mz_compute/render/top_k.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! TopK execution logic.
//!
//! Consult [TopKPlan] documentation for details.
use std::cell::RefCell;
use std::collections::BTreeMap;
use std::rc::Rc;
use differential_dataflow::hashable::Hashable;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::operators::arrange::{Arranged, TraceAgent};
use differential_dataflow::trace::cursor::IntoOwned;
use differential_dataflow::trace::{Batch, Builder, Trace, TraceReader};
use differential_dataflow::{AsCollection, Collection};
use mz_compute_types::plan::top_k::{
BasicTopKPlan, MonotonicTop1Plan, MonotonicTopKPlan, TopKPlan,
};
use mz_expr::func::CastUint64ToInt64;
use mz_expr::{BinaryFunc, EvalError, MirScalarExpr, UnaryFunc};
use mz_ore::cast::CastFrom;
use mz_ore::soft_assert_or_log;
use mz_repr::{Datum, DatumVec, Diff, Row, ScalarType, SharedRow};
use mz_storage_types::errors::DataflowError;
use mz_timely_util::operator::CollectionExt;
use timely::container::columnation::Columnation;
use timely::container::{CapacityContainerBuilder, PushInto};
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::operators::Operator;
use timely::dataflow::Scope;
use timely::Container;
use crate::extensions::arrange::{ArrangementSize, KeyCollection, MzArrange};
use crate::extensions::reduce::MzReduce;
use crate::render::context::{CollectionBundle, Context};
use crate::render::errors::MaybeValidatingRow;
use crate::render::Pairer;
use crate::row_spine::{
DatumSeq, RowBatcher, RowBuilder, RowRowBatcher, RowRowBuilder, RowValBuilder, RowValSpine,
};
use crate::typedefs::{KeyBatcher, RowRowSpine, RowSpine};
// The implementation requires integer timestamps to be able to delay feedback for monotonic inputs.
impl<G> Context<G>
where
G: Scope,
G::Timestamp: crate::render::RenderTimestamp,
{
pub(crate) fn render_topk(
&self,
input: CollectionBundle<G>,
top_k_plan: TopKPlan,
) -> CollectionBundle<G> {
let (ok_input, err_input) = input.as_specific_collection(None);
// We create a new region to compartmentalize the topk logic.
let (ok_result, err_collection) = ok_input.scope().region_named("TopK", |inner| {
let ok_input = ok_input.enter_region(inner);
let mut err_collection = err_input.enter_region(inner);
// Determine if there should be errors due to limit evaluation; update `err_collection`.
// TODO(vmarcos): We evaluate the limit expression below for each input update. There
// is an opportunity to do so for every group key instead if the error handling is
// integrated with: 1. The intra-timestamp thinning step in monotonic top-k, e.g., by
// adding an error output there; 2. The validating reduction on basic top-k
// (database-issues#7108).
let limit_err = match &top_k_plan {
TopKPlan::MonotonicTop1(MonotonicTop1Plan { .. }) => None,
TopKPlan::MonotonicTopK(MonotonicTopKPlan { limit, .. }) => Some(limit),
TopKPlan::Basic(BasicTopKPlan { limit, .. }) => Some(limit),
};
if let Some(limit) = limit_err {
if let Some(expr) = limit {
// Produce errors from limit selectors that error or are
// negative, and nothing from limit selectors that do
// not. Note that even if expr.could_error() is false,
// the expression might still return a negative limit and
// thus needs to be checked.
let expr = expr.clone();
let mut datum_vec = mz_repr::DatumVec::new();
let errors = ok_input.flat_map(move |row| {
let temp_storage = mz_repr::RowArena::new();
let datums = datum_vec.borrow_with(&row);
match expr.eval(&datums[..], &temp_storage) {
Ok(l) if l != Datum::Null && l.unwrap_int64() < 0 => {
Some(EvalError::NegLimit.into())
}
Ok(_) => None,
Err(e) => Some(e.into()),
}
});
err_collection = err_collection.concat(&errors);
}
}
let ok_result = match top_k_plan {
TopKPlan::MonotonicTop1(MonotonicTop1Plan {
group_key,
order_key,
must_consolidate,
}) => {
let (oks, errs) = self.render_top1_monotonic(
ok_input,
group_key,
order_key,
must_consolidate,
);
err_collection = err_collection.concat(&errs);
oks
}
TopKPlan::MonotonicTopK(MonotonicTopKPlan {
order_key,
group_key,
arity,
mut limit,
must_consolidate,
}) => {
// Must permute `limit` to reference `group_key` elements as if in order.
