simple_asn1/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
//! A small ASN.1 parsing library for Rust. In particular, this library is used
//! to translate the binary DER encoding of an ASN.1-formatted document into the
//! core primitives of ASN.1. It is assumed that you can do what you need to
//! from there.
//!
//! The critical items for this document are the traits `ToASN1` and `FromASN1`.
//! The first takes your data type and encodes it into a `Vec` of simple ASN.1
//! structures (`ASN1Block`s). The latter inverts the process.
//!
//! Items that implement `ToASN1` can be used with the function `der_encode`
//! to provide single-step encoding of a data type to binary DER encoding.
//! Similarly, items that are `FromASN` can be single-step decoded using
//! the helper function `der_decode`.
//!
//! You can implement one or both traits, depending on your needs. If you do
//! implement both, the obvious encode/decode quickcheck property is strongly
//! advised.
//!
//! For decoding schemes that require the actual bytes associated with the
//! binary representation, we also provide `FromASN1WithBody`. This can be
//! used with the offset information in the primitive `ASN1Block`s to, for
//! example, validate signatures in X509 documents.
//!
//! Finally, this library supports ASN.1 class information. I'm still not sure
//! why it's useful, but there it is.
//!
//! Please send any bug reports, patches, and curses to the GitHub repository
//! at <code>https://github.com/acw/simple_asn1</code>.
pub use num_bigint::{BigInt, BigUint};
use num_traits::{FromPrimitive, One, ToPrimitive, Zero};
#[cfg(test)]
use quickcheck::quickcheck;
use std::convert::TryFrom;
use std::iter::FromIterator;
use std::mem::size_of;
use std::str::Utf8Error;
use thiserror::Error;
use time::PrimitiveDateTime;

/// An ASN.1 block class.
///
/// I'm not sure if/when these are used, but here they are in case you want
/// to do something with them.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ASN1Class {
    Universal,
    Application,
    ContextSpecific,
    Private,
}

/// A primitive block from ASN.1.
///
/// Primitive blocks all contain the offset from the beginning of the parsed
/// document, followed by whatever data is associated with the block. The latter
/// should be fairly self-explanatory, so let's discuss the offset.
///
/// The offset is only valid during the reading process. It is ignored for
/// the purposes of encoding blocks into their binary form. It is also
/// ignored for the purpose of comparisons via `==`. It is included entirely
/// to support the parsing of things like X509 certificates, in which it is
/// necessary to know when particular blocks end.
///
/// The [`ASN1Class`] of explicitly tagged blocks is either `Application`,
/// `ContextSpecific` or `Private`. `Unknown` can have any class.
/// The class of all other variants is `Universal`.
///
/// [`ASN1Class`]: enum.ASN1Class.html
#[derive(Clone, Debug)]
pub enum ASN1Block {
    Boolean(usize, bool),
    Integer(usize, BigInt),
    BitString(usize, usize, Vec<u8>),
    OctetString(usize, Vec<u8>),
    Null(usize),
    ObjectIdentifier(usize, OID),
    UTF8String(usize, String),
    PrintableString(usize, String),
    TeletexString(usize, String),
    IA5String(usize, String),
    UTCTime(usize, PrimitiveDateTime),
    GeneralizedTime(usize, PrimitiveDateTime),
    UniversalString(usize, String),
    BMPString(usize, String),
    Sequence(usize, Vec<ASN1Block>),
    Set(usize, Vec<ASN1Block>),
    /// An explicitly tagged block.
    ///
    /// The class can be either `Application`, `ContextSpecific` or `Private`.
    /// The other parameters are `offset`, `tag` and `content`.
    ///
    /// This block is always `constructed`.
    Explicit(ASN1Class, usize, BigUint, Box<ASN1Block>),
    /// An unkown block.
    ///
    /// The parameters are `class`, `constructed`, `offset`, `tag` and
    /// `content`.
    Unknown(ASN1Class, bool, usize, BigUint, Vec<u8>),
}

impl ASN1Block {
    /// Get the class associated with the given ASN1Block, regardless of what
    /// kind of block it is.
    pub fn class(&self) -> ASN1Class {
        match *self {
            ASN1Block::Boolean(_, _) => ASN1Class::Universal,
            ASN1Block::Integer(_, _) => ASN1Class::Universal,
            ASN1Block::BitString(_, _, _) => ASN1Class::Universal,
            ASN1Block::OctetString(_, _) => ASN1Class::Universal,
            ASN1Block::Null(_) => ASN1Class::Universal,
            ASN1Block::ObjectIdentifier(_, _) => ASN1Class::Universal,
            ASN1Block::UTF8String(_, _) => ASN1Class::Universal,
            ASN1Block::PrintableString(_, _) => ASN1Class::Universal,
            ASN1Block::TeletexString(_, _) => ASN1Class::Universal,
            ASN1Block::IA5String(_, _) => ASN1Class::Universal,
            ASN1Block::UTCTime(_, _) => ASN1Class::Universal,
            ASN1Block::GeneralizedTime(_, _) => ASN1Class::Universal,
            ASN1Block::UniversalString(_, _) => ASN1Class::Universal,
            ASN1Block::BMPString(_, _) => ASN1Class::Universal,
            ASN1Block::Sequence(_, _) => ASN1Class::Universal,
            ASN1Block::Set(_, _) => ASN1Class::Universal,
            ASN1Block::Explicit(c, _, _, _) => c,
            ASN1Block::Unknown(c, _, _, _, _) => c,
        }
    }
    /// Get the starting offset associated with the given ASN1Block, regardless
    /// of what kind of block it is.
    pub fn offset(&self) -> usize {
        match *self {
            ASN1Block::Boolean(o, _) => o,
            ASN1Block::Integer(o, _) => o,
            ASN1Block::BitString(o, _, _) => o,
            ASN1Block::OctetString(o, _) => o,
            ASN1Block::Null(o) => o,
            ASN1Block::ObjectIdentifier(o, _) => o,
            ASN1Block::UTF8String(o, _) => o,
            ASN1Block::PrintableString(o, _) => o,
            ASN1Block::TeletexString(o, _) => o,
            ASN1Block::IA5String(o, _) => o,
            ASN1Block::UTCTime(o, _) => o,
            ASN1Block::GeneralizedTime(o, _) => o,
            ASN1Block::UniversalString(o, _) => o,
            ASN1Block::BMPString(o, _) => o,
            ASN1Block::Sequence(o, _) => o,
            ASN1Block::Set(o, _) => o,
            ASN1Block::Explicit(_, o, _, _) => o,
            ASN1Block::Unknown(_, _, o, _, _) => o,
        }
    }
}

