessage::Shutdown(ch) => {
self.flush(Some(ch)).await;
self.exporter.shutdown();
return false;
}
// propagate the resource
BatchMessage::SetResource(resource) => {
self.exporter.set_resource(&resource);
}
}
true
}
fn export(&mut self) -> BoxFuture<'static, ExportResult> {
// Batch size check for flush / shutdown. Those methods may be called
// when there's no work to do.
if self.spans.is_empty() {
return Box::pin(future::ready(Ok(())));
}
let export = self.exporter.export(self.spans.split_off(0));
let timeout = self.runtime.delay(self.config.max_export_timeout);
let time_out = self.config.max_export_timeout;
Box::pin(async move {
match future::select(export, timeout).await {
Either::Left((export_res, _)) => export_res,
Either::Right((_, _)) => ExportResult::Err(TraceError::ExportTimedOut(time_out)),
}
})
}
async fn run(mut self, mut messages: impl FusedStream<Item = BatchMessage> + Unpin) {
loop {
select! {
// FuturesUnordered implements Fuse intelligently such that it
// will become eligible again once new tasks are added to it.
_ = self.export_tasks.next() => {
// An export task completed; do we need to do anything with it?
},
message = messages.next() => {
match message {
Some(message) => {
if !self.process_message(message).await {
break;
}
},
None => break,
}
},
}
}
}
}
impl<R: RuntimeChannel> BatchSpanProcessor<R> {
pub(crate) fn new(exporter: Box<dyn SpanExporter>, config: BatchConfig, runtime: R) -> Self {
let (message_sender, message_receiver) =
runtime.batch_message_channel(config.max_queue_size);
let ticker = runtime
.interval(config.scheduled_delay)
.map(|_| BatchMessage::Flush(None));
let timeout_runtime = runtime.clone();
let messages = Box::pin(stream::select(message_receiver, ticker));
let processor = BatchSpanProcessorInternal {
spans: Vec::new(),
export_tasks: FuturesUnordered::new(),
runtime: timeout_runtime,
config,
exporter,
};
// Spawn worker process via user-defined spawn function.
runtime.spawn(Box::pin(processor.run(messages)));
// Return batch processor with link to worker
BatchSpanProcessor { message_sender }
}
/// Create a new batch processor builder
pub fn builder<E>(exporter: E, runtime: R) -> BatchSpanProcessorBuilder<E, R>
where
E: SpanExporter,
{
BatchSpanProcessorBuilder {
exporter,
config: Default::default(),
runtime,
}
}
}
/// Batch span processor configuration.
/// Use [`BatchConfigBuilder`] to configure your own instance of [`BatchConfig`].
#[derive(Debug)]
pub struct BatchConfig {
/// The maximum queue size to buffer spans for delayed processing. If the
/// queue gets full it drops the spans. The default value of is 2048.
max_queue_size: usize,
/// The delay interval in milliseconds between two consecutive processing
/// of batches. The default value is 5 seconds.
scheduled_delay: Duration,
/// The maximum number of spans to process in a single batch. If there are
/// more than one batch worth of spans then it processes multiple batches
/// of spans one batch after the other without any delay. The default value
/// is 512.
max_export_batch_size: usize,
/// The maximum duration to export a batch of data.
max_export_timeout: Duration,
/// Maximum number of concurrent exports
///
/// Limits the number of spawned tasks for exports and thus memory consumed
/// by an exporter. A value of 1 will cause exports to be performed
/// synchronously on the BatchSpanProcessor task.
max_concurrent_exports: usize,
}
impl Default for BatchConfig {
fn default() -> Self {
BatchConfigBuilder::default().build()
}
}
/// A builder for creating [`BatchConfig`] instances.
#[derive(Debug)]
pub struct BatchConfigBuilder {
max_queue_size: usize,
scheduled_delay: Duration,
max_export_batch_size: usize,
max_export_timeout: Duration,
max_concurrent_exports: usize,
}
impl Default for BatchConfigBuilder {
/// Create a new [`BatchConfigBuilder`] initialized with default batch config values as per the specs.
/// The values are overriden by environment variables if set.
/// The supported environment variables are:
/// * `OTEL_BSP_MAX_QUEUE_SIZE`
/// * `OTEL_BSP_SCHEDULE_DELAY`
/// * `OTEL_BSP_MAX_EXPORT_BATCH_SIZE`
/// * `OTEL_BSP_EXPORT_TIMEOUT`
/// * `OTEL_BSP_MAX_CONCURRENT_EXPORTS`
fn default() -> Self {
BatchConfigBuilder {
max_queue_size: OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT,
scheduled_delay: Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT),
max_export_batch_size: OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT,
max_export_timeout: Duration::from_millis(OTEL_BSP_EXPORT_TIMEOUT_DEFAULT),
max_concurrent_exports: OTEL_BSP_MAX_CONCURRENT_EXPORTS_DEFAULT,
}
.init_from_env_vars()
}
}
impl BatchConfigBuilder {
/// Set max_queue_size for [`BatchConfigBuilder`].