if let Some(expr) = limit.as_mut() {
let mut map = BTreeMap::new();
for (index, column) in group_key.iter().enumerate() {
map.insert(*column, index);
}
expr.permute_map(&map);
}
// Map the group key along with the row and consolidate if required to do so.
let mut datum_vec = mz_repr::DatumVec::new();
let collection = ok_input
.map(move |row| {
let group_row = {
let datums = datum_vec.borrow_with(&row);
SharedRow::pack(group_key.iter().map(|i| datums[*i]))
};
(group_row, row)
})
.consolidate_named_if::<KeyBatcher<_, _, _>>(
must_consolidate,
"Consolidated MonotonicTopK input",
);
// It should be now possible to ensure that we have a monotonic collection.
let error_logger = self.error_logger();
let (collection, errs) = collection.ensure_monotonic(move |data, diff| {
error_logger.log(
"Non-monotonic input to MonotonicTopK",
&format!("data={data:?}, diff={diff}"),
);
let m = "tried to build monotonic top-k on non-monotonic input".into();
(DataflowError::from(EvalError::Internal(m)), 1)
});
err_collection = err_collection.concat(&errs);
// For monotonic inputs, we are able to thin the input relation in two stages:
// 1. First, we can do an intra-timestamp thinning which has the advantage of
// being computed in a streaming fashion, even for the initial snapshot.
// 2. Then, we can do inter-timestamp thinning by feeding back negations for
// any records that have been invalidated.
let collection = if let Some(limit) = limit.clone() {
render_intra_ts_thinning(collection, order_key.clone(), limit)
} else {
collection
};
let pairer = Pairer::new(1);
let collection = collection.map(move |(group_row, row)| {
let hash = row.hashed();
let hash_key = pairer.merge(std::iter::once(Datum::from(hash)), &group_row);
(hash_key, row)
});
// For monotonic inputs, we are able to retract inputs that can no longer be produced
// as outputs. Any inputs beyond `offset + limit` will never again be produced as
// outputs, and can be removed. The simplest form of this is when `offset == 0` and
// these removable records are those in the input not produced in the output.
// TODO: consider broadening this optimization to `offset > 0` by first filtering
// down to `offset = 0` and `limit = offset + limit`, followed by a finishing act
// of `offset` and `limit`, discarding only the records not produced in the intermediate
// stage.
use differential_dataflow::operators::iterate::Variable;
let delay = std::time::Duration::from_secs(10);
let retractions = Variable::new(
&mut ok_input.scope(),
<G::Timestamp as crate::render::RenderTimestamp>::system_delay(
delay.try_into().expect("must fit"),
),
);
let thinned = collection.concat(&retractions.negate());
// As an additional optimization, we can skip creating the full topk hierachy
// here since we now have an upper bound on the number records due to the
// intra-ts thinning. The maximum number of records per timestamp is
// (num_workers * limit), which we expect to be a small number and so we render
// a single topk stage.
let (result, errs) =
self.build_topk_stage(thinned, order_key, 1u64, 0, limit, arity, false);
// Consolidate the output of `build_topk_stage` because it's not guaranteed to be.
let result = result.consolidate_named::<KeyBatcher<_, _, _>>(
"Monotonic TopK final consolidate",
);
retractions.set(&collection.concat(&result.negate()));
soft_assert_or_log!(
errs.is_none(),
"requested no validation, but received error collection"
);
result.map(|(_key_hash, row)| row)
}
TopKPlan::Basic(BasicTopKPlan {
group_key,
order_key,
offset,
mut limit,
arity,
buckets,
}) => {
// Must permute `limit` to reference `group_key` elements as if in order.
if let Some(expr) = limit.as_mut() {
let mut map = BTreeMap::new();
for (index, column) in group_key.iter().enumerate() {
map.insert(*column, index);
}
expr.permute_map(&map);
}
let (oks, errs) = self.build_topk(
ok_input, group_key, order_key, offset, limit, arity, buckets,
);
err_collection = err_collection.concat(&errs);
oks
}
};
// Extract the results from the region.
