1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//! Serial numbers.
//!
//! DNS uses 32 bit serial numbers in various places that are conceptionally
//! viewed as the 32 bit modulus of a larger number space. Because of that,
//! special rules apply when processing these values. This module provides
//! the type [`Serial`] that implements these rules.
//!
//! [`Serial`]: struct.Serial.html

use super::cmp::CanonicalOrd;
use super::scan::{Scan, Scanner, ScannerError};
use super::wire::{Compose, Composer, Parse, ParseError};
#[cfg(feature = "chrono")]
use chrono::{DateTime, TimeZone};
use core::cmp::Ordering;
use core::convert::TryFrom;
use core::str::FromStr;
use core::{cmp, fmt, str};
use octseq::parse::Parser;
#[cfg(feature = "std")]
use std::time::{SystemTime, UNIX_EPOCH};
use time::{Date, Month, PrimitiveDateTime, Time};

//------------ Serial --------------------------------------------------------

/// A serial number.
///
/// Serial numbers are used in DNS to track changes to resources. For
/// instance, the [`Soa`][crate::rdata::rfc1035::Soa] record type provides
/// a serial number that expresses the version of the zone. Since these
/// numbers are only 32 bits long, they
/// can wrap. [RFC 1982] defined the semantics for doing arithmetics in the
/// face of these wrap-arounds. This type implements these semantics atop a
/// native `u32`.
///
/// The RFC defines two operations: addition and comparison.
///
/// For addition, the amount added can only be a positive number of up to
/// `2^31 - 1`. Because of this, we decided to not implement the
/// `Add` trait but rather have a dedicated method `add` so as to not cause
/// surprise panics.
///
/// Serial numbers only implement a partial ordering. That is, there are
/// pairs of values that are not equal but there still isn’t one value larger
/// than the other. Since this is neatly implemented by the `PartialOrd`
/// trait, the type implements that.
///
/// [RFC 1982]: https://tools.ietf.org/html/rfc1982
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Serial(pub u32);

impl Serial {
    /// Returns a serial number for the current Unix time.
    #[cfg(feature = "std")]
    #[must_use]
    pub fn now() -> Self {
        let now = SystemTime::now();
        let value = match now.duration_since(UNIX_EPOCH) {
            Ok(value) => value,
            Err(_) => UNIX_EPOCH.duration_since(now).unwrap(),
        };
        Self(value.as_secs() as u32)
    }

    /// Creates a new serial number from its octets in big endian notation.
    #[must_use]
    pub fn from_be_bytes(bytes: [u8; 4]) -> Self {
        Self(u32::from_be_bytes(bytes))
    }

    /// Returns the serial number as a raw integer.
    #[must_use]
    pub fn into_int(self) -> u32 {
        self.0
    }

    /// Add `other` to `self`.
    ///
    /// Serial numbers only allow values of up to `2^31 - 1` to be added to
    /// them. Therefore, this method requires `other` to be a `u32` instead
    /// of a `Serial` to indicate that you cannot simply add two serials
    /// together. This is also why we don’t implement the `Add` trait.
    ///
    /// # Panics
    ///
    /// This method panics if `other` is greater than `2^31 - 1`.
    #[allow(clippy::should_implement_trait)]
    #[must_use]
    pub fn add(self, other: u32) -> Self {
        assert!(other <= 0x7FFF_FFFF);
        Serial(self.0.wrapping_add(other))
    }

    pub fn scan<S: Scanner>(scanner: &mut S) -> Result<Self, S::Error> {
        u32::scan(scanner).map(Into::into)
    }

