guppy/graph/feature/resolve.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
// Copyright (c) The cargo-guppy Contributors
// SPDX-License-Identifier: MIT OR Apache-2.0
use std::fmt;
use crate::{
debug_ignore::DebugIgnore,
graph::{
cargo::{CargoOptions, CargoSet},
feature::{
build::FeatureEdgeReference, ConditionalLink, FeatureEdge, FeatureGraph, FeatureId,
FeatureList, FeatureMetadata, FeatureQuery, FeatureResolver,
},
resolve_core::ResolveCore,
DependencyDirection, FeatureGraphSpec, FeatureIx, PackageIx, PackageMetadata, PackageSet,
},
petgraph_support::{dfs::BufferedEdgeFilterFn, IxBitSet},
sorted_set::SortedSet,
Error, PackageId,
};
use fixedbitset::FixedBitSet;
use itertools::Either;
use petgraph::{graph::NodeIndex, visit::EdgeRef};
impl<'g> FeatureGraph<'g> {
/// Creates a new `FeatureSet` consisting of all members of this feature graph.
///
/// This will include features that aren't depended on by any workspace packages.
///
/// In most situations, `query_workspace().resolve()` is preferred. Use `resolve_all` if you
/// know you need parts of the graph that aren't accessible from the workspace.
pub fn resolve_all(&self) -> FeatureSet<'g> {
FeatureSet {
graph: DebugIgnore(*self),
core: ResolveCore::all_nodes(self.dep_graph()),
}
}
/// Creates a new, empty `FeatureSet` associated with this feature graph.
pub fn resolve_none(&self) -> FeatureSet<'g> {
FeatureSet {
graph: DebugIgnore(*self),
core: ResolveCore::empty(),
}
}
/// Creates a new `FeatureSet` consisting of the specified feature IDs.
///
/// Returns an error if any feature IDs are unknown.
pub fn resolve_ids<'a>(
&self,
feature_ids: impl IntoIterator<Item = impl Into<FeatureId<'a>>>,
) -> Result<FeatureSet<'g>, Error> {
Ok(FeatureSet {
graph: DebugIgnore(*self),
core: ResolveCore::from_included::<IxBitSet>(
self.feature_ixs(feature_ids.into_iter().map(|feature| feature.into()))?,
),
})
}
}
/// A set of resolved feature IDs in a feature graph.
///
/// Created by `FeatureQuery::resolve`, the `FeatureGraph::resolve_` methods, or from
/// `PackageSet::to_feature_set`.
#[derive(Clone)]
pub struct FeatureSet<'g> {
graph: DebugIgnore<FeatureGraph<'g>>,
core: ResolveCore<FeatureGraphSpec>,
}
impl<'g> fmt::Debug for FeatureSet<'g> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_set()
.entries(self.packages_with_features(DependencyDirection::Forward))
.finish()
}
}
assert_covariant!(FeatureSet);
impl<'g> FeatureSet<'g> {
pub(super) fn new(query: FeatureQuery<'g>) -> Self {
let graph = query.graph;
Self {
graph,
core: ResolveCore::new(graph.dep_graph(), query.params),
}
}
pub(super) fn with_resolver(
query: FeatureQuery<'g>,
mut resolver: impl FeatureResolver<'g>,
) -> Self {
let graph = query.graph;
let params = query.params.clone();
// State used by the callback below.
let mut buffer_states = graph
.inner
.weak
.new_buffer_states(|link| resolver.accept(&query, link));
let filter_fn = |edge_ref: FeatureEdgeReference<'g>| {
match graph.edge_to_conditional_link(
edge_ref.source(),
edge_ref.target(),
edge_ref.id(),
Some(edge_ref.weight()),
) {
Some((link, weak_index)) => buffer_states.track(edge_ref, link, weak_index),
None => {
// Feature links within the same package are always followed.