(ok_result.leave_region(), err_collection.leave_region())
});
CollectionBundle::from_collections(ok_result, err_collection)
}
/// Constructs a TopK dataflow subgraph.
fn build_topk<S>(
&self,
collection: Collection<S, Row, Diff>,
group_key: Vec<usize>,
order_key: Vec<mz_expr::ColumnOrder>,
offset: usize,
limit: Option<mz_expr::MirScalarExpr>,
arity: usize,
buckets: Vec<u64>,
) -> (Collection<S, Row, Diff>, Collection<S, DataflowError, Diff>)
where
S: Scope<Timestamp = G::Timestamp>,
{
let pairer = Pairer::new(1);
let mut datum_vec = mz_repr::DatumVec::new();
let mut collection = collection.map({
move |row| {
let group_row = {
let row_hash = row.hashed();
let datums = datum_vec.borrow_with(&row);
let iterator = group_key.iter().map(|i| datums[*i]);
pairer.merge(std::iter::once(Datum::from(row_hash)), iterator)
};
(group_row, row)
}
});
let mut validating = true;
let mut err_collection: Option<Collection<S, _, _>> = None;
if let Some(mut limit) = limit.clone() {
// We may need a new `limit` that reflects the addition of `offset`.
// Ideally we compile it down to a literal if at all possible.
if offset > 0 {
let new_limit = (|| {
let limit = limit.as_literal_int64()?;
let offset = i64::try_from(offset).ok()?;
limit.checked_add(offset)
})();
if let Some(new_limit) = new_limit {
limit = MirScalarExpr::literal_ok(Datum::Int64(new_limit), ScalarType::Int64);
} else {
limit = limit.call_binary(
MirScalarExpr::literal_ok(
Datum::UInt64(u64::cast_from(offset)),
ScalarType::UInt64,
)
.call_unary(UnaryFunc::CastUint64ToInt64(CastUint64ToInt64)),
BinaryFunc::AddInt64,
);
}
}
// These bucket values define the shifts that happen to the 64 bit hash of the
// record, and should have the properties that 1. there are not too many of them,
// and 2. each has a modest difference to the next.
for bucket in buckets.into_iter() {
// here we do not apply `offset`, but instead restrict ourself with a limit
// that includes the offset. We cannot apply `offset` until we perform the
// final, complete reduction.
let (oks, errs) = self.build_topk_stage(
collection,
order_key.clone(),
bucket,
0,
Some(limit.clone()),
arity,
validating,
);
collection = oks;
if validating {
err_collection = errs;
validating = false;
}
}
}
// We do a final step, both to make sure that we complete the reduction, and to correctly
// apply `offset` to the final group, as we have not yet been applying it to the partially
// formed groups.
let (oks, errs) = self.build_topk_stage(
collection, order_key, 1u64, offset, limit, arity, validating,
);
// Consolidate the output of `build_topk_stage` because it's not guaranteed to be.
let oks = oks.consolidate_named::<KeyBatcher<_, _, _>>("TopK final consolidate");
collection = oks;
if validating {
err_collection = errs;
}
(
collection.map(|(_key_hash, row)| row),
err_collection.expect("at least one stage validated its inputs"),
)
}
/// To provide a robust incremental orderby-limit experience, we want to avoid grouping *all*
/// records (or even large groups) and then applying the ordering and limit. Instead, a more
/// robust approach forms groups of bounded size and applies the offset and limit to each,
/// and then increases the sizes of the groups.
///
/// Builds a "stage", which uses a finer grouping than is required to reduce the volume of
/// updates, and to reduce the amount of work on the critical path for updates. The cost is
/// a larger number of arrangements when this optimization does nothing beneficial.
///
/// The function accepts a collection of the form `(hash_key, row)`, a modulus it applies to the
/// `hash_key`'s hash datum, an `offset` for returning results, and a `limit` to restrict the
/// output size. `arity` represents the number of columns in the input data, and
/// if `validating` is true, we check for negative multiplicities, which indicate
/// an error in the input data.
///
/// The output of this function is _not consolidated_.