    /// Scan a serial represention signature time value.
    ///
    /// In [RRSIG] records, the expiration and inception times are given as
    /// serial values. Their representation format can either be the
    /// value or a specific date in `YYYYMMDDHHmmSS` format.
    ///
    /// [RRSIG]: ../../rdata/rfc4034/struct.Rrsig.html
    pub fn scan_rrsig<S: Scanner>(scanner: &mut S) -> Result<Self, S::Error> {
        let mut pos = 0;
        let mut buf = [0u8; 14];
        scanner.scan_symbols(|symbol| {
            if pos >= 14 {
                return Err(S::Error::custom("illegal signature time"));
            }
            buf[pos] = symbol
                .into_digit(10)
                .map_err(|_| S::Error::custom("illegal signature time"))?
                as u8;
            pos += 1;
            Ok(())
        })?;
        if pos <= 10 {
            // We have an integer. We generate it into a u64 to deal
            // with possible overflows.
            let mut res = 0u64;
            for ch in &buf[..pos] {
                res = res * 10 + (u64::from(*ch));
            }
            if res > u64::from(u32::MAX) {
                Err(S::Error::custom("illegal signature time"))
            } else {
                Ok(Serial(res as u32))
            }
        } else if pos == 14 {
            let year = u32_from_buf(&buf[0..4]) as i32;
            let month = Month::try_from(u8_from_buf(&buf[4..6]))
                .map_err(|_| S::Error::custom("illegal signature time"))?;
            let day = u8_from_buf(&buf[6..8]);
            let hour = u8_from_buf(&buf[8..10]);
            let minute = u8_from_buf(&buf[10..12]);
            let second = u8_from_buf(&buf[12..14]);
            Ok(Serial(
                PrimitiveDateTime::new(
                    Date::from_calendar_date(year, month, day).map_err(
                        |_| S::Error::custom("illegal signature time"),
                    )?,
                    Time::from_hms(hour, minute, second).map_err(|_| {
                        S::Error::custom("illegal signature time")
                    })?,
                )
                .assume_utc()
                .unix_timestamp() as u32,
            ))
        } else {
            Err(S::Error::custom("illegal signature time"))
        }
    }

    /// Parses a serial representing a time value from a string.
    ///
    /// In [RRSIG] records, the expiration and inception times are given as
    /// serial values. Their representation format can either be the
    /// value or a specific date in `YYYYMMDDHHmmSS` format.
    ///
    /// [RRSIG]: ../../rdata/rfc4034/struct.Rrsig.html
    pub fn rrsig_from_str(src: &str) -> Result<Self, IllegalSignatureTime> {
        if !src.is_ascii() {
            return Err(IllegalSignatureTime);
        }
        if src.len() == 14 {
            let year = u32::from_str(&src[0..4])
                .map_err(|_| IllegalSignatureTime)?
                as i32;
            let month = Month::try_from(
                u8::from_str(&src[4..6]).map_err(|_| IllegalSignatureTime)?,
            )
            .map_err(|_| IllegalSignatureTime)?;
            let day =
                u8::from_str(&src[6..8]).map_err(|_| IllegalSignatureTime)?;
            let hour = u8::from_str(&src[8..10])
                .map_err(|_| IllegalSignatureTime)?;
            let minute = u8::from_str(&src[10..12])
                .map_err(|_| IllegalSignatureTime)?;
            let second = u8::from_str(&src[12..14])
                .map_err(|_| IllegalSignatureTime)?;
            Ok(Serial(
                PrimitiveDateTime::new(
                    Date::from_calendar_date(year, month, day)
                        .map_err(|_| IllegalSignatureTime)?,
                    Time::from_hms(hour, minute, second)
                        .map_err(|_| IllegalSignatureTime)?,
                )
                .assume_utc()
                .unix_timestamp() as u32,
            ))
        } else {
            Serial::from_str(src).map_err(|_| IllegalSignatureTime)
        }
    }
}

/// # Parsing and Composing
///
impl Serial {
    pub const COMPOSE_LEN: u16 = u32::COMPOSE_LEN;

    pub fn parse<Octs: AsRef<[u8]> + ?Sized>(
        parser: &mut Parser<Octs>,
    ) -> Result<Self, ParseError> {
        u32::parse(parser).map(Into::into)
    }

    pub fn compose<Target: Composer + ?Sized>(
        &self,
        target: &mut Target,
    ) -> Result<(), Target::AppendError> {
        self.0.compose(target)
    }
}

//--- From and FromStr

impl From<u32> for Serial {
    fn from(value: u32) -> Serial {
        Serial(value)
    }
}

impl From<Serial> for u32 {
    fn from(serial: Serial) -> u32 {
        serial.0
    }
}

#[cfg(feature = "chrono")]
#[cfg_attr(docsrs, doc(cfg(feature = "chrono")))]
impl<T: TimeZone> From<DateTime<T>> for Serial {
    fn from(value: DateTime<T>) -> Self {
        Self(value.timestamp() as u32)
    }
}

impl str::FromStr for Serial {
    type Err = <u32 as str::FromStr>::Err;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        <u32 as str::FromStr>::from_str(s).map(Into::into)
    }
}

