1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::cmp;
use std::io;
use std::sync::{Arc, Mutex};

use super::{ReadHalf, TIoChannel, WriteHalf};

/// In-memory read and write channel with fixed-size read and write buffers.
///
/// On a `write` bytes are written to the internal write buffer. Writes are no
/// longer accepted once this buffer is full. Callers must `empty_write_buffer()`
/// before subsequent writes are accepted.
///
/// You can set readable bytes in the internal read buffer by filling it with
/// `set_readable_bytes(...)`. Callers can then read until the buffer is
/// depleted. No further reads are accepted until the internal read buffer is
/// replenished again.
#[derive(Clone, Debug)]
pub struct TBufferChannel {
    read: Arc<Mutex<ReadData>>,
    write: Arc<Mutex<WriteData>>,
}

#[derive(Debug)]
struct ReadData {
    buf: Box<[u8]>,
    pos: usize,
    idx: usize,
    cap: usize,
}

#[derive(Debug)]
struct WriteData {
    buf: Box<[u8]>,
    pos: usize,
    cap: usize,
}

impl TBufferChannel {
    /// Constructs a new, empty `TBufferChannel` with the given
    /// read buffer capacity and write buffer capacity.
    pub fn with_capacity(read_capacity: usize, write_capacity: usize) -> TBufferChannel {
        TBufferChannel {
            read: Arc::new(Mutex::new(ReadData {
                buf: vec![0; read_capacity].into_boxed_slice(),
                idx: 0,
                pos: 0,
                cap: read_capacity,
            })),
            write: Arc::new(Mutex::new(WriteData {
                buf: vec![0; write_capacity].into_boxed_slice(),
                pos: 0,
                cap: write_capacity,
            })),
        }
    }

    /// Return a copy of the bytes held by the internal read buffer.
    /// Returns an empty vector if no readable bytes are present.
    pub fn read_bytes(&self) -> Vec<u8> {
        let rdata = self.read.as_ref().lock().unwrap();
        let mut buf = vec![0u8; rdata.idx];
        buf.copy_from_slice(&rdata.buf[..rdata.idx]);
        buf
    }

    // FIXME: do I really need this API call?
    // FIXME: should this simply reset to the last set of readable bytes?
    /// Reset the number of readable bytes to zero.
    ///
    /// Subsequent calls to `read` will return nothing.
    pub fn empty_read_buffer(&mut self) {
        let mut rdata = self.read.as_ref().lock().unwrap();
        rdata.pos = 0;
        rdata.idx = 0;
    }

    /// Copy bytes from the source buffer `buf` into the internal read buffer,
    /// overwriting any existing bytes. Returns the number of bytes copied,
    /// which is `min(buf.len(), internal_read_buf.len())`.
    pub fn set_readable_bytes(&mut self, buf: &[u8]) -> usize {
        self.empty_read_buffer();
        let mut rdata = self.read.as_ref().lock().unwrap();
        let max_bytes = cmp::min(rdata.cap, buf.len());
        rdata.buf[..max_bytes].clone_from_slice(&buf[..max_bytes]);
        rdata.idx = max_bytes;
        max_bytes
    }

    /// Return a copy of the bytes held by the internal write buffer.
    /// Returns an empty vector if no bytes were written.
    pub fn write_bytes(&self) -> Vec<u8> {
        let wdata = self.write.as_ref().lock().unwrap();
        let mut buf = vec![0u8; wdata.pos];
        buf.copy_from_slice(&wdata.buf[..wdata.pos]);
        buf
    }

    /// Resets the internal write buffer, making it seem like no bytes were
    /// written. Calling `write_buffer` after this returns an empty vector.
    pub fn empty_write_buffer(&mut self) {
        let mut wdata = self.write.as_ref().lock().unwrap();
        wdata.pos = 0;
    }