impl PartialEq for ASN1Block {
    fn eq(&self, other: &ASN1Block) -> bool {
        match (self, other) {
            (&ASN1Block::Boolean(_, a1), &ASN1Block::Boolean(_, a2)) => (a1 == a2),
            (&ASN1Block::Integer(_, ref a1), &ASN1Block::Integer(_, ref a2)) => (a1 == a2),
            (&ASN1Block::BitString(_, a1, ref b1), &ASN1Block::BitString(_, a2, ref b2)) => {
                (a1 == a2) && (b1 == b2)
            }
            (&ASN1Block::OctetString(_, ref a1), &ASN1Block::OctetString(_, ref a2)) => (a1 == a2),
            (&ASN1Block::Null(_), &ASN1Block::Null(_)) => true,
            (&ASN1Block::ObjectIdentifier(_, ref a1), &ASN1Block::ObjectIdentifier(_, ref a2)) => {
                a1 == a2
            }
            (&ASN1Block::UTF8String(_, ref a1), &ASN1Block::UTF8String(_, ref a2)) => (a1 == a2),
            (&ASN1Block::PrintableString(_, ref a1), &ASN1Block::PrintableString(_, ref a2)) => {
                a1 == a2
            }
            (&ASN1Block::TeletexString(_, ref a1), &ASN1Block::TeletexString(_, ref a2)) => {
                a1 == a2
            }
            (&ASN1Block::IA5String(_, ref a1), &ASN1Block::IA5String(_, ref a2)) => (a1 == a2),
            (&ASN1Block::UTCTime(_, ref a1), &ASN1Block::UTCTime(_, ref a2)) => (a1 == a2),
            (&ASN1Block::GeneralizedTime(_, ref a1), &ASN1Block::GeneralizedTime(_, ref a2)) => {
                a1 == a2
            }
            (&ASN1Block::UniversalString(_, ref a1), &ASN1Block::UniversalString(_, ref a2)) => {
                a1 == a2
            }
            (&ASN1Block::BMPString(_, ref a1), &ASN1Block::BMPString(_, ref a2)) => (a1 == a2),
            (&ASN1Block::Sequence(_, ref a1), &ASN1Block::Sequence(_, ref a2)) => (a1 == a2),
            (&ASN1Block::Set(_, ref a1), &ASN1Block::Set(_, ref a2)) => (a1 == a2),
            (
                &ASN1Block::Explicit(a1, _, ref b1, ref c1),
                &ASN1Block::Explicit(a2, _, ref b2, ref c2),
            ) => (a1 == a2) && (b1 == b2) && (c1 == c2),
            (
                &ASN1Block::Unknown(a1, b1, _, ref c1, ref d1),
                &ASN1Block::Unknown(a2, b2, _, ref c2, ref d2),
            ) => (a1 == a2) && (b1 == b2) && (c1 == c2) && (d1 == d2),
            _ => false,
        }
    }
}

/// An ASN.1 OID.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct OID(Vec<BigUint>);

impl OID {
    /// Generate an ASN.1. The vector should be in the obvious format,
    /// with each component going left-to-right.
    pub fn new(x: Vec<BigUint>) -> OID {
        OID(x)
    }

    /// converts the
    pub fn as_raw(&self) -> Result<Vec<u8>, ASN1EncodeErr> {
        match (self.0.get(0), self.0.get(1)) {
            (Some(v1), Some(v2)) => {
                let two = BigUint::from_u8(2).unwrap();

                // first, validate that the first two items meet spec
                if v1 > &two {
                    return Err(ASN1EncodeErr::ObjectIdentVal1TooLarge);
                }

                let u175 = BigUint::from_u8(175).unwrap();
                let u39 = BigUint::from_u8(39).unwrap();
                let bound = if v1 == &two { u175 } else { u39 };

                if v2 > &bound {
                    return Err(ASN1EncodeErr::ObjectIdentVal2TooLarge);
                }

                // the following unwraps must be safe, based on the
                // validation above.
                let value1 = v1.to_u8().unwrap();
                let value2 = v2.to_u8().unwrap();
                let byte1 = (value1 * 40) + value2;

                // now we can build all the rest of the body
                let mut body = vec![byte1];
                for num in self.0.iter().skip(2) {
                    let mut local = encode_base127(num);
                    body.append(&mut local);
                }

                Ok(body)
            }
            _ => Err(ASN1EncodeErr::ObjectIdentHasTooFewFields),
        }
    }

    pub fn as_vec<'a, T: TryFrom<&'a BigUint>>(&'a self) -> Result<Vec<T>, ASN1DecodeErr> {
        let mut vec = Vec::new();
        for val in self.0.iter() {
            let ul = match T::try_from(val) {
                Ok(a) => a,
                Err(_) => return Err(ASN1DecodeErr::Overflow),
            };
            vec.push(ul);
        }

        Ok(vec)
    }
}

impl<'a> PartialEq<OID> for &'a OID {
    fn eq(&self, v2: &OID) -> bool {
        let &&OID(ref vec1) = self;
        let &OID(ref vec2) = v2;

        if vec1.len() != vec2.len() {
            return false;
        }

        for i in 0..vec1.len() {
            if vec1[i] != vec2[i] {
                return false;
            }
        }

        true
    }
}

/// A handy macro for generating OIDs from a sequence of `u64`s.
///
/// Usage: oid!(1,2,840,113549,1,1,1) creates an OID that matches
/// 1.2.840.113549.1.1.1. (Coincidentally, this is RSA.)
#[macro_export]
macro_rules! oid {
    ( $( $e: expr ),* ) => {{
        let mut res = Vec::new();

        $(
            res.push($crate::BigUint::from($e as u64));
        )*
        $crate::OID::new(res)
    }};
}

const PRINTABLE_CHARS: &str =
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'()+,-./:=? ";

#[cfg(test)]
const KNOWN_TAGS: &[u8] = &[
    0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x0c, 0x10, 0x11, 0x13, 0x14, 0x16, 0x17, 0x18, 0x1c, 0x1e,
];

/// An error that can arise decoding ASN.1 primitive blocks.
#[derive(Clone, Debug, Error, PartialEq)]
pub enum ASN1DecodeErr {
    #[error("Encountered an empty buffer decoding ASN1 block.")]
    EmptyBuffer,
    #[error("Bad length field in boolean block: {0}")]
    BadBooleanLength(usize),
    #[error("Length field too large for object type: {0}")]
    LengthTooLarge(usize),
    #[error("UTF8 string failed to properly decode: {0}")]
    UTF8DecodeFailure(Utf8Error),
    #[error("Printable string failed to properly decode.")]
    PrintableStringDecodeFailure,
    #[error("Invalid date value: {0}")]
    InvalidDateValue(String),
    #[error("Invalid length of bit string: {0}")]
    InvalidBitStringLength(isize),
    /// Not a valid ASN.1 class
    #[error("Invalid class value: {0}")]
    InvalidClass(u8),
    /// Expected more input
    ///
    /// Invalid ASN.1 input can lead to this error.
    #[error("Incomplete data or invalid ASN1")]
    Incomplete,
    #[error("Value overflow")]
    Overflow,
}

/// An error that can arise encoding ASN.1 primitive blocks.
#[derive(Clone, Debug, Error, PartialEq)]
pub enum ASN1EncodeErr {
    #[error("ASN1 object identifier has too few fields.")]
    ObjectIdentHasTooFewFields,
    #[error("First value in ASN1 OID is too big.")]
    ObjectIdentVal1TooLarge,
    #[error("Second value in ASN1 OID is too big.")]
    ObjectIdentVal2TooLarge,
}

