mz_timely_util/
replay.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Traits and types for replaying captured timely dataflow streams.
//!
//! This is roughly based on [timely::dataflow::operators::capture::Replay], which
//! provides the protocol and semantics of the [MzReplay] operator.

use std::any::Any;
use std::borrow::Cow;
use std::rc::Rc;
use std::time::{Duration, Instant};
use timely::container::ContainerBuilder;

use timely::dataflow::channels::pushers::buffer::{Buffer as PushBuffer, Session};
use timely::dataflow::channels::pushers::{Counter as PushCounter, Tee};
use timely::dataflow::operators::capture::event::EventIterator;
use timely::dataflow::operators::capture::Event;
use timely::dataflow::operators::generic::builder_raw::OperatorBuilder;
use timely::dataflow::{Scope, StreamCore};
use timely::progress::Timestamp;
use timely::scheduling::ActivateOnDrop;
use timely::Container;

use crate::activator::ActivatorTrait;

/// Replay a capture stream into a scope with the same timestamp.
pub trait MzReplay<T, C, A>: Sized
where
    T: Timestamp,
    A: ActivatorTrait,
{
    /// Replays `self` into the provided scope, as a `StreamCore<S, CB::Container>` and provides
    /// a cancellation token. Uses the supplied container builder `CB` to form containers.
    ///
    /// The `period` argument allows the specification of a re-activation period, where the operator
    /// will re-activate itself every so often.
    ///
    /// * `scope`: The [Scope] to replay into.
    /// * `name`: Human-readable debug name of the Timely operator.
    /// * `period`: Reschedule the operator once the period has elapsed.
    ///    Provide [Duration::MAX] to disable periodic scheduling.
    /// * `activator`: An activator to trigger the operator.
    fn mz_replay<S: Scope<Timestamp = T>, CB, L>(
        self,
        scope: &mut S,
        name: &str,
        period: Duration,
        activator: A,
        logic: L,
    ) -> (StreamCore<S, CB::Container>, Rc<dyn Any>)
    where
        CB: ContainerBuilder,
        L: FnMut(Session<T, CB, PushCounter<T, CB::Container, Tee<T, CB::Container>>>, Cow<C>)
            + 'static;
}

impl<T, C, I, A> MzReplay<T, C, A> for I
where
    T: Timestamp,
    C: Container + Clone,
    I: IntoIterator,
    I::Item: EventIterator<T, C> + 'static,
    A: ActivatorTrait + 'static,
{
    fn mz_replay<S: Scope<Timestamp = T>, CB, L>(
        self,
        scope: &mut S,
        name: &str,
        period: Duration,
        activator: A,
        mut logic: L,
    ) -> (StreamCore<S, CB::Container>, Rc<dyn Any>)
    where
        for<'a> CB: ContainerBuilder,
        L: FnMut(Session<T, CB, PushCounter<T, CB::Container, Tee<T, CB::Container>>>, Cow<C>)
            + 'static,
    {
        let name = format!("Replay {}", name);
        let mut builder = OperatorBuilder::new(name, scope.clone());

        let address = builder.operator_info().address;
        let periodic_activator = scope.activator_for(Rc::clone(&address));

        let (targets, stream) = builder.new_output();

        let mut output: PushBuffer<_, CB, _> = PushBuffer::new(PushCounter::new(targets));
        let mut event_streams = self.into_iter().collect::<Vec<_>>();
        let mut started = false;

        let mut last_active = Instant::now();

        let mut progress_sofar =
            <timely::progress::ChangeBatch<_>>::new_from(S::Timestamp::minimum(), 1);
        let token = Rc::new(ActivateOnDrop::new(
            (),
            Rc::clone(&address),
            scope.activations(),
        ));
        let weak_token = Rc::downgrade(&token);

        activator.register(scope, address);

        builder.build(move |progress| {
            activator.ack();
            if last_active
                .checked_add(period)
                .map_or(false, |next_active| next_active <= Instant::now())
                || !started
            {
                last_active = Instant::now();
                if period < Duration::MAX {
                    periodic_activator.activate_after(period);
                }
            }

            if !started {
                // The first thing we do is modify our capabilities to match the number of streams we manage.
                // This should be a simple change of `self.event_streams.len() - 1`. We only do this once, as
                // our very first action.
                let len: i64 = event_streams
                    .len()
                    .try_into()
                    .expect("Implausibly large vector");
                progress.internals[0].update(S::Timestamp::minimum(), len - 1);
                progress_sofar.update(S::Timestamp::minimum(), len);
                started = true;
            }

            if weak_token.upgrade().is_some() {
                for event_stream in event_streams.iter_mut() {
                    while let Some(event) = event_stream.next() {
                        use Cow::*;
                        match event {
                            Owned(Event::Progress(vec)) => {
                                progress.internals[0].extend(vec.iter().cloned());
                                progress_sofar.extend(vec.into_iter());
                            }
                            Owned(Event::Messages(time, data)) => {
                                logic(output.session_with_builder(&time), Owned(data));
                            }
                            Borrowed(Event::Progress(vec)) => {
                                progress.internals[0].extend(vec.iter().cloned());
                                progress_sofar.extend(vec.iter().cloned());
                            }
                            Borrowed(Event::Messages(time, data)) => {
                                logic(output.session_with_builder(time), Borrowed(data));
                            }
                        }
                    }
                }
            } else {
                // Negate the accumulated progress contents emitted so far.
                progress.internals[0]
                    .extend(progress_sofar.drain().map(|(time, diff)| (time, -diff)));
            }

            output.cease();
            output
                .inner()
                .produced()
                .borrow_mut()
                .drain_into(&mut progress.produceds[0]);

            false
        });

        (stream, token)
    }
}