    /// Overwrites the contents of the read buffer with the contents of the
    /// write buffer. The write buffer is emptied after this operation.
    pub fn copy_write_buffer_to_read_buffer(&mut self) {
        // FIXME: redo this entire method
        let buf = {
            let wdata = self.write.as_ref().lock().unwrap();
            let b = &wdata.buf[..wdata.pos];
            let mut b_ret = vec![0; b.len()];
            b_ret.copy_from_slice(b);
            b_ret
        };

        let bytes_copied = self.set_readable_bytes(&buf);
        assert_eq!(bytes_copied, buf.len());

        self.empty_write_buffer();
    }
}

impl TIoChannel for TBufferChannel {
    fn split(self) -> crate::Result<(ReadHalf<Self>, WriteHalf<Self>)>
    where
        Self: Sized,
    {
        Ok((
            ReadHalf {
                handle: TBufferChannel {
                    read: self.read.clone(),
                    write: self.write.clone(),
                },
            },
            WriteHalf {
                handle: TBufferChannel {
                    read: self.read.clone(),
                    // NOTE: not cloning here, since this is the last statement
                    // in this method and `write` can take ownership of `self.write`
                    write: self.write,
                },
            },
        ))
    }
}

impl io::Read for TBufferChannel {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let mut rdata = self.read.as_ref().lock().unwrap();
        let nread = cmp::min(buf.len(), rdata.idx - rdata.pos);
        buf[..nread].clone_from_slice(&rdata.buf[rdata.pos..rdata.pos + nread]);
        rdata.pos += nread;
        Ok(nread)
    }
}

impl io::Write for TBufferChannel {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let mut wdata = self.write.as_ref().lock().unwrap();
        let nwrite = cmp::min(buf.len(), wdata.cap - wdata.pos);
        let (start, end) = (wdata.pos, wdata.pos + nwrite);
        wdata.buf[start..end].clone_from_slice(&buf[..nwrite]);
        wdata.pos += nwrite;
        Ok(nwrite)
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(()) // nothing to do on flush
    }
}

#[cfg(test)]
mod tests {
    use std::io::{Read, Write};

    use super::TBufferChannel;

    #[test]
    fn must_empty_write_buffer() {
        let mut t = TBufferChannel::with_capacity(0, 1);

        let bytes_to_write: [u8; 1] = [0x01];
        let result = t.write(&bytes_to_write);
        assert_eq!(result.unwrap(), 1);
        assert_eq!(&t.write_bytes(), &bytes_to_write);

        t.empty_write_buffer();
        assert_eq!(t.write_bytes().len(), 0);
    }

    #[test]
    fn must_accept_writes_after_buffer_emptied() {
        let mut t = TBufferChannel::with_capacity(0, 2);

        let bytes_to_write: [u8; 2] = [0x01, 0x02];

        // first write (all bytes written)
        let result = t.write(&bytes_to_write);
        assert_eq!(result.unwrap(), 2);
        assert_eq!(&t.write_bytes(), &bytes_to_write);

        // try write again (nothing should be written)
        let result = t.write(&bytes_to_write);
        assert_eq!(result.unwrap(), 0);
        assert_eq!(&t.write_bytes(), &bytes_to_write); // still the same as before

        // now reset the buffer
        t.empty_write_buffer();
        assert_eq!(t.write_bytes().len(), 0);

        // now try write again - the write should succeed
        let result = t.write(&bytes_to_write);
        assert_eq!(result.unwrap(), 2);
        assert_eq!(&t.write_bytes(), &bytes_to_write);
    }

    #[test]
    fn must_accept_multiple_writes_until_buffer_is_full() {
        let mut t = TBufferChannel::with_capacity(0, 10);

        // first write (all bytes written)
        let bytes_to_write_0: [u8; 2] = [0x01, 0x41];
        let write_0_result = t.write(&bytes_to_write_0);
        assert_eq!(write_0_result.unwrap(), 2);
        assert_eq!(t.write_bytes(), &bytes_to_write_0);

        // second write (all bytes written, starting at index 2)
        let bytes_to_write_1: [u8; 7] = [0x24, 0x41, 0x32, 0x33, 0x11, 0x98, 0xAF];
        let write_1_result = t.write(&bytes_to_write_1);
        assert_eq!(write_1_result.unwrap(), 7);
        assert_eq!(&t.write_bytes()[2..], &bytes_to_write_1);

        // third write (only 1 byte written - that's all we have space for)
        let bytes_to_write_2: [u8; 3] = [0xBF, 0xDA, 0x98];
        let write_2_result = t.write(&bytes_to_write_2);
        assert_eq!(write_2_result.unwrap(), 1);
        assert_eq!(&t.write_bytes()[9..], &bytes_to_write_2[0..1]); // how does this syntax work?!