/// Translate a binary blob into a series of `ASN1Block`s, or provide an
/// error if it didn't work.
pub fn from_der(i: &[u8]) -> Result<Vec<ASN1Block>, ASN1DecodeErr> {
    from_der_(i, 0)
}

fn from_der_(i: &[u8], start_offset: usize) -> Result<Vec<ASN1Block>, ASN1DecodeErr> {
    let mut result: Vec<ASN1Block> = Vec::new();
    let mut index: usize = 0;
    let len = i.len();

    while index < len {
        let soff = start_offset + index;
        let (tag, constructed, class) = decode_tag(i, &mut index)?;
        let len = decode_length(i, &mut index)?;
        let checklen = index
            .checked_add(len)
            .ok_or(ASN1DecodeErr::LengthTooLarge(len))?;
        if checklen > i.len() {
            return Err(ASN1DecodeErr::Incomplete);
        }
        let body = &i[index..(index + len)];

        if class != ASN1Class::Universal {
            if constructed {
                // Try to read as explicitly tagged
                if let Ok(mut items) = from_der_(body, start_offset + index) {
                    if items.len() == 1 {
                        result.push(ASN1Block::Explicit(
                            class,
                            soff,
                            tag,
                            Box::new(items.remove(0)),
                        ));
                        index += len;
                        continue;
                    }
                }
            }
            result.push(ASN1Block::Unknown(
                class,
                constructed,
                soff,
                tag,
                body.to_vec(),
            ));
            index += len;
            continue;
        }

        // Universal class
        match tag.to_u8() {
            // BOOLEAN
            Some(0x01) => {
                if len != 1 {
                    return Err(ASN1DecodeErr::BadBooleanLength(len));
                }
                result.push(ASN1Block::Boolean(soff, body[0] != 0));
            }
            // INTEGER
            Some(0x02) => {
                let res = BigInt::from_signed_bytes_be(body);
                result.push(ASN1Block::Integer(soff, res));
            }
            // BIT STRING
            Some(0x03) if body.is_empty() => result.push(ASN1Block::BitString(soff, 0, Vec::new())),
            Some(0x03) => {
                let bits = (&body[1..]).to_vec();
                let bitcount = bits.len() * 8;
                let rest = body[0] as usize;
                if bitcount < rest {
                    return Err(ASN1DecodeErr::InvalidBitStringLength(
                        bitcount as isize - rest as isize,
                    ));
                }

                let nbits = bitcount - (body[0] as usize);
                result.push(ASN1Block::BitString(soff, nbits, bits))
            }
            // OCTET STRING
            Some(0x04) => result.push(ASN1Block::OctetString(soff, body.to_vec())),
            // NULL
            Some(0x05) => {
                result.push(ASN1Block::Null(soff));
            }
            // OBJECT IDENTIFIER
            Some(0x06) => {
                let mut value1 = BigUint::zero();
                if body.is_empty() {
                    return Err(ASN1DecodeErr::Incomplete);
                }
                let mut value2 = BigUint::from_u8(body[0]).unwrap();
                let mut oidres = Vec::new();
                let mut bindex = 1;

                if body[0] >= 40 {
                    if body[0] < 80 {
                        value1 = BigUint::one();
                        value2 -= BigUint::from_u8(40).unwrap();
                    } else {
                        value1 = BigUint::from_u8(2).unwrap();
                        value2 -= BigUint::from_u8(80).unwrap();
                    }
                }

                oidres.push(value1);
                oidres.push(value2);
                while bindex < body.len() {
                    oidres.push(decode_base127(body, &mut bindex)?);
                }
                let res = OID(oidres);

                result.push(ASN1Block::ObjectIdentifier(soff, res))
            }
            // UTF8STRING
            Some(0x0C) => match String::from_utf8(body.to_vec()) {
                Ok(v) => result.push(ASN1Block::UTF8String(soff, v)),
                Err(e) => return Err(ASN1DecodeErr::UTF8DecodeFailure(e.utf8_error())),
            },
            // SEQUENCE
            Some(0x10) => match from_der_(body, start_offset + index) {
                Ok(items) => result.push(ASN1Block::Sequence(soff, items)),
                Err(e) => return Err(e),
            },
            // SET
            Some(0x11) => match from_der_(body, start_offset + index) {
                Ok(items) => result.push(ASN1Block::Set(soff, items)),
                Err(e) => return Err(e),
            },
            // PRINTABLE STRING
            Some(0x13) => {
                let mut res = String::new();
                let val = body.iter().map(|x| *x as char);

                for c in val {
                    if PRINTABLE_CHARS.contains(c) {
                        res.push(c);
                    } else {
                        return Err(ASN1DecodeErr::PrintableStringDecodeFailure);
                    }
                }
                result.push(ASN1Block::PrintableString(soff, res));
            }
            // TELETEX STRINGS
            Some(0x14) => match String::from_utf8(body.to_vec()) {
                Ok(v) => result.push(ASN1Block::TeletexString(soff, v)),
                Err(e) => return Err(ASN1DecodeErr::UTF8DecodeFailure(e.utf8_error())),
            },
            // IA5 (ASCII) STRING
            Some(0x16) => {
                let val = body.iter().map(|x| *x as char);
                let res = String::from_iter(val);
                result.push(ASN1Block::IA5String(soff, res))
            }
            // UTCTime
            Some(0x17) => {
                if body.len() != 13 {
                    return Err(ASN1DecodeErr::InvalidDateValue(format!("{}", body.len())));
                }

                let v = String::from_iter(body.iter().map(|x| *x as char));

                let y = match v.get(0..2) {
                    Some(yy) => yy,
                    None => {
                        // This wasn't a valid character boundrary.
                        return Err(ASN1DecodeErr::InvalidDateValue(v));
                    }
                };

                let y_prefix = match y.parse::<u8>() {
                    Err(_) => return Err(ASN1DecodeErr::InvalidDateValue(v)),
                    Ok(y) => {
                        if y >= 50 {
                            "19"
                        } else {
                            "20"
                        }
                    }
                };

                let v = format!("{}{}", y_prefix, v);

                let format = time::format_description::parse(
                    "[year][month][day][hour repr:24][minute][second]Z",
                )
                .unwrap();

                match PrimitiveDateTime::parse(&v, &format) {
                    Err(_) => return Err(ASN1DecodeErr::InvalidDateValue(v)),
                    Ok(t) => result.push(ASN1Block::UTCTime(soff, t)),
                }
            }
            // GeneralizedTime
            Some(0x18) => {
                if body.len() < 15 {
                    return Err(ASN1DecodeErr::InvalidDateValue(format!("{}", body.len())));
                }

                let mut v: String = String::from_utf8(body.to_vec())
                    .map_err(|e| ASN1DecodeErr::UTF8DecodeFailure(e.utf8_error()))?;
                // Make sure the string is ascii, otherwise we cannot insert
                // chars at specific bytes.
                if !v.is_ascii() {
                    return Err(ASN1DecodeErr::InvalidDateValue(v));
                }