///
/// The dataflow fragment has the following shape:
/// ```text
/// | input
/// |
/// arrange
/// |\
/// | \
/// | reduce
/// | |
/// concat
/// |
/// | output
/// ```
/// There are additional map/flat_map operators as well as error demuxing operators, but we're
/// omitting them here for the sake of simplicity.
fn build_topk_stage<S>(
&self,
collection: Collection<S, (Row, Row), Diff>,
order_key: Vec<mz_expr::ColumnOrder>,
modulus: u64,
offset: usize,
limit: Option<mz_expr::MirScalarExpr>,
arity: usize,
validating: bool,
) -> (
Collection<S, (Row, Row), Diff>,
Option<Collection<S, DataflowError, Diff>>,
)
where
S: Scope<Timestamp = G::Timestamp>,
{
// Form appropriate input by updating the `hash` column (first datum in `hash_key`) by
// applying `modulus`.
let input = collection.map(move |(hash_key, row)| {
let mut hash_key_iter = hash_key.iter();
let hash = hash_key_iter.next().unwrap().unwrap_uint64() % modulus;
let hash_key = SharedRow::pack(std::iter::once(hash.into()).chain(hash_key_iter));
(hash_key, row)
});
// If validating: demux errors, otherwise we cannot produce errors.
let (input, oks, errs) = if validating {
// Build topk stage, produce errors for invalid multiplicities.
let (input, stage) = build_topk_negated_stage::<
S,
_,
RowValBuilder<_, _, _>,
RowValSpine<Result<Row, Row>, _, _>,
>(&input, order_key, offset, limit, arity);
let stage = stage.as_collection(|k, v| (k.into_owned(), v.clone()));
// Demux oks and errors.
let error_logger = self.error_logger();
type CB<C> = CapacityContainerBuilder<C>;
let (oks, errs) = stage.map_fallible::<CB<_>, CB<_>, _, _, _>(
"Demuxing Errors",
move |(hk, result)| match result {
Err(v) => {
let mut hk_iter = hk.iter();
let h = hk_iter.next().unwrap().unwrap_uint64();
let k = SharedRow::pack(hk_iter);
let message = "Negative multiplicities in TopK";
error_logger.log(message, &format!("k={k:?}, h={h}, v={v:?}"));
Err(EvalError::Internal(message.into()).into())
}
Ok(t) => Ok((hk, t)),
},
);
(input, oks, Some(errs))
} else {
// Build non-validating topk stage.
let (input, stage) =
build_topk_negated_stage::<S, _, RowRowBuilder<_, _>, RowRowSpine<_, _>>(
&input, order_key, offset, limit, arity,
);
// Turn arrangement into collection.
let stage = stage.as_collection(|k, v| (k.into_owned(), v.into_owned()));
(input, stage, None)
};
let input = input.as_collection(|k, v| (k.into_owned(), v.into_owned()));
(oks.concat(&input), errs)
}
fn render_top1_monotonic<S>(
&self,
collection: Collection<S, Row, Diff>,
group_key: Vec<usize>,
order_key: Vec<mz_expr::ColumnOrder>,
must_consolidate: bool,
) -> (Collection<S, Row, Diff>, Collection<S, DataflowError, Diff>)
where
S: Scope<Timestamp = G::Timestamp>,
{
// We can place our rows directly into the diff field, and only keep the relevant one
// corresponding to evaluating our aggregate, instead of having to do a hierarchical
// reduction. We start by mapping the group key along with the row and consolidating
// if required to do so.
let collection = collection
.map({
let mut datum_vec = mz_repr::DatumVec::new();
move |row| {
// Scoped to allow borrow of `row` to drop.
let group_key = {
let datums = datum_vec.borrow_with(&row);
SharedRow::pack(group_key.iter().map(|i| datums[*i]))
};
(group_key, row)
}
})
.consolidate_named_if::<KeyBatcher<_, _, _>>(
must_consolidate,
"Consolidated MonotonicTop1 input",
);
// It should be now possible to ensure that we have a monotonic collection and process it.