//--- Display

impl fmt::Display for Serial {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.0)
    }
}

//--- PartialOrd

impl cmp::PartialOrd for Serial {
    fn partial_cmp(&self, other: &Serial) -> Option<cmp::Ordering> {
        match self.0.cmp(&other.0) {
            Ordering::Equal => Some(Ordering::Equal),
            Ordering::Less => {
                let sub = other.0 - self.0;
                match sub.cmp(&0x8000_0000) {
                    Ordering::Less => Some(Ordering::Less),
                    Ordering::Greater => Some(Ordering::Greater),
                    Ordering::Equal => None,
                }
            }
            Ordering::Greater => {
                let sub = self.0 - other.0;
                match sub.cmp(&0x8000_0000) {
                    Ordering::Less => Some(Ordering::Greater),
                    Ordering::Greater => Some(Ordering::Less),
                    Ordering::Equal => None,
                }
            }
        }
    }
}

impl CanonicalOrd for Serial {
    fn canonical_cmp(&self, other: &Self) -> cmp::Ordering {
        self.0.cmp(&other.0)
    }
}

//------------ Helper Functions ----------------------------------------------

fn u8_from_buf(buf: &[u8]) -> u8 {
    let mut res = 0;
    for ch in buf {
        res = res * 10 + *ch;
    }
    res
}

fn u32_from_buf(buf: &[u8]) -> u32 {
    let mut res = 0;
    for ch in buf {
        res = res * 10 + (u32::from(*ch));
    }
    res
}

//============ Testing =======================================================

#[derive(Clone, Copy, Debug)]
pub struct IllegalSignatureTime;

impl fmt::Display for IllegalSignatureTime {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str("illegal signature time")
    }
}

#[cfg(feature = "std")]
impl std::error::Error for IllegalSignatureTime {}

//============ Testing =======================================================

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn good_addition() {
        assert_eq!(Serial(0).add(4), Serial(4));
        assert_eq!(
            Serial(0xFF00_0000).add(0x0F00_0000),
            Serial(
                ((0xFF00_0000u64 + 0x0F00_0000u64) % 0x1_0000_0000) as u32
            )
        );
    }

    #[test]
    #[should_panic]
    fn bad_addition() {
        let _ = Serial(0).add(0x8000_0000);
    }

    #[test]
    fn comparison() {
        use core::cmp::Ordering::*;

        assert_eq!(Serial(12), Serial(12));
        assert_ne!(Serial(12), Serial(112));

        assert_eq!(Serial(12).partial_cmp(&Serial(12)), Some(Equal));

        // s1 is said to be less than s2 if [...]
        // (i1 < i2 and i2 - i1 < 2^(SERIAL_BITS - 1))
        assert_eq!(Serial(12).partial_cmp(&Serial(13)), Some(Less));
        assert_ne!(
            Serial(12).partial_cmp(&Serial(3_000_000_012)),
            Some(Less)
        );

        // or (i1 > i2 and i1 - i2 > 2^(SERIAL_BITS - 1))
        assert_eq!(
            Serial(3_000_000_012).partial_cmp(&Serial(12)),
            Some(Less)
        );
        assert_ne!(Serial(13).partial_cmp(&Serial(12)), Some(Less));

        // s1 is said to be greater than s2 if [...]
        // (i1 < i2 and i2 - i1 > 2^(SERIAL_BITS - 1))
        assert_eq!(
            Serial(12).partial_cmp(&Serial(3_000_000_012)),
            Some(Greater)
        );
        assert_ne!(Serial(12).partial_cmp(&Serial(13)), Some(Greater));

        // (i1 > i2 and i1 - i2 < 2^(SERIAL_BITS - 1))
        assert_eq!(Serial(13).partial_cmp(&Serial(12)), Some(Greater));
        assert_ne!(
            Serial(3_000_000_012).partial_cmp(&Serial(12)),
            Some(Greater)
        );

        // Er, I think that’s what’s left.
        assert_eq!(Serial(1).partial_cmp(&Serial(0x8000_0001)), None);
        assert_eq!(Serial(0x8000_0001).partial_cmp(&Serial(1)), None);
    }
}