                // We need to add padding back to the string if it's not there.
                if !v.contains('.') {
                    v.insert(14, '.')
                }
                while v.len() < 25 {
                    let idx = v.len() - 1;
                    v.insert(idx, '0');
                }

                let format = time::format_description::parse(
                    "[year][month][day][hour repr:24][minute][second].[subsecond]Z",
                )
                .unwrap();

                match PrimitiveDateTime::parse(&v, &format) {
                    Err(_) => return Err(ASN1DecodeErr::InvalidDateValue(v)),
                    Ok(t) => result.push(ASN1Block::GeneralizedTime(soff, t)),
                }
            }
            // UNIVERSAL STRINGS
            Some(0x1C) => match String::from_utf8(body.to_vec()) {
                Ok(v) => result.push(ASN1Block::UniversalString(soff, v)),
                Err(e) => return Err(ASN1DecodeErr::UTF8DecodeFailure(e.utf8_error())),
            },
            // UNIVERSAL STRINGS
            Some(0x1E) => match String::from_utf8(body.to_vec()) {
                Ok(v) => result.push(ASN1Block::BMPString(soff, v)),
                Err(e) => return Err(ASN1DecodeErr::UTF8DecodeFailure(e.utf8_error())),
            },
            // Dunno.
            _ => {
                result.push(ASN1Block::Unknown(
                    class,
                    constructed,
                    soff,
                    tag,
                    body.to_vec(),
                ));
            }
        }
        index += len;
    }

    if result.is_empty() {
        Err(ASN1DecodeErr::EmptyBuffer)
    } else {
        Ok(result)
    }
}

/// Returns the tag, if the type is constructed and the class.
fn decode_tag(i: &[u8], index: &mut usize) -> Result<(BigUint, bool, ASN1Class), ASN1DecodeErr> {
    if *index >= i.len() {
        return Err(ASN1DecodeErr::Incomplete);
    }
    let tagbyte = i[*index];
    let constructed = (tagbyte & 0b0010_0000) != 0;
    let class = decode_class(tagbyte)?;
    let basetag = tagbyte & 0b1_1111;

    *index += 1;

    if basetag == 0b1_1111 {
        let res = decode_base127(i, index)?;
        Ok((res, constructed, class))
    } else {
        Ok((BigUint::from(basetag), constructed, class))
    }
}

fn decode_base127(i: &[u8], index: &mut usize) -> Result<BigUint, ASN1DecodeErr> {
    let mut res = BigUint::zero();

    loop {
        if *index >= i.len() {
            return Err(ASN1DecodeErr::Incomplete);
        }

        let nextbyte = i[*index];

        *index += 1;
        res = (res << 7) + BigUint::from(nextbyte & 0x7f);
        if (nextbyte & 0x80) == 0 {
            return Ok(res);
        }
    }
}

fn decode_class(i: u8) -> Result<ASN1Class, ASN1DecodeErr> {
    match i >> 6 {
        0b00 => Ok(ASN1Class::Universal),
        0b01 => Ok(ASN1Class::Application),
        0b10 => Ok(ASN1Class::ContextSpecific),
        0b11 => Ok(ASN1Class::Private),
        _ => Err(ASN1DecodeErr::InvalidClass(i)),
    }
}

fn decode_length(i: &[u8], index: &mut usize) -> Result<usize, ASN1DecodeErr> {
    if *index >= i.len() {
        return Err(ASN1DecodeErr::Incomplete);
    }
    let startbyte = i[*index];

    // NOTE: Technically, this size can be much larger than a usize.
    // However, our whole universe starts to break down if we get
    // things that big. So we're boring, and only accept lengths
    // that fit within a usize.
    *index += 1;
    if startbyte >= 0x80 {
        let mut lenlen = (startbyte & 0x7f) as usize;
        let mut res = 0;

        if lenlen > size_of::<usize>() {
            return Err(ASN1DecodeErr::LengthTooLarge(lenlen));
        }

        while lenlen > 0 {
            if *index >= i.len() {
                return Err(ASN1DecodeErr::Incomplete);
            }

            res = (res << 8) + (i[*index] as usize);

            *index += 1;
            lenlen -= 1;
        }

        Ok(res)
    } else {
        Ok(startbyte as usize)
    }
}

/// Given an `ASN1Block`, covert it to its DER encoding, or return an error
/// if something broke along the way.
pub fn to_der(i: &ASN1Block) -> Result<Vec<u8>, ASN1EncodeErr> {
    match *i {
        // BOOLEAN
        ASN1Block::Boolean(_, val) => {
            let inttag = BigUint::one();
            let mut tagbytes = encode_tag(ASN1Class::Universal, false, &inttag);
            tagbytes.push(1);
            tagbytes.push(if val { 0xFF } else { 0x00 });
            Ok(tagbytes)
        }
        // INTEGER
        ASN1Block::Integer(_, ref int) => {
            let mut base = int.to_signed_bytes_be();
            let mut lenbytes = encode_len(base.len());
            let inttag = BigUint::from_u8(0x02).unwrap();
            let mut tagbytes = encode_tag(ASN1Class::Universal, false, &inttag);

            let mut result = Vec::new();
            result.append(&mut tagbytes);
            result.append(&mut lenbytes);
            result.append(&mut base);
            Ok(result)
        }
        // BIT STRING
        ASN1Block::BitString(_, bits, ref vs) => {
            let inttag = BigUint::from_u8(0x03).unwrap();
            let mut tagbytes = encode_tag(ASN1Class::Universal, false, &inttag);

            if bits == 0 {
                tagbytes.push(0);
                Ok(tagbytes)
            } else {
                let mut lenbytes = encode_len(vs.len() + 1);
                let nbits = (vs.len() * 8) - bits;

                let mut result = Vec::new();
                result.append(&mut tagbytes);
                result.append(&mut lenbytes);
                result.push(nbits as u8);
                result.extend_from_slice(vs);
                Ok(result)
            }
        }
        // OCTET STRING
        ASN1Block::OctetString(_, ref bytes) => {
            let inttag = BigUint::from_u8(0x04).unwrap();
            let mut tagbytes = encode_tag(ASN1Class::Universal, false, &inttag);
            let mut lenbytes = encode_len(bytes.len());

            let mut result = Vec::new();
            result.append(&mut tagbytes);
            result.append(&mut lenbytes);
            result.extend_from_slice(bytes);
            Ok(result)
        }
        // NULL
        ASN1Block::Null(_) => {
            let inttag = BigUint::from_u8(0x05).unwrap();
            let mut result = encode_tag(ASN1Class::Universal, false, &inttag);
            result.push(0);
            Ok(result)
        }
        // OBJECT IDENTIFIER
        ASN1Block::ObjectIdentifier(_, OID(ref nums)) => {
            match (nums.get(0), nums.get(1)) {
                (Some(v1), Some(v2)) => {
                    let two = BigUint::from_u8(2).unwrap();