Either::Left(Some(edge_ref))
}
}
.into_iter()
};
let core = ResolveCore::with_buffered_edge_filter(
graph.dep_graph(),
params,
BufferedEdgeFilterFn(filter_fn),
);
Self { graph, core }
}
#[allow(dead_code)]
pub(in crate::graph) fn from_included(
graph: FeatureGraph<'g>,
included: impl Into<FixedBitSet>,
) -> Self {
Self {
graph: DebugIgnore(graph),
core: ResolveCore::from_included(included.into()),
}
}
/// Returns the `FeatureGraph` that this feature set was computed against.
pub fn graph(&self) -> &FeatureGraph<'g> {
&self.graph.0
}
/// Returns the number of feature IDs in this set.
pub fn len(&self) -> usize {
self.core.len()
}
/// Returns true if no feature IDs were resolved in this set.
pub fn is_empty(&self) -> bool {
self.core.is_empty()
}
/// Returns true if this set contains the given feature ID.
///
/// Returns an error if this feature ID was unknown.
pub fn contains<'a>(&self, feature_id: impl Into<FeatureId<'a>>) -> Result<bool, Error> {
Ok(self
.core
.contains(self.graph.feature_ix(feature_id.into())?))
}
/// Returns true if this set contains this package.
///
/// Returns an error if this package ID was unknown.
pub fn contains_package(&self, package_id: &PackageId) -> Result<bool, Error> {
let package = self.graph.package_graph.metadata(package_id)?;
Ok(self
.graph
.feature_ixs_for_package_ix(package.package_ix())
.any(|feature_ix| self.core.contains(feature_ix)))
}
/// Creates a new `FeatureQuery` from this set in the specified direction.
///
/// This is equivalent to constructing a query from all the feature IDs in this set.
pub fn to_feature_query(&self, direction: DependencyDirection) -> FeatureQuery<'g> {
let feature_ixs = SortedSet::new(
self.core
.included
.ones()
.map(NodeIndex::new)
.collect::<Vec<_>>(),
);
self.graph.query_from_parts(feature_ixs, direction)
}
// ---
// Set operations
// ---
/// Returns a `FeatureSet` that contains all packages present in at least one of `self`
/// and `other`.
///
/// ## Panics
///
/// Panics if the package graphs associated with `self` and `other` don't match.
pub fn union(&self, other: &Self) -> Self {
assert!(
::std::ptr::eq(self.graph.package_graph, self.graph.package_graph),
"package graphs passed into union() match"
);
let mut res = self.clone();
res.core.union_with(&other.core);
res
}
/// Returns a `FeatureSet` that contains all packages present in both `self` and `other`.
///
/// ## Panics
///
/// Panics if the package graphs associated with `self` and `other` don't match.
pub fn intersection(&self, other: &Self) -> Self {
assert!(
::std::ptr::eq(self.graph.package_graph, self.graph.package_graph),
"package graphs passed into intersection() match"
);
let mut res = self.clone();
res.core.intersect_with(&other.core);
res
}
/// Returns a `FeatureSet` that contains all packages present in `self` but not `other`.
///
/// ## Panics
///
/// Panics if the package graphs associated with `self` and `other` don't match.
pub fn difference(&self, other: &Self) -> Self {
assert!(
::std::ptr::eq(self.graph.package_graph, self.graph.package_graph),
"package graphs passed into difference() match"
);
Self {
graph: self.graph,
core: self.core.difference(&other.core),
}
}
/// Returns a `FeatureSet` that contains all packages present in exactly one of `self` and
/// `other`.
///
/// ## Panics
///
/// Panics if the package graphs associated with `self` and `other` don't match.
pub fn symmetric_difference(&self, other: &Self) -> Self {
assert!(
::std::ptr::eq(self.graph.package_graph, self.graph.package_graph),
"package graphs passed into symmetric_difference() match"
);
let mut res = self.clone();
res.core.symmetric_difference_with(&other.core);
res
}
/// Returns a `PackageSet` on which a filter has been applied.