/// It's the maximum queue size to buffer spans for delayed processing.
/// If the queue gets full it will drops the spans.
/// The default value of is 2048.
pub fn with_max_queue_size(mut self, max_queue_size: usize) -> Self {
self.max_queue_size = max_queue_size;
self
}
/// Set max_export_batch_size for [`BatchConfigBuilder`].
/// It's the maximum number of spans to process in a single batch. If there are
/// more than one batch worth of spans then it processes multiple batches
/// of spans one batch after the other without any delay. The default value
/// is 512.
pub fn with_max_export_batch_size(mut self, max_export_batch_size: usize) -> Self {
self.max_export_batch_size = max_export_batch_size;
self
}
/// Set max_concurrent_exports for [`BatchConfigBuilder`].
/// It's the maximum number of concurrent exports.
/// Limits the number of spawned tasks for exports and thus memory consumed by an exporter.
/// The default value is 1.
/// IF the max_concurrent_exports value is default value, it will cause exports to be performed
/// synchronously on the BatchSpanProcessor task.
pub fn with_max_concurrent_exports(mut self, max_concurrent_exports: usize) -> Self {
self.max_concurrent_exports = max_concurrent_exports;
self
}
/// Set scheduled_delay_duration for [`BatchConfigBuilder`].
/// It's the delay interval in milliseconds between two consecutive processing of batches.
/// The default value is 5000 milliseconds.
pub fn with_scheduled_delay(mut self, scheduled_delay: Duration) -> Self {
self.scheduled_delay = scheduled_delay;
self
}
/// Set max_export_timeout for [`BatchConfigBuilder`].
/// It's the maximum duration to export a batch of data.
/// The The default value is 30000 milliseconds.
pub fn with_max_export_timeout(mut self, max_export_timeout: Duration) -> Self {
self.max_export_timeout = max_export_timeout;
self
}
/// Builds a `BatchConfig` enforcing the following invariants:
/// * `max_export_batch_size` must be less than or equal to `max_queue_size`.
pub fn build(self) -> BatchConfig {
// max export batch size must be less or equal to max queue size.
// we set max export batch size to max queue size if it's larger than max queue size.
let max_export_batch_size = min(self.max_export_batch_size, self.max_queue_size);
BatchConfig {
max_queue_size: self.max_queue_size,
scheduled_delay: self.scheduled_delay,
max_export_timeout: self.max_export_timeout,
max_concurrent_exports: self.max_concurrent_exports,
max_export_batch_size,
}
}
fn init_from_env_vars(mut self) -> Self {
if let Some(max_concurrent_exports) = env::var(OTEL_BSP_MAX_CONCURRENT_EXPORTS)
.ok()
.and_then(|max_concurrent_exports| usize::from_str(&max_concurrent_exports).ok())
{
self.max_concurrent_exports = max_concurrent_exports;
}
if let Some(max_queue_size) = env::var(OTEL_BSP_MAX_QUEUE_SIZE)
.ok()
.and_then(|queue_size| usize::from_str(&queue_size).ok())
{
self.max_queue_size = max_queue_size;
}
if let Some(scheduled_delay) = env::var(OTEL_BSP_SCHEDULE_DELAY)
.ok()
.and_then(|delay| u64::from_str(&delay).ok())
{
self.scheduled_delay = Duration::from_millis(scheduled_delay);
}
if let Some(max_export_batch_size) = env::var(OTEL_BSP_MAX_EXPORT_BATCH_SIZE)
.ok()
.and_then(|batch_size| usize::from_str(&batch_size).ok())
{
self.max_export_batch_size = max_export_batch_size;
}
// max export batch size must be less or equal to max queue size.
// we set max export batch size to max queue size if it's larger than max queue size.
if self.max_export_batch_size > self.max_queue_size {
self.max_export_batch_size = self.max_queue_size;
}
if let Some(max_export_timeout) = env::var(OTEL_BSP_EXPORT_TIMEOUT)
.ok()
.and_then(|timeout| u64::from_str(&timeout).ok())
{
self.max_export_timeout = Duration::from_millis(max_export_timeout);
}
self
}
}
/// A builder for creating [`BatchSpanProcessor`] instances.