                    // first, validate that the first two items meet spec
                    if v1 > &two {
                        return Err(ASN1EncodeErr::ObjectIdentVal1TooLarge);
                    }

                    let u175 = BigUint::from_u8(175).unwrap();
                    let u39 = BigUint::from_u8(39).unwrap();
                    let bound = if v1 == &two { u175 } else { u39 };

                    if v2 > &bound {
                        return Err(ASN1EncodeErr::ObjectIdentVal2TooLarge);
                    }

                    // the following unwraps must be safe, based on the
                    // validation above.
                    let value1 = v1.to_u8().unwrap();
                    let value2 = v2.to_u8().unwrap();
                    let byte1 = (value1 * 40) + value2;

                    // now we can build all the rest of the body
                    let mut body = vec![byte1];
                    for num in nums.iter().skip(2) {
                        let mut local = encode_base127(num);
                        body.append(&mut local);
                    }

                    // now that we have the body, we can build the header
                    let inttag = BigUint::from_u8(0x06).unwrap();
                    let mut result = encode_tag(ASN1Class::Universal, false, &inttag);
                    let mut lenbytes = encode_len(body.len());

                    result.append(&mut lenbytes);
                    result.append(&mut body);

                    Ok(result)
                }
                _ => Err(ASN1EncodeErr::ObjectIdentHasTooFewFields),
            }
        }
        // SEQUENCE
        ASN1Block::Sequence(_, ref items) => {
            let mut body = Vec::new();

            // put all the subsequences into a block
            for x in items.iter() {
                let mut bytes = to_der(x)?;
                body.append(&mut bytes);
            }

            let inttag = BigUint::from_u8(0x10).unwrap();
            let mut lenbytes = encode_len(body.len());
            // SEQUENCE and SET mut have the constructed encoding form (bit 5) set
            // See: https://docs.microsoft.com/en-us/windows/desktop/seccertenroll/about-encoded-tag-bytes
            let mut tagbytes = encode_tag(ASN1Class::Universal, true, &inttag);

            let mut res = Vec::new();
            res.append(&mut tagbytes);
            res.append(&mut lenbytes);
            res.append(&mut body);
            Ok(res)
        }
        // SET
        ASN1Block::Set(_, ref items) => {
            let mut body = Vec::new();

            // put all the subsequences into a block
            for x in items.iter() {
                let mut bytes = to_der(x)?;
                body.append(&mut bytes);
            }

            let inttag = BigUint::from_u8(0x11).unwrap();
            let mut lenbytes = encode_len(body.len());
            // SEQUENCE and SET mut have the constructed encoding form (bit 5) set
            // See: https://docs.microsoft.com/en-us/windows/desktop/seccertenroll/about-encoded-tag-bytes
            let mut tagbytes = encode_tag(ASN1Class::Universal, true, &inttag);

            let mut res = Vec::new();
            res.append(&mut tagbytes);
            res.append(&mut lenbytes);
            res.append(&mut body);
            Ok(res)
        }
        ASN1Block::UTCTime(_, ref time) => {
            let format = time::format_description::parse(
                "[year][month][day][hour repr:24][minute][second]Z",
            )
            .unwrap();
            let mut body = time.format(&format).unwrap().into_bytes();
            body.drain(0..2);
            let inttag = BigUint::from_u8(0x17).unwrap();
            let mut lenbytes = encode_len(body.len());
            let mut tagbytes = encode_tag(ASN1Class::Universal, false, &inttag);

            let mut res = Vec::new();
            res.append(&mut tagbytes);
            res.append(&mut lenbytes);
            res.append(&mut body);
            Ok(res)
        }
        ASN1Block::GeneralizedTime(_, ref time) => {
            let format = time::format_description::parse(
                "[year][month][day][hour repr:24][minute][second].[subsecond]",
            )
            .unwrap();
            let base = time.format(&format).unwrap();
            let zclear = base.trim_end_matches('0');
            let dclear = zclear.trim_end_matches('.');
            let mut body = format!("{}Z", dclear).into_bytes();

            let inttag = BigUint::from_u8(0x18).unwrap();
            let mut lenbytes = encode_len(body.len());
            let mut tagbytes = encode_tag(ASN1Class::Universal, false, &inttag);

            let mut res = Vec::new();
            res.append(&mut tagbytes);
            res.append(&mut lenbytes);
            res.append(&mut body);
            Ok(res)
        }
        ASN1Block::UTF8String(_, ref str) => {
            encode_asn1_string(0x0c, false, ASN1Class::Universal, str)
        }
        ASN1Block::PrintableString(_, ref str) => {
            encode_asn1_string(0x13, true, ASN1Class::Universal, str)
        }
        ASN1Block::TeletexString(_, ref str) => {
            encode_asn1_string(0x14, false, ASN1Class::Universal, str)
        }
        ASN1Block::UniversalString(_, ref str) => {
            encode_asn1_string(0x1c, false, ASN1Class::Universal, str)
        }
        ASN1Block::IA5String(_, ref str) => {
            encode_asn1_string(0x16, true, ASN1Class::Universal, str)
        }
        ASN1Block::BMPString(_, ref str) => {
            encode_asn1_string(0x1e, false, ASN1Class::Universal, str)
        }
        ASN1Block::Explicit(class, _, ref tag, ref item) => {
            let mut tagbytes = encode_tag(class, true, tag);
            let mut bytes = to_der(item)?;
            let mut lenbytes = encode_len(bytes.len());

            let mut res = Vec::new();
            res.append(&mut tagbytes);
            res.append(&mut lenbytes);
            res.append(&mut bytes);
            Ok(res)
        }
        // Unknown blocks
        ASN1Block::Unknown(class, c, _, ref tag, ref bytes) => {
            let mut tagbytes = encode_tag(class, c, tag);
            let mut lenbytes = encode_len(bytes.len());

            let mut res = Vec::new();
            res.append(&mut tagbytes);
            res.append(&mut lenbytes);
            res.extend_from_slice(bytes);
            Ok(res)
        }
    }
}

fn encode_asn1_string(
    tag: u8,
    force_chars: bool,
    c: ASN1Class,
    s: &str,
) -> Result<Vec<u8>, ASN1EncodeErr> {
    let mut body = {
        if force_chars {
            let mut out = Vec::new();

            for c in s.chars() {
                out.push(c as u8);
            }
            out
        } else {
            s.to_string().into_bytes()
        }
    };
    let inttag = BigUint::from_u8(tag).unwrap();
    let mut lenbytes = encode_len(body.len());
    let mut tagbytes = encode_tag(c, false, &inttag);

    let mut res = Vec::new();
    res.append(&mut tagbytes);
    res.append(&mut lenbytes);
    res.append(&mut body);
    Ok(res)
}

fn encode_tag(c: ASN1Class, constructed: bool, t: &BigUint) -> Vec<u8> {
    let cbyte = encode_class(c);

    match t.to_u8() {
        Some(mut x) if x < 31 => {
            if constructed {
                x |= 0b0010_0000;
            }
            vec![cbyte | x]
        }
        _ => {
            let mut res = encode_base127(t);
            let mut x = cbyte | 0b0001_1111;
            if constructed {
                x |= 0b0010_0000;
            }
            res.insert(0, x);
            res
        }
    }
}