let error_logger = self.error_logger();
let (partial, errs) = collection.ensure_monotonic(move |data, diff| {
error_logger.log(
"Non-monotonic input to MonotonicTop1",
&format!("data={data:?}, diff={diff}"),
);
let m = "tried to build monotonic top-1 on non-monotonic input".into();
(EvalError::Internal(m).into(), 1)
});
let partial: KeyCollection<_, _, _> = partial
.explode_one(move |(group_key, row)| {
(
group_key,
monoids::Top1Monoid {
row,
order_key: order_key.clone(),
},
)
})
.into();
let result = partial
.mz_arrange::<RowBatcher<_, _>, RowBuilder<_, _>, RowSpine<_, _>>(
"Arranged MonotonicTop1 partial [val: empty]",
)
.mz_reduce_abelian::<_, _, _, RowRowBuilder<_, _>, RowRowSpine<_, _>>(
"MonotonicTop1",
move |_key, input, output| {
let accum: &monoids::Top1Monoid = &input[0].1;
output.push((accum.row.clone(), 1));
},
);
// TODO(database-issues#2288): Here we discard the arranged output.
(result.as_collection(|_k, v| v.into_owned()), errs)
}
}
/// Build a stage of a topk reduction. Maintains the _retractions_ of the output instead of emitted
/// rows. This has the benefit that we have to maintain state proportionally to size of the output
/// instead of the size of the input.
///
/// Returns two arrangements:
/// * The arranged input data without modifications, and
/// * the maintained negated output data.
fn build_topk_negated_stage<G, V, Bu, Tr>(
input: &Collection<G, (Row, Row), Diff>,
order_key: Vec<mz_expr::ColumnOrder>,
offset: usize,
limit: Option<mz_expr::MirScalarExpr>,
arity: usize,
) -> (
Arranged<G, TraceAgent<RowRowSpine<G::Timestamp, Diff>>>,
Arranged<G, TraceAgent<Tr>>,
)
where
G: Scope,
G::Timestamp: Lattice + Columnation,
V: MaybeValidatingRow<Row, Row>,
Bu: Builder<Time = G::Timestamp, Output = Tr::Batch>,
Bu::Input: Container + PushInto<((Row, V), G::Timestamp, Diff)>,
Tr: Trace
+ for<'a> TraceReader<Key<'a> = DatumSeq<'a>, Time = G::Timestamp, Diff = Diff>
+ 'static,
for<'a> Tr::Val<'a>: IntoOwned<'a, Owned = V>,
Tr::Batch: Batch,
Arranged<G, TraceAgent<Tr>>: ArrangementSize,
{
let mut datum_vec = mz_repr::DatumVec::new();
// We only want to arrange parts of the input that are not part of the actual output
// such that `input.concat(&negated_output)` yields the correct TopK
// NOTE(vmarcos): The arranged input operator name below is used in the tuning advice
// built-in view mz_introspection.mz_expected_group_size_advice.
let arranged = input.mz_arrange::<RowRowBatcher<_, _>, RowRowBuilder<_, _>, RowRowSpine<_, _>>(
"Arranged TopK input",
);
let reduced = arranged.mz_reduce_abelian::<_, _, _, Bu, Tr>("Reduced TopK input", {
move |mut hash_key, source, target: &mut Vec<(V, Diff)>| {
// Unpack the limit, either into an integer literal or an expression to evaluate.
let limit: Option<i64> = limit.as_ref().map(|l| {
if let Some(l) = l.as_literal_int64() {
l
} else {
// Unpack `key` after skipping the hash and determine the limit.
// If the limit errors, use a zero limit; errors are surfaced elsewhere.
let temp_storage = mz_repr::RowArena::new();
let _hash = hash_key.next();
let mut key_datums = datum_vec.borrow();
key_datums.extend(hash_key);
let datum_limit = l
.eval(&key_datums, &temp_storage)
.unwrap_or(Datum::Int64(0));
if datum_limit == Datum::Null {
i64::MAX
} else {
datum_limit.unwrap_int64()
}
}
});
if let Some(err) = V::into_error() {
for (datums, diff) in source.iter() {
if diff.is_positive() {
continue;
}
target.push((err((*datums).into_owned()), 1));
return;
}
}
// Determine if we must actually shrink the result set.
let must_shrink = offset > 0
|| limit
.map(|l| source.iter().map(|(_, d)| *d).sum::<Diff>() > l)
.unwrap_or(false);
if !must_shrink {
return;
}
// First go ahead and emit all records. Note that we ensure target
// has the capacity to hold at least these records, and avoid any
// dependencies on the user-provided (potentially unbounded) limit.
target.reserve(source.len());
for (datums, diff) in source.iter() {
target.push((V::ok((*datums).into_owned()), -diff));
}
// local copies that may count down to zero.
let mut offset = offset;
let mut limit = limit;
// The order in which we should produce rows.
let mut indexes = (0..source.len()).collect::<Vec<_>>();
// We decode the datums once, into a common buffer for efficiency.