///
/// Filters out all values for which the callback returns false.
///
/// ## Cycles
///
/// For packages within a dependency cycle, the callback will be called in non-dev order. When
/// the direction is forward, if package Foo has a dependency on Bar, and Bar has a cyclic
/// dev-dependency on Foo, then Foo is returned before Bar.
pub fn filter(
&self,
direction: DependencyDirection,
mut callback: impl FnMut(FeatureMetadata<'g>) -> bool,
) -> Self {
let graph = self.graph;
let included: IxBitSet = self
.features(direction)
.filter_map(move |feature| {
let feature_ix = feature.feature_ix();
if callback(feature) {
Some(feature_ix)
} else {
None
}
})
.collect();
Self::from_included(*graph, included)
}
/// Partitions this `PackageSet` into two.
///
/// The first `PackageSet` contains packages for which the callback returned true, and the
/// second one contains packages for which the callback returned false.
///
/// ## Cycles
///
/// For packages within a dependency cycle, the callback will be called in non-dev order. When
/// the direction is forward, if package Foo has a dependency on Bar, and Bar has a cyclic
/// dev-dependency on Foo, then Foo is returned before Bar.
pub fn partition(
&self,
direction: DependencyDirection,
mut callback: impl FnMut(FeatureMetadata<'g>) -> bool,
) -> (Self, Self) {
let graph = self.graph;
let mut left = IxBitSet::with_capacity(self.core.included.len());
let mut right = left.clone();
self.features(direction).for_each(|feature| {
let feature_ix = feature.feature_ix();
match callback(feature) {
true => left.insert_node_ix(feature_ix),
false => right.insert_node_ix(feature_ix),
}
});
(
Self::from_included(*graph, left),
Self::from_included(*graph, right),
)
}
/// Performs filtering and partitioning at the same time.
///
/// The first `PackageSet` contains packages for which the callback returned `Some(true)`, and
/// the second one contains packages for which the callback returned `Some(false)`. Packages
/// for which the callback returned `None` are dropped.
///
/// ## Cycles
///
/// For packages within a dependency cycle, the callback will be called in non-dev order. When
/// the direction is forward, if package Foo has a dependency on Bar, and Bar has a cyclic
/// dev-dependency on Foo, then Foo is returned before Bar.
pub fn filter_partition(
&self,
direction: DependencyDirection,
mut callback: impl FnMut(FeatureMetadata<'g>) -> Option<bool>,
) -> (Self, Self) {
let graph = self.graph;
let mut left = IxBitSet::with_capacity(self.core.included.len());
let mut right = left.clone();
self.features(direction).for_each(|feature| {
let feature_ix = feature.feature_ix();
match callback(feature) {
Some(true) => left.insert_node_ix(feature_ix),
Some(false) => right.insert_node_ix(feature_ix),
None => {}
}
});
(
Self::from_included(*graph, left),
Self::from_included(*graph, right),
)
}
// ---
// Queries around packages
// ---
/// Returns a list of features present for this package, or `None` if this package is not
/// present in the feature set.
///
/// Returns an error if the package ID was unknown.
pub fn features_for(&self, package_id: &PackageId) -> Result<Option<FeatureList<'g>>, Error> {
let package = self.graph.package_graph.metadata(package_id)?;
Ok(self.features_for_package_impl(package))
}
/// Converts this `FeatureSet` into a `PackageSet` containing all packages with any selected
/// features (including the "base" feature).
pub fn to_package_set(&self) -> PackageSet<'g> {
let included: IxBitSet = self
.core
.included
.ones()
.map(|feature_ix| {
self.graph
.package_ix_for_feature_ix(NodeIndex::new(feature_ix))
})
.collect();
PackageSet::from_included(self.graph.package_graph, included.0)
}
// ---
// Cargo set creation
// ---
/// Converts this feature set into a Cargo set, simulating a Cargo build for it.