fn encode_base127(v: &BigUint) -> Vec<u8> {
    let mut acc = v.clone();
    let mut res = Vec::new();
    let u128 = BigUint::from_u8(128).unwrap();
    let zero = BigUint::zero();

    if acc == zero {
        res.push(0);
        return res;
    }

    while acc > zero {
        // we build this vector backwards
        let digit = &acc % &u128;
        acc >>= 7;

        match digit.to_u8() {
            None => panic!("7 bits don't fit into 8, cause ..."),
            Some(x) if res.is_empty() => res.push(x),
            Some(x) => res.push(x | 0x80),
        }
    }

    res.reverse();
    res
}

fn encode_class(c: ASN1Class) -> u8 {
    match c {
        ASN1Class::Universal => 0b0000_0000,
        ASN1Class::Application => 0b0100_0000,
        ASN1Class::ContextSpecific => 0b1000_0000,
        ASN1Class::Private => 0b1100_0000,
    }
}

fn encode_len(x: usize) -> Vec<u8> {
    if x < 128 {
        vec![x as u8]
    } else {
        let mut bstr = Vec::new();
        let mut work = x;

        // convert this into bytes, backwards
        while work > 0 {
            bstr.push(work as u8);
            work >>= 8;
        }

        // encode the front of the length
        let len = bstr.len() as u8;
        bstr.push(len | 0x80);

        // and then reverse it into the right order
        bstr.reverse();
        bstr
    }
}

// ----------------------------------------------------------------------------

/// A trait defining types that can be decoded from an `ASN1Block` stream,
/// assuming they also have access to the underlying bytes making up the
/// stream.
pub trait FromASN1WithBody: Sized {
    type Error: From<ASN1DecodeErr>;

    fn from_asn1_with_body<'a>(
        v: &'a [ASN1Block],
        _b: &[u8],
    ) -> Result<(Self, &'a [ASN1Block]), Self::Error>;
}

/// A trait defining types that can be decoded from an `ASN1Block` stream.
/// Any member of this trait is also automatically a member of
/// `FromASN1WithBody`, as it can obviously just ignore the body.
pub trait FromASN1: Sized {
    type Error: From<ASN1DecodeErr>;

    fn from_asn1(v: &[ASN1Block]) -> Result<(Self, &[ASN1Block]), Self::Error>;
}

impl<T: FromASN1> FromASN1WithBody for T {
    type Error = T::Error;

    fn from_asn1_with_body<'a>(
        v: &'a [ASN1Block],
        _b: &[u8],
    ) -> Result<(T, &'a [ASN1Block]), T::Error> {
        T::from_asn1(v)
    }
}

/// Automatically decode a type via DER encoding, assuming that the type
/// is a member of `FromASN1` or `FromASN1WithBody`.
pub fn der_decode<T: FromASN1WithBody>(v: &[u8]) -> Result<T, T::Error> {
    let vs = from_der(v)?;
    T::from_asn1_with_body(&vs, v).map(|(a, _)| a)
}

/// The set of types that can automatically converted into a sequence
/// of `ASN1Block`s. You should probably use to_asn1() but implement
/// to_asn1_class(). The former has a default implementation that passes
/// `ASN1Class::Universal` as the tag to use, which should be good for
/// most people.
pub trait ToASN1 {
    type Error: From<ASN1EncodeErr>;

    fn to_asn1(&self) -> Result<Vec<ASN1Block>, Self::Error> {
        self.to_asn1_class(ASN1Class::Universal)
    }
    fn to_asn1_class(&self, c: ASN1Class) -> Result<Vec<ASN1Block>, Self::Error>;
}

/// Automatically encode a type into binary via DER encoding, assuming
/// that the type is a member of `ToASN1`.
pub fn der_encode<T: ToASN1>(v: &T) -> Result<Vec<u8>, T::Error> {
    let blocks = T::to_asn1(v)?;
    let mut res = Vec::new();

    for block in blocks {
        let mut x = to_der(&block)?;
        res.append(&mut x);
    }

    Ok(res)
}

// ----------------------------------------------------------------------------

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck::{Arbitrary, Gen};
    use std::fs::File;
    use std::io::Read;
    use time::{Date, Month, Time};

    impl Arbitrary for ASN1Class {
        fn arbitrary(g: &mut Gen) -> ASN1Class {
            match u8::arbitrary(g) % 4 {
                0 => ASN1Class::Private,
                1 => ASN1Class::ContextSpecific,
                2 => ASN1Class::Universal,
                3 => ASN1Class::Application,
                _ => panic!("I weep for a broken life."),
            }
        }
    }

    quickcheck! {
        fn class_encdec_roundtrips(c: ASN1Class) -> bool {
            c == decode_class(encode_class(c.clone())).unwrap()
        }

        fn class_decenc_roundtrips(v: u8) -> bool {
            (v & 0b11000000) == encode_class(decode_class(v).unwrap())
        }
    }

    #[derive(Clone, Debug)]
    struct RandomUint {
        x: BigUint,
    }

    impl Arbitrary for RandomUint {
        fn arbitrary(g: &mut Gen) -> RandomUint {
            let v = BigUint::from_u32(u32::arbitrary(g)).unwrap();
            RandomUint { x: v }
        }
    }

    quickcheck! {
        fn tags_encdec_roundtrips(c: ASN1Class, con: bool, t: RandomUint) -> bool {
            let bytes = encode_tag(c, con, &t.x);
            let mut zero = 0;
            let (t2, con2, c2) = decode_tag(&bytes[..], &mut zero).unwrap();
            (c == c2) && (con == con2) && (t.x == t2)
        }

        fn len_encdec_roundtrips(l: usize) -> bool {
            let bytes = encode_len(l);
            let mut zero = 0;
            match decode_length(&bytes[..], &mut zero) {
                Err(_) => false,
                Ok(l2) => l == l2
            }
        }
    }

    #[derive(Clone, Debug)]
    struct RandomInt {
        x: BigInt,
    }

    impl Arbitrary for RandomInt {
        fn arbitrary(g: &mut Gen) -> RandomInt {
            let v = BigInt::from_i64(i64::arbitrary(g)).unwrap();
            RandomInt { x: v }
        }
    }

    #[allow(type_alias_bounds)]
    type ASN1BlockGen = fn(&mut Gen, usize) -> ASN1Block;

    fn arb_boolean(g: &mut Gen, _d: usize) -> ASN1Block {
        let v = bool::arbitrary(g);
        ASN1Block::Boolean(0, v)
    }

    fn arb_integer(g: &mut Gen, _d: usize) -> ASN1Block {
        let d = RandomInt::arbitrary(g);
        ASN1Block::Integer(0, d.x)
    }

    fn arb_bitstr(g: &mut Gen, _d: usize) -> ASN1Block {
        let size = u16::arbitrary(g) as usize % 16;
        let maxbits = (size as usize) * 8;
        let modbits = u8::arbitrary(g) as usize % 8;
        let nbits = if modbits > maxbits {
            maxbits
        } else {
            maxbits - modbits
        };

        let mut bytes = Vec::with_capacity(size);
        while bytes.len() < size {
            bytes.push(u8::arbitrary(g));
        }