///
#[derive(Debug)]
pub struct BatchSpanProcessorBuilder<E, R> {
exporter: E,
config: BatchConfig,
runtime: R,
}
impl<E, R> BatchSpanProcessorBuilder<E, R>
where
E: SpanExporter + 'static,
R: RuntimeChannel,
{
/// Set the BatchConfig for [BatchSpanProcessorBuilder]
pub fn with_batch_config(self, config: BatchConfig) -> Self {
BatchSpanProcessorBuilder { config, ..self }
}
/// Build a batch processor
pub fn build(self) -> BatchSpanProcessor<R> {
BatchSpanProcessor::new(Box::new(self.exporter), self.config, self.runtime)
}
}
#[cfg(all(test, feature = "testing", feature = "trace"))]
mod tests {
// cargo test trace::span_processor::tests:: --features=testing
use super::{
BatchSpanProcessor, SimpleSpanProcessor, SpanProcessor, OTEL_BSP_EXPORT_TIMEOUT,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE, OTEL_BSP_MAX_QUEUE_SIZE, OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT,
OTEL_BSP_SCHEDULE_DELAY, OTEL_BSP_SCHEDULE_DELAY_DEFAULT,
};
use crate::export::trace::{ExportResult, SpanData, SpanExporter};
use crate::runtime;
use crate::testing::trace::{
new_test_export_span_data, new_tokio_test_exporter, InMemorySpanExporterBuilder,
};
use crate::trace::span_processor::{
OTEL_BSP_EXPORT_TIMEOUT_DEFAULT, OTEL_BSP_MAX_CONCURRENT_EXPORTS,
OTEL_BSP_MAX_CONCURRENT_EXPORTS_DEFAULT, OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT,
};
use crate::trace::{BatchConfig, BatchConfigBuilder, SpanEvents, SpanLinks};
use async_trait::async_trait;
use opentelemetry::trace::{SpanContext, SpanId, SpanKind, Status};
use std::fmt::Debug;
use std::future::Future;
use std::time::Duration;
#[test]
fn simple_span_processor_on_end_calls_export() {
let exporter = InMemorySpanExporterBuilder::new().build();
let processor = SimpleSpanProcessor::new(Box::new(exporter.clone()));
let span_data = new_test_export_span_data();
processor.on_end(span_data.clone());
assert_eq!(exporter.get_finished_spans().unwrap()[0], span_data);
let _result = processor.shutdown();
}
#[test]
fn simple_span_processor_on_end_skips_export_if_not_sampled() {
let exporter = InMemorySpanExporterBuilder::new().build();
let processor = SimpleSpanProcessor::new(Box::new(exporter.clone()));
let unsampled = SpanData {
span_context: SpanContext::empty_context(),
parent_span_id: SpanId::INVALID,
span_kind: SpanKind::Internal,
name: "opentelemetry".into(),
start_time: opentelemetry::time::now(),
end_time: opentelemetry::time::now(),
attributes: Vec::new(),
dropped_attributes_count: 0,
events: SpanEvents::default(),
links: SpanLinks::default(),
status: Status::Unset,
instrumentation_lib: Default::default(),
};
processor.on_end(unsampled);
assert!(exporter.get_finished_spans().unwrap().is_empty());
}
#[test]
fn simple_span_processor_shutdown_calls_shutdown() {
let exporter = InMemorySpanExporterBuilder::new().build();
let processor = SimpleSpanProcessor::new(Box::new(exporter.clone()));
let span_data = new_test_export_span_data();
processor.on_end(span_data.clone());
assert!(!exporter.get_finished_spans().unwrap().is_empty());
let _result = processor.shutdown();
// Assume shutdown is called by ensuring spans are empty in the exporter
assert!(exporter.get_finished_spans().unwrap().is_empty());
}
#[test]
fn test_default_const_values() {
assert_eq!(OTEL_BSP_MAX_QUEUE_SIZE, "OTEL_BSP_MAX_QUEUE_SIZE");
assert_eq!(OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT, 2048);
assert_eq!(OTEL_BSP_SCHEDULE_DELAY, "OTEL_BSP_SCHEDULE_DELAY");
assert_eq!(OTEL_BSP_SCHEDULE_DELAY_DEFAULT, 5000);
assert_eq!(
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
"OTEL_BSP_MAX_EXPORT_BATCH_SIZE"
);
assert_eq!(OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT, 512);
assert_eq!(OTEL_BSP_EXPORT_TIMEOUT, "OTEL_BSP_EXPORT_TIMEOUT");
assert_eq!(OTEL_BSP_EXPORT_TIMEOUT_DEFAULT, 30000);
}
#[test]
fn test_default_batch_config_adheres_to_specification() {
let env_vars = vec![
OTEL_BSP_SCHEDULE_DELAY,