///
/// The feature set is expected to be entirely within the workspace. Its behavior outside the
/// workspace isn't defined and may be surprising.
///
/// Returns an error if the `CargoOptions` weren't valid in some way (for example if an omitted
/// package ID wasn't known to this graph.)
pub fn into_cargo_set(self, opts: &CargoOptions<'_>) -> Result<CargoSet<'g>, Error> {
let features_only = self.graph.resolve_none();
CargoSet::new(self, features_only, opts)
}
// ---
// Iterators
// ---
/// Iterates over feature IDs, in topological order in the direction specified.
///
/// ## Cycles
///
/// The features within a dependency cycle will be returned in non-dev order. When the direction
/// is forward, if feature Foo has a dependency on Bar, and Bar has a cyclic dev-dependency on
/// Foo, then Foo is returned before Bar.
pub fn feature_ids<'a>(
&'a self,
direction: DependencyDirection,
) -> impl Iterator<Item = FeatureId<'g>> + ExactSizeIterator + 'a {
let graph = self.graph;
self.core
.topo(graph.sccs(), direction)
.map(move |feature_ix| {
FeatureId::from_node(graph.package_graph(), &graph.dep_graph()[feature_ix])
})
}
/// Iterates over feature metadatas, in topological order in the direction specified.
///
/// ## Cycles
///
/// The features within a dependency cycle will be returned in non-dev order. When the direction
/// is forward, if feature Foo has a dependency on Bar, and Bar has a cyclic dev-dependency on
/// Foo, then Foo is returned before Bar.
pub fn features<'a>(
&'a self,
direction: DependencyDirection,
) -> impl Iterator<Item = FeatureMetadata<'g>> + ExactSizeIterator + 'a {
let graph = self.graph;
self.core
.topo(graph.sccs(), direction)
.map(move |feature_ix| {
graph
.metadata_for_node(graph.dep_graph()[feature_ix])
.expect("feature node should be known")
})
}
/// Iterates over package metadatas and their corresponding features, in topological order in
/// the direction specified.
///
/// ## Cycles
///
/// The packages within a dependency cycle will be returned in non-dev order. When the direction
/// is forward, if package Foo has a dependency on Bar, and Bar has a cyclic dev-dependency on
/// Foo, then Foo is returned before Bar.
pub fn packages_with_features<'a>(
&'a self,
direction: DependencyDirection,
) -> impl Iterator<Item = FeatureList<'g>> + 'a {
let package_graph = self.graph.package_graph;
// Use the package graph's SCCs for the topo order guarantee.
package_graph
.sccs()
.node_iter(direction.into())
.filter_map(move |package_ix| {
let package_id = &package_graph.dep_graph()[package_ix];
let package = package_graph
.metadata(package_id)
.expect("valid package ID");
self.features_for_package_impl(package)
})
}
/// Returns the set of "root feature" IDs in the specified direction.
///
/// * If direction is Forward, return the set of feature IDs that do not have any dependencies
/// within the selected graph.
/// * If direction is Reverse, return the set of feature IDs that do not have any dependents
/// within the selected graph.
///
/// ## Cycles
///
/// If a root consists of a dependency cycle, all the packages in it will be returned in
/// non-dev order (when the direction is forward).
pub fn root_ids<'a>(
&'a self,
direction: DependencyDirection,
) -> impl Iterator<Item = FeatureId<'g>> + ExactSizeIterator + 'a {
let dep_graph = self.graph.dep_graph();
let package_graph = self.graph.package_graph;
self.core
.roots(dep_graph, self.graph.sccs(), direction)
.into_iter()
.map(move |feature_ix| FeatureId::from_node(package_graph, &dep_graph[feature_ix]))
}
/// Returns the set of "root feature" metadatas in the specified direction.
///
/// * If direction is Forward, return the set of metadatas that do not have any dependencies
/// within the selected graph.