        ASN1Block::BitString(0, nbits, bytes)
    }

    fn arb_octstr(g: &mut Gen, _d: usize) -> ASN1Block {
        let size = usize::arbitrary(g) % 16;
        let mut bytes = Vec::with_capacity(size);

        while bytes.len() < size {
            bytes.push(u8::arbitrary(g));
        }

        ASN1Block::OctetString(0, bytes)
    }

    fn arb_null(_g: &mut Gen, _d: usize) -> ASN1Block {
        ASN1Block::Null(0)
    }

    impl Arbitrary for OID {
        fn arbitrary(g: &mut Gen) -> OID {
            let count = usize::arbitrary(g) % 40;
            let val1 = u8::arbitrary(g) % 3;
            let v2mod = if val1 == 2 { 176 } else { 40 };
            let val2 = u8::arbitrary(g) % v2mod;
            let v1 = BigUint::from_u8(val1).unwrap();
            let v2 = BigUint::from_u8(val2).unwrap();
            let mut nums = vec![v1, v2];

            for _ in 0..count {
                let num = RandomUint::arbitrary(g);
                nums.push(num.x);
            }

            OID(nums)
        }
    }

    fn arb_objid(g: &mut Gen, _d: usize) -> ASN1Block {
        let oid = OID::arbitrary(g);
        ASN1Block::ObjectIdentifier(0, oid)
    }

    fn arb_seq(g: &mut Gen, d: usize) -> ASN1Block {
        let count = usize::arbitrary(g) % 63 + 1;
        let mut items = Vec::new();

        for _ in 0..count {
            items.push(limited_arbitrary(g, d - 1));
        }

        ASN1Block::Sequence(0, items)
    }

    fn arb_set(g: &mut Gen, d: usize) -> ASN1Block {
        let count = usize::arbitrary(g) % 63 + 1;
        let mut items = Vec::new();

        for _ in 0..count {
            items.push(limited_arbitrary(g, d - 1));
        }

        ASN1Block::Set(0, items)
    }

    fn arb_print(g: &mut Gen, _d: usize) -> ASN1Block {
        let count = usize::arbitrary(g) % 384;
        let mut items = Vec::new();

        for _ in 0..count {
            let v = g.choose(PRINTABLE_CHARS.as_bytes());
            items.push(*v.unwrap() as char);
        }

        ASN1Block::PrintableString(0, String::from_iter(items.iter()))
    }

    fn arb_ia5(g: &mut Gen, _d: usize) -> ASN1Block {
        let count = usize::arbitrary(g) % 384;
        let mut items = Vec::new();

        for _ in 0..count {
            items.push(u8::arbitrary(g) as char);
        }

        ASN1Block::IA5String(0, String::from_iter(items.iter()))
    }

    fn arb_utf8(g: &mut Gen, _d: usize) -> ASN1Block {
        let val = String::arbitrary(g);
        ASN1Block::UTF8String(0, val)
    }

    fn arb_tele(g: &mut Gen, _d: usize) -> ASN1Block {
        let val = String::arbitrary(g);
        ASN1Block::TeletexString(0, val)
    }

    fn arb_uni(g: &mut Gen, _d: usize) -> ASN1Block {
        let val = String::arbitrary(g);
        ASN1Block::UniversalString(0, val)
    }

    fn arb_bmp(g: &mut Gen, _d: usize) -> ASN1Block {
        let val = String::arbitrary(g);
        ASN1Block::BMPString(0, val)
    }

    fn arb_utc(g: &mut Gen, _d: usize) -> ASN1Block {
        let min = Date::from_calendar_date(1950, Month::January, 01)
            .unwrap()
            .to_julian_day();
        let max = Date::from_calendar_date(2049, Month::December, 31)
            .unwrap()
            .to_julian_day();
        let date =
            Date::from_julian_day(i32::arbitrary(g).rem_euclid(max - min + 1) + min).unwrap();

        let h = u8::arbitrary(g).rem_euclid(24);
        let m = u8::arbitrary(g).rem_euclid(60);
        let s = u8::arbitrary(g).rem_euclid(60);
        let time = Time::from_hms(h, m, s).unwrap();

        let t = PrimitiveDateTime::new(date, time);
        ASN1Block::UTCTime(0, t)
    }

    fn arb_time(g: &mut Gen, _d: usize) -> ASN1Block {
        let min = Date::from_calendar_date(0, Month::January, 01)
            .unwrap()
            .to_julian_day();
        let max = Date::from_calendar_date(9999, Month::December, 31)
            .unwrap()
            .to_julian_day();
        let date =
            Date::from_julian_day(i32::arbitrary(g).rem_euclid(max - min + 1) + min).unwrap();

        let time = Time::arbitrary(g);

        let t = PrimitiveDateTime::new(date, time);
        ASN1Block::GeneralizedTime(0, t)
    }

    fn arb_explicit(g: &mut Gen, d: usize) -> ASN1Block {
        let mut class = ASN1Class::arbitrary(g);
        if class == ASN1Class::Universal {
            // Universal is invalid for an explicitly tagged block
            class = ASN1Class::ContextSpecific;
        }
        let tag = RandomUint::arbitrary(g);
        let item = limited_arbitrary(g, d - 1);

        ASN1Block::Explicit(class, 0, tag.x, Box::new(item))
    }

    fn arb_unknown(g: &mut Gen, _d: usize) -> ASN1Block {
        let class = ASN1Class::arbitrary(g);
        let tag = loop {
            let potential = RandomUint::arbitrary(g);
            match potential.x.to_u8() {
                None => break potential,
                Some(x) if KNOWN_TAGS.contains(&x) => {}
                Some(_) => break potential,
            }
        };
        let size = usize::arbitrary(g) % 128;
        let mut items = Vec::with_capacity(size);

        while items.len() < size {
            items.push(u8::arbitrary(g));
        }

        ASN1Block::Unknown(class, false, 0, tag.x, items)
    }

    fn limited_arbitrary(g: &mut Gen, d: usize) -> ASN1Block {
        let mut possibles: Vec<ASN1BlockGen> = vec![
            arb_boolean,
            arb_integer,
            arb_bitstr,
            arb_octstr,
            arb_null,
            arb_objid,
            arb_utf8,
            arb_print,
            arb_tele,
            arb_uni,
            arb_ia5,
            arb_utc,
            arb_time,
            arb_bmp,
            arb_unknown,
        ];

        if d > 0 {
            possibles.push(arb_seq);
            possibles.push(arb_set);
            possibles.push(arb_explicit);
        }

        match g.choose(&possibles[..]) {
            Some(f) => f(g, d),
            None => panic!("Couldn't generate arbitrary value."),
        }
    }

    impl Arbitrary for ASN1Block {
        fn arbitrary(g: &mut Gen) -> ASN1Block {
            limited_arbitrary(g, 2)
        }
    }

    quickcheck! {
        fn encode_decode_roundtrips(v: ASN1Block) -> bool {
            match to_der(&v) {
                Err(e) => {
                    println!("Serialization error: {:?}", e);
                    false
                }
                Ok(bytes) =>
                    match from_der(&bytes[..]) {
                        Err(e) => {
                            println!("Parse error: {:?}", e);
                            false
                        }
                        Ok(ref rvec) if rvec.len() == 1 => {
                            let v2 = rvec.get(0).unwrap();
                            if &v != v2 {
                                println!("Original: {:?}", v);
                                println!("Constructed: {:?}", v2);
                            }
                            &v == v2
                        }
                        Ok(_) => {
                            println!("Too many results returned.");
                            false
                        }
                    }
            }
        }
    }

    fn result_int(v: i16) -> Result<Vec<ASN1Block>, ASN1DecodeErr> {
        let val = BigInt::from(v);
        Ok(vec![ASN1Block::Integer(0, val)])
    }