OTEL_BSP_EXPORT_TIMEOUT,
OTEL_BSP_MAX_QUEUE_SIZE,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE,
OTEL_BSP_MAX_CONCURRENT_EXPORTS,
];
let config = temp_env::with_vars_unset(env_vars, BatchConfig::default);
assert_eq!(
config.max_concurrent_exports,
OTEL_BSP_MAX_CONCURRENT_EXPORTS_DEFAULT
);
assert_eq!(
config.scheduled_delay,
Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT)
);
assert_eq!(
config.max_export_timeout,
Duration::from_millis(OTEL_BSP_EXPORT_TIMEOUT_DEFAULT)
);
assert_eq!(config.max_queue_size, OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT);
assert_eq!(
config.max_export_batch_size,
OTEL_BSP_MAX_EXPORT_BATCH_SIZE_DEFAULT
);
}
#[test]
fn test_batch_config_configurable_by_env_vars() {
let env_vars = vec![
(OTEL_BSP_SCHEDULE_DELAY, Some("2000")),
(OTEL_BSP_EXPORT_TIMEOUT, Some("60000")),
(OTEL_BSP_MAX_QUEUE_SIZE, Some("4096")),
(OTEL_BSP_MAX_EXPORT_BATCH_SIZE, Some("1024")),
];
let config = temp_env::with_vars(env_vars, BatchConfig::default);
assert_eq!(config.scheduled_delay, Duration::from_millis(2000));
assert_eq!(config.max_export_timeout, Duration::from_millis(60000));
assert_eq!(config.max_queue_size, 4096);
assert_eq!(config.max_export_batch_size, 1024);
}
#[test]
fn test_batch_config_max_export_batch_size_validation() {
let env_vars = vec![
(OTEL_BSP_MAX_QUEUE_SIZE, Some("256")),
(OTEL_BSP_MAX_EXPORT_BATCH_SIZE, Some("1024")),
];
let config = temp_env::with_vars(env_vars, BatchConfig::default);
assert_eq!(config.max_queue_size, 256);
assert_eq!(config.max_export_batch_size, 256);
assert_eq!(
config.scheduled_delay,
Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT)
);
assert_eq!(
config.max_export_timeout,
Duration::from_millis(OTEL_BSP_EXPORT_TIMEOUT_DEFAULT)
);
}
#[test]
fn test_batch_config_with_fields() {
let batch = BatchConfigBuilder::default()
.with_max_export_batch_size(10)
.with_scheduled_delay(Duration::from_millis(10))
.with_max_export_timeout(Duration::from_millis(10))
.with_max_concurrent_exports(10)
.with_max_queue_size(10)
.build();
assert_eq!(batch.max_export_batch_size, 10);
assert_eq!(batch.scheduled_delay, Duration::from_millis(10));
assert_eq!(batch.max_export_timeout, Duration::from_millis(10));
assert_eq!(batch.max_concurrent_exports, 10);
assert_eq!(batch.max_queue_size, 10);
}
#[test]
fn test_build_batch_span_processor_builder() {
let mut env_vars = vec![
(OTEL_BSP_MAX_EXPORT_BATCH_SIZE, Some("500")),
(OTEL_BSP_SCHEDULE_DELAY, Some("I am not number")),
(OTEL_BSP_EXPORT_TIMEOUT, Some("2046")),
];
temp_env::with_vars(env_vars.clone(), || {
let builder = BatchSpanProcessor::builder(
InMemorySpanExporterBuilder::new().build(),
runtime::Tokio,
);
// export batch size cannot exceed max queue size
assert_eq!(builder.config.max_export_batch_size, 500);
assert_eq!(
builder.config.scheduled_delay,
Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT)
);
assert_eq!(
builder.config.max_queue_size,
OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT
);
assert_eq!(
builder.config.max_export_timeout,
Duration::from_millis(2046)
);
});
env_vars.push((OTEL_BSP_MAX_QUEUE_SIZE, Some("120")));
temp_env::with_vars(env_vars, || {
let builder = BatchSpanProcessor::builder(
InMemorySpanExporterBuilder::new().build(),
runtime::Tokio,
);
assert_eq!(builder.config.max_export_batch_size, 120);
assert_eq!(builder.config.max_queue_size, 120);
});
}
#[tokio::test]
async fn test_batch_span_processor() {
let (exporter, mut export_receiver, _shutdown_receiver) = new_tokio_test_exporter();
let config = BatchConfig {
scheduled_delay: Duration::from_secs(60 * 60 * 24), // set the tick to 24 hours so we know the span must be exported via force_flush
..Default::default()
};
let processor =
BatchSpanProcessor::new(Box::new(exporter), config, runtime::TokioCurrentThread);
let handle = tokio::spawn(async move {
loop {
if let Some(span) = export_receiver.recv().await {
assert_eq!(span.span_context, new_test_export_span_data().span_context);