// Each row should contain `arity` columns; we should check that.
let mut buffer = datum_vec.borrow();
for (index, (datums, _)) in source.iter().enumerate() {
buffer.extend(*datums);
assert_eq!(buffer.len(), arity * (index + 1));
}
let width = buffer.len() / source.len();
//todo: use arrangements or otherwise make the sort more performant?
indexes.sort_by(|left, right| {
let left = &buffer[left * width..][..width];
let right = &buffer[right * width..][..width];
// Note: source was originally ordered by the u8 array representation
// of rows, but left.cmp(right) uses Datum::cmp.
mz_expr::compare_columns(&order_key, left, right, || left.cmp(right))
});
// We now need to lay out the data in order of `buffer`, but respecting
// the `offset` and `limit` constraints.
for index in indexes.into_iter() {
let (datums, mut diff) = source[index];
if !diff.is_positive() {
continue;
}
// If we are still skipping early records ...
if offset > 0 {
let to_skip = std::cmp::min(offset, usize::try_from(diff).unwrap());
offset -= to_skip;
diff -= Diff::try_from(to_skip).unwrap();
}
// We should produce at most `limit` records.
if let Some(limit) = &mut limit {
diff = std::cmp::min(diff, Diff::cast_from(*limit));
*limit -= diff;
}
// Output the indicated number of rows.
if diff > 0 {
// Emit retractions for the elements actually part of
// the set of TopK elements.
target.push((V::ok(datums.into_owned()), diff));
}
}
}
});
(arranged, reduced)
}
fn render_intra_ts_thinning<S>(
collection: Collection<S, (Row, Row), Diff>,
order_key: Vec<mz_expr::ColumnOrder>,
limit: mz_expr::MirScalarExpr,
) -> Collection<S, (Row, Row), Diff>
where
S: Scope,
S::Timestamp: Lattice,
{
let mut datum_vec = mz_repr::DatumVec::new();
let mut aggregates = BTreeMap::new();
let shared = Rc::new(RefCell::new(monoids::Top1MonoidShared {
order_key,
left: DatumVec::new(),
right: DatumVec::new(),
}));
collection
.inner
.unary_notify(
Pipeline,
"TopKIntraTimeThinning",
[],
move |input, output, notificator| {
while let Some((time, data)) = input.next() {
let agg_time = aggregates
.entry(time.time().clone())
.or_insert_with(BTreeMap::new);
for ((grp_row, row), record_time, diff) in data.drain(..) {
let monoid = monoids::Top1MonoidLocal {
row,
shared: Rc::clone(&shared),
};
// Evalute the limit, first as a constant and then against the key if needed.
let limit = if let Some(l) = limit.as_literal_int64() {
l
} else {
let temp_storage = mz_repr::RowArena::new();
let key_datums = datum_vec.borrow_with(&grp_row);
// Unpack `key` and determine the limit.
// If the limit errors, use a zero limit; errors are surfaced elsewhere.
let datum_limit = limit
.eval(&key_datums, &temp_storage)
.unwrap_or(mz_repr::Datum::Int64(0));
if datum_limit == Datum::Null {
i64::MAX
} else {
datum_limit.unwrap_int64()
}
};
let topk = agg_time
.entry((grp_row, record_time))
.or_insert_with(move || topk_agg::TopKBatch::new(limit));
topk.update(monoid, diff);
}
notificator.notify_at(time.retain());
}
notificator.for_each(|time, _, _| {
if let Some(aggs) = aggregates.remove(time.time()) {
let mut session = output.session(&time);
for ((grp_row, record_time), topk) in aggs {
session.give_iterator(topk.into_iter().map(|(monoid, diff)| {
(
(grp_row.clone(), monoid.into_row()),
record_time.clone(),
diff,
)
}))
}
}
});
},
)
.as_collection()
}
/// Types for in-place intra-ts aggregation of monotonic streams.
pub mod topk_agg {
use differential_dataflow::consolidation;
use smallvec::SmallVec;
// TODO: This struct looks a lot like ChangeBatch and indeed its code is a modified version of
// that. It would be nice to find a way to reuse some or all of the code from there.