/// * If direction is Reverse, return the set of metadatas that do not have any dependents
/// within the selected graph.
///
/// ## Cycles
///
/// If a root consists of a dependency cycle, all the packages in it will be returned in
/// non-dev order (when the direction is forward).
pub fn root_features<'a>(
&'a self,
direction: DependencyDirection,
) -> impl Iterator<Item = FeatureMetadata<'g>> + 'a {
let feature_graph = self.graph;
self.core
.roots(feature_graph.dep_graph(), feature_graph.sccs(), direction)
.into_iter()
.map(move |feature_ix| {
feature_graph
.metadata_for_node(feature_graph.dep_graph()[feature_ix])
.expect("feature node should be known")
})
}
/// Creates an iterator over `ConditionalLink` instances in the direction specified.
///
/// ## Cycles
///
/// The links in a dependency cycle will be returned in non-dev order. When the direction is
/// forward, if feature Foo has a dependency on Bar, and Bar has a cyclic dev-dependency on Foo,
/// then the link Foo -> Bar is returned before the link Bar -> Foo.
pub fn conditional_links<'a>(
&'a self,
direction: DependencyDirection,
) -> impl Iterator<Item = ConditionalLink<'g>> + 'a {
let graph = self.graph;
self.core
.links(graph.dep_graph(), graph.sccs(), direction)
.filter_map(move |(source_ix, target_ix, edge_ix)| {
graph
.edge_to_conditional_link(source_ix, target_ix, edge_ix, None)
.map(|(link, _)| link)
})
}
// ---
// Helper methods
// ---
fn features_for_package_impl<'a>(
&'a self,
package: PackageMetadata<'g>,
) -> Option<FeatureList<'g>> {
let dep_graph = self.graph.dep_graph();
let core = &self.core;
let mut features = self
.graph
.feature_ixs_for_package_ix(package.package_ix())
.filter_map(|feature_ix| {
if core.contains(feature_ix) {
Some(FeatureId::node_to_feature(package, &dep_graph[feature_ix]))
} else {
None
}
})
.peekable();
if features.peek().is_some() {
// At least one feature was returned.
Some(FeatureList::new(package, features))
} else {
None
}
}
/// Returns all the package ixs without topologically sorting them.
pub(in crate::graph) fn ixs_unordered(
&self,
) -> impl Iterator<Item = NodeIndex<FeatureIx>> + '_ {
self.core.included.ones().map(NodeIndex::new)
}
/// Returns true if this feature set contains the given package ix.
#[allow(dead_code)]
pub(in crate::graph) fn contains_package_ix(&self, package_ix: NodeIndex<PackageIx>) -> bool {
self.graph
.feature_ixs_for_package_ix(package_ix)
.any(|feature_ix| self.core.contains(feature_ix))
}
// Currently a helper for debugging -- will be made public in the future.
#[doc(hidden)]
pub fn links<'a>(
&'a self,
direction: DependencyDirection,
) -> impl Iterator<Item = (FeatureId<'g>, FeatureId<'g>, &'g FeatureEdge)> + 'a {
let feature_graph = self.graph;
self.core
.links(feature_graph.dep_graph(), feature_graph.sccs(), direction)
.map(move |(source_ix, target_ix, edge_ix)| {
(
FeatureId::from_node(
feature_graph.package_graph(),
&feature_graph.dep_graph()[source_ix],
),
FeatureId::from_node(
feature_graph.package_graph(),
&feature_graph.dep_graph()[target_ix],
),
&feature_graph.dep_graph()[edge_ix],
)
})
}
}
impl<'g> PartialEq for FeatureSet<'g> {
fn eq(&self, other: &Self) -> bool {
::std::ptr::eq(self.graph.package_graph, other.graph.package_graph)
&& self.core == other.core
}
}
impl<'g> Eq for FeatureSet<'g> {}