break;
}
}
});
tokio::time::sleep(Duration::from_secs(1)).await; // skip the first
processor.on_end(new_test_export_span_data());
let flush_res = processor.force_flush();
assert!(flush_res.is_ok());
let _shutdown_result = processor.shutdown();
assert!(
tokio::time::timeout(Duration::from_secs(5), handle)
.await
.is_ok(),
"timed out in 5 seconds. force_flush may not export any data when called"
);
}
struct BlockingExporter<D> {
delay_for: Duration,
delay_fn: D,
}
impl<D, DS> Debug for BlockingExporter<D>
where
D: Fn(Duration) -> DS + 'static + Send + Sync,
DS: Future<Output = ()> + Send + Sync + 'static,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str("blocking exporter for testing")
}
}
#[async_trait]
impl<D, DS> SpanExporter for BlockingExporter<D>
where
D: Fn(Duration) -> DS + 'static + Send + Sync,
DS: Future<Output = ()> + Send + Sync + 'static,
{
fn export(
&mut self,
_batch: Vec<SpanData>,
) -> futures_util::future::BoxFuture<'static, ExportResult> {
use futures_util::FutureExt;
Box::pin((self.delay_fn)(self.delay_for).map(|_| Ok(())))
}
}
#[test]
fn test_timeout_tokio_timeout() {
// If time_out is true, then we ask exporter to block for 60s and set timeout to 5s.
// If time_out is false, then we ask the exporter to block for 5s and set timeout to 60s.
// Either way, the test should be finished within 5s.
let runtime = tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap();
runtime.block_on(timeout_test_tokio(true));
}
#[test]
fn test_timeout_tokio_not_timeout() {
let runtime = tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap();
runtime.block_on(timeout_test_tokio(false));
}
#[test]
#[cfg(feature = "rt-async-std")]
fn test_timeout_async_std_timeout() {
async_std::task::block_on(timeout_test_std_async(true));
}
#[test]
#[cfg(feature = "rt-async-std")]
fn test_timeout_async_std_not_timeout() {
async_std::task::block_on(timeout_test_std_async(false));
}
// If the time_out is true, then the result suppose to ended with timeout.
// otherwise the exporter should be able to export within time out duration.
#[cfg(feature = "rt-async-std")]
async fn timeout_test_std_async(time_out: bool) {
let config = BatchConfig {
max_export_timeout: Duration::from_millis(if time_out { 5 } else { 60 }),
scheduled_delay: Duration::from_secs(60 * 60 * 24), // set the tick to 24 hours so we know the span must be exported via force_flush
..Default::default()
};
let exporter = BlockingExporter {
delay_for: Duration::from_millis(if !time_out { 5 } else { 60 }),
delay_fn: async_std::task::sleep,
};
let processor = BatchSpanProcessor::new(Box::new(exporter), config, runtime::AsyncStd);
processor.on_end(new_test_export_span_data());
let flush_res = processor.force_flush();
if time_out {
assert!(flush_res.is_err());
} else {
assert!(flush_res.is_ok());
}
let shutdown_res = processor.shutdown();
assert!(shutdown_res.is_ok());
}
// If the time_out is true, then the result suppose to ended with timeout.
// otherwise the exporter should be able to export within time out duration.
async fn timeout_test_tokio(time_out: bool) {
let config = BatchConfig {
max_export_timeout: Duration::from_millis(if time_out { 5 } else { 60 }),
scheduled_delay: Duration::from_secs(60 * 60 * 24), // set the tick to 24 hours so we know the span must be exported via force_flush,
..Default::default()
};
let exporter = BlockingExporter {
delay_for: Duration::from_millis(if !time_out { 5 } else { 60 }),
delay_fn: tokio::time::sleep,
};
let processor =
BatchSpanProcessor::new(Box::new(exporter), config, runtime::TokioCurrentThread);
tokio::time::sleep(Duration::from_secs(1)).await; // skip the first
processor.on_end(new_test_export_span_data());
let flush_res = processor.force_flush();
if time_out {
assert!(flush_res.is_err());
} else {
assert!(flush_res.is_ok());
}
let shutdown_res = processor.shutdown();
assert!(shutdown_res.is_ok());
}
}