//
// Additionally, because we're calling into DD's consolidate method we are forced to work with
// the `Ord` trait which for the usage we do above means that we need to clone the `order_key`
// for each record. It would be nice to also remove the need for cloning that piece of data
pub struct TopKBatch<T> {
updates: SmallVec<[(T, i64); 16]>,
clean: usize,
limit: i64,
}
impl<T: Ord> TopKBatch<T> {
pub fn new(limit: i64) -> Self {
Self {
updates: SmallVec::new(),
clean: 0,
limit,
}
}
/// Adds a new update, for `item` with `value`.
///
/// This could be optimized to perform compaction when the number of "dirty" elements exceeds
/// half the length of the list, which would keep the total footprint within reasonable bounds
/// even under an arbitrary number of updates. This has a cost, and it isn't clear whether it
/// is worth paying without some experimentation.
#[inline]
pub fn update(&mut self, item: T, value: i64) {
self.updates.push((item, value));
self.maintain_bounds();
}
/// Compact the internal representation.
///
/// This method sort `self.updates` and consolidates elements with equal item, discarding
/// any whose accumulation is zero. It is optimized to only do this if the number of dirty
/// elements is non-zero.
#[inline]
pub fn compact(&mut self) {
if self.clean < self.updates.len() && self.updates.len() > 1 {
let len = consolidation::consolidate_slice(&mut self.updates);
self.updates.truncate(len);
// We can now retain only the first K records and throw away everything else
let mut limit = self.limit;
self.updates.retain(|x| {
if limit > 0 {
limit -= x.1;
true
} else {
false
}
});
// By the end of the loop above `limit` will either be:
// (a) Positive, in which case all updates were retained;
// (b) Zero, in which case we discarded all updates after limit became zero;
// (c) Negative, in which case the last record we retained had more copies
// than necessary. In this latter case, we need to do one final adjustment
// of the diff field of the last record so that the total sum of the diffs
// in the batch is K.
if limit < 0 {
if let Some(item) = self.updates.last_mut() {
// We are subtracting the limit *negated*, therefore we are subtracting a value
// that is *greater* than or equal to zero, which represents the excess.
item.1 -= -limit;
}
}
}
self.clean = self.updates.len();
}
/// Maintain the bounds of pending (non-compacted) updates versus clean (compacted) data.
/// This function tries to minimize work by only compacting if enough work has accumulated.
fn maintain_bounds(&mut self) {
// if we have more than 32 elements and at least half of them are not clean, compact
if self.updates.len() > 32 && self.updates.len() >> 1 >= self.clean {
self.compact()
}
}
}
impl<T: Ord> IntoIterator for TopKBatch<T> {
type Item = (T, i64);
type IntoIter = smallvec::IntoIter<[(T, i64); 16]>;
fn into_iter(mut self) -> Self::IntoIter {
self.compact();
self.updates.into_iter()
}
}
}
/// Monoids for in-place compaction of monotonic streams.
pub mod monoids {
use std::cell::RefCell;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::rc::Rc;
use differential_dataflow::difference::{IsZero, Multiply, Semigroup};
use mz_expr::ColumnOrder;
use mz_repr::{DatumVec, Diff, Row};
use serde::{Deserialize, Serialize};
use timely::container::columnation::{Columnation, Region};
/// A monoid containing a row and an ordering.
#[derive(Eq, PartialEq, Debug, Clone, Serialize, Deserialize, Hash)]
pub struct Top1Monoid {
pub row: Row,
pub order_key: Vec<ColumnOrder>,
}
impl Multiply<Diff> for Top1Monoid {
type Output = Self;
fn multiply(self, factor: &Diff) -> Self {
// Multiplication in Top1Monoid is idempotent, and its
// users must ascertain its monotonicity beforehand
// (typically with ensure_monotonic) since it has no zero
// value for us to use here.