    #[test]
    fn utc_time_tests() {
        // Check for a regression against issue #27, in which this would
        // cause a panic.
        let input = [
            55, 13, 13, 133, 13, 13, 50, 13, 13, 133, 13, 13, 50, 13, 133,
        ];
        let output = from_der(&input);
        assert!(output.is_err());
    }

    #[test]
    fn generalized_time_tests() {
        check_spec(
            &PrimitiveDateTime::new(
                Date::from_calendar_date(1992, Month::May, 21).unwrap(),
                Time::from_hms(0, 0, 0).unwrap(),
            ),
            "19920521000000Z".to_string(),
        );
        check_spec(
            &PrimitiveDateTime::new(
                Date::from_calendar_date(1992, Month::June, 22).unwrap(),
                Time::from_hms(12, 34, 21).unwrap(),
            ),
            "19920622123421Z".to_string(),
        );
        check_spec(
            &PrimitiveDateTime::new(
                Date::from_calendar_date(1992, Month::July, 22).unwrap(),
                Time::from_hms_milli(13, 21, 00, 300).unwrap(),
            ),
            "19920722132100.3Z".to_string(),
        );
    }

    fn check_spec(d: &PrimitiveDateTime, s: String) {
        let b = ASN1Block::GeneralizedTime(0, d.clone());
        match to_der(&b) {
            Err(_) => assert_eq!(format!("Broken: {}", d), s),
            Ok(ref vec) => {
                let mut resvec = vec.clone();
                resvec.remove(0);
                resvec.remove(0);
                assert_eq!(String::from_utf8(resvec).unwrap(), s);
                match from_der_(vec, 0) {
                    Err(_) => assert_eq!(format!("Broken [reparse]: {}", d), s),
                    Ok(mut vec) => {
                        assert_eq!(vec.len(), 1);
                        match vec.pop() {
                            None => assert!(false, "The world's gone mad again."),
                            Some(ASN1Block::GeneralizedTime(_, d2)) => assert_eq!(&d2, d),
                            Some(_) => assert!(false, "Bad reparse of GeneralizedTime."),
                        }
                    }
                }
            }
        }
    }

    #[test]
    fn base_integer_tests() {
        assert_eq!(from_der(&vec![0x02, 0x01, 0x00]), result_int(0));
        assert_eq!(from_der(&vec![0x02, 0x01, 0x7F]), result_int(127));
        assert_eq!(from_der(&vec![0x02, 0x02, 0x00, 0x80]), result_int(128));
        assert_eq!(from_der(&vec![0x02, 0x02, 0x01, 0x00]), result_int(256));
        assert_eq!(from_der(&vec![0x02, 0x01, 0x80]), result_int(-128));
        assert_eq!(from_der(&vec![0x02, 0x02, 0xFF, 0x7F]), result_int(-129));
    }

    fn can_parse(f: &str) -> Result<Vec<ASN1Block>, ASN1DecodeErr> {
        let mut fd = File::open(f).unwrap();
        let mut buffer = Vec::new();
        let _amt = fd.read_to_end(&mut buffer);
        from_der(&buffer[..])
    }

    #[test]
    fn x509_tests() {
        can_parse("test/server.bin").unwrap();
        can_parse("test/key.bin").unwrap();
    }

    #[test]
    fn encode_base127_zero() {
        let zero = BigUint::from(0 as u64);
        let encoded = encode_base127(&zero);
        let expected: Vec<u8> = vec![0x0];
        assert_eq!(expected, encoded);
    }

    #[test]
    fn raw_oid_eq() {
        // data taken from https://tools.ietf.org/html/rfc4880
        // ( OID as vector of unsigned integers , asn1 encoded block)

        // comparision is not done against the full length, but only for
        // the actually encoded OID part (see the expect statement further down)
        let md5 = (
            oid!(1, 2, 840, 113549, 2, 5),
            vec![
                0x30, 0x20, 0x30, 0x0C, 0x06, 0x08, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05,
                0x05, 0x00, 0x04, 0x10,
            ],
        );

        let ripmed160 = (
            oid!(1, 3, 36, 3, 2, 1),
            vec![
                0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04,
                0x14,
            ],
        );

        let sha1 = (
            oid!(1, 3, 14, 3, 2, 26),
            vec![
                0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04,
                0x14,
            ],
        );

        let sha224 = (
            oid!(2, 16, 840, 1, 101, 3, 4, 2, 4),
            vec![
                0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02,
                0x04, 0x05, 0x00, 0x04, 0x1C,
            ],
        );

        let sha256 = (
            oid!(2, 16, 840, 1, 101, 3, 4, 2, 1),
            vec![
                0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02,
                0x01, 0x05, 0x00, 0x04, 0x20,
            ],
        );

        let sha384 = (
            oid!(2, 16, 840, 1, 101, 3, 4, 2, 2),
            vec![
                0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02,
                0x02, 0x05, 0x00, 0x04, 0x30,
            ],
        );

        let sha512 = (
            oid!(2, 16, 840, 1, 101, 3, 4, 2, 3),
            vec![
                0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02,
                0x03, 0x05, 0x00, 0x04, 0x40,
            ],
        );

        let tests: Vec<(OID, Vec<u8>)> = vec![md5, ripmed160, sha1, sha224, sha256, sha384, sha512];

        for test in tests {
            let expected = test.1;
            let raw_oid = test.0.as_raw().expect("Failed to convert OID to raw");
            assert_eq!(raw_oid, &expected[6..(expected.len() - 4)]);
        }
    }

    #[test]
    fn vec_oid() {
        let vec_u64: Vec<u64> = vec![1, 2, 840, 10045, 4, 3, 2];
        let vec_i64: Vec<i64> = vec![1, 2, 840, 10045, 4, 3, 2];
        let vec_usize: Vec<usize> = vec![1, 2, 840, 10045, 4, 3, 2];

        let mut o = Vec::new();
        for val in vec_u64.iter() {
            o.push(BigUint::from(*val));
        }

        let oid = OID::new(o);

        assert_eq!(Ok(vec_u64), oid.as_vec());
        assert_eq!(Ok(vec_i64), oid.as_vec());
        assert_eq!(Ok(vec_usize), oid.as_vec());
        assert_eq!(Err(ASN1DecodeErr::Overflow), oid.as_vec::<u8>());
    }
}