assert!(factor.is_positive());
self
}
}
impl Ord for Top1Monoid {
fn cmp(&self, other: &Self) -> Ordering {
debug_assert_eq!(self.order_key, other.order_key);
// It might be nice to cache this row decoding like the non-monotonic codepath, but we'd
// have to store the decoded Datums in the same struct as the Row, which gets tricky.
let left: Vec<_> = self.row.unpack();
let right: Vec<_> = other.row.unpack();
mz_expr::compare_columns(&self.order_key, &left, &right, || left.cmp(&right))
}
}
impl PartialOrd for Top1Monoid {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Semigroup for Top1Monoid {
fn plus_equals(&mut self, rhs: &Self) {
let cmp = (*self).cmp(rhs);
// NB: Reminder that TopK returns the _minimum_ K items.
if cmp == Ordering::Greater {
self.clone_from(rhs);
}
}
}
impl IsZero for Top1Monoid {
fn is_zero(&self) -> bool {
false
}
}
impl Columnation for Top1Monoid {
type InnerRegion = Top1MonoidRegion;
}
#[derive(Default)]
pub struct Top1MonoidRegion {
row_region: <Row as Columnation>::InnerRegion,
order_key_region: <Vec<ColumnOrder> as Columnation>::InnerRegion,
}
impl Region for Top1MonoidRegion {
type Item = Top1Monoid;
unsafe fn copy(&mut self, item: &Self::Item) -> Self::Item {
let row = self.row_region.copy(&item.row);
let order_key = self.order_key_region.copy(&item.order_key);
Self::Item { row, order_key }
}
fn clear(&mut self) {
self.row_region.clear();
self.order_key_region.clear();
}
fn reserve_items<'a, I>(&mut self, items1: I)
where
Self: 'a,
I: Iterator<Item = &'a Self::Item> + Clone,
{
let items2 = items1.clone();
self.row_region
.reserve_items(items1.into_iter().map(|s| &s.row));
self.order_key_region
.reserve_items(items2.into_iter().map(|s| &s.order_key));
}
fn reserve_regions<'a, I>(&mut self, regions1: I)
where
Self: 'a,
I: Iterator<Item = &'a Self> + Clone,
{
let regions2 = regions1.clone();
self.row_region
.reserve_regions(regions1.into_iter().map(|s| &s.row_region));
self.order_key_region
.reserve_regions(regions2.into_iter().map(|s| &s.order_key_region));
}
fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
self.row_region.heap_size(&mut callback);
self.order_key_region.heap_size(callback);
}
}
/// A shared portion of a thread-local top-1 monoid implementation.
#[derive(Debug)]
pub struct Top1MonoidShared {
pub order_key: Vec<ColumnOrder>,
pub left: DatumVec,
pub right: DatumVec,
}
/// A monoid containing a row and a shared pointer to a shared structure.
/// Only suitable for thread-local aggregations.
#[derive(Debug, Clone)]
pub struct Top1MonoidLocal {
pub row: Row,
pub shared: Rc<RefCell<Top1MonoidShared>>,
}
impl Top1MonoidLocal {
pub fn into_row(self) -> Row {
self.row
}
}
impl PartialEq for Top1MonoidLocal {
fn eq(&self, other: &Self) -> bool {
self.row.eq(&other.row)
}
}
impl Eq for Top1MonoidLocal {}
impl Hash for Top1MonoidLocal {
fn hash<H: Hasher>(&self, state: &mut H) {
self.row.hash(state);
}
}
impl Ord for Top1MonoidLocal {
fn cmp(&self, other: &Self) -> Ordering {
debug_assert!(Rc::ptr_eq(&self.shared, &other.shared));
let Top1MonoidShared {
left,
right,
order_key,
} = &mut *self.shared.borrow_mut();
let left = left.borrow_with(&self.row);
let right = right.borrow_with(&other.row);
mz_expr::compare_columns(order_key, &left, &right, || left.cmp(&right))
}
}
impl PartialOrd for Top1MonoidLocal {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Semigroup for Top1MonoidLocal {
fn plus_equals(&mut self, rhs: &Self) {
let cmp = (*self).cmp(rhs);
// NB: Reminder that TopK returns the _minimum_ K items.
if cmp == Ordering::Greater {
self.clone_from(rhs);
}
}
}
impl IsZero for Top1MonoidLocal {
fn is_zero(&self) -> bool {
false
}
}
}