        // fourth write (no writes are accepted)
        let bytes_to_write_3: [u8; 3] = [0xBF, 0xAA, 0xFD];
        let write_3_result = t.write(&bytes_to_write_3);
        assert_eq!(write_3_result.unwrap(), 0);

        // check the full write buffer
        let mut expected: Vec<u8> = Vec::with_capacity(10);
        expected.extend_from_slice(&bytes_to_write_0);
        expected.extend_from_slice(&bytes_to_write_1);
        expected.extend_from_slice(&bytes_to_write_2[0..1]);
        assert_eq!(t.write_bytes(), &expected[..]);
    }

    #[test]
    fn must_empty_read_buffer() {
        let mut t = TBufferChannel::with_capacity(1, 0);

        let bytes_to_read: [u8; 1] = [0x01];
        let result = t.set_readable_bytes(&bytes_to_read);
        assert_eq!(result, 1);
        assert_eq!(t.read_bytes(), &bytes_to_read);

        t.empty_read_buffer();
        assert_eq!(t.read_bytes().len(), 0);
    }

    #[test]
    fn must_allow_readable_bytes_to_be_set_after_read_buffer_emptied() {
        let mut t = TBufferChannel::with_capacity(1, 0);

        let bytes_to_read_0: [u8; 1] = [0x01];
        let result = t.set_readable_bytes(&bytes_to_read_0);
        assert_eq!(result, 1);
        assert_eq!(t.read_bytes(), &bytes_to_read_0);

        t.empty_read_buffer();
        assert_eq!(t.read_bytes().len(), 0);

        let bytes_to_read_1: [u8; 1] = [0x02];
        let result = t.set_readable_bytes(&bytes_to_read_1);
        assert_eq!(result, 1);
        assert_eq!(t.read_bytes(), &bytes_to_read_1);
    }

    #[test]
    fn must_accept_multiple_reads_until_all_bytes_read() {
        let mut t = TBufferChannel::with_capacity(10, 0);

        let readable_bytes: [u8; 10] = [0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0x00, 0x1A, 0x2B, 0x3C, 0x4D];

        // check that we're able to set the bytes to be read
        let result = t.set_readable_bytes(&readable_bytes);
        assert_eq!(result, 10);
        assert_eq!(t.read_bytes(), &readable_bytes);

        // first read
        let mut read_buf_0 = vec![0; 5];
        let read_result = t.read(&mut read_buf_0);
        assert_eq!(read_result.unwrap(), 5);
        assert_eq!(read_buf_0.as_slice(), &(readable_bytes[0..5]));

        // second read
        let mut read_buf_1 = vec![0; 4];
        let read_result = t.read(&mut read_buf_1);
        assert_eq!(read_result.unwrap(), 4);
        assert_eq!(read_buf_1.as_slice(), &(readable_bytes[5..9]));

        // third read (only 1 byte remains to be read)
        let mut read_buf_2 = vec![0; 3];
        let read_result = t.read(&mut read_buf_2);
        assert_eq!(read_result.unwrap(), 1);
        read_buf_2.truncate(1); // FIXME: does the caller have to do this?
        assert_eq!(read_buf_2.as_slice(), &(readable_bytes[9..]));

        // fourth read (nothing should be readable)
        let mut read_buf_3 = vec![0; 10];
        let read_result = t.read(&mut read_buf_3);
        assert_eq!(read_result.unwrap(), 0);
        read_buf_3.truncate(0);

        // check that all the bytes we received match the original (again!)
        let mut bytes_read = Vec::with_capacity(10);
        bytes_read.extend_from_slice(&read_buf_0);
        bytes_read.extend_from_slice(&read_buf_1);
        bytes_read.extend_from_slice(&read_buf_2);
        bytes_read.extend_from_slice(&read_buf_3);
        assert_eq!(&bytes_read, &readable_bytes);
    }

    #[test]
    fn must_allow_reads_to_succeed_after_read_buffer_replenished() {
        let mut t = TBufferChannel::with_capacity(3, 0);

        let readable_bytes_0: [u8; 3] = [0x02, 0xAB, 0x33];

        // check that we're able to set the bytes to be read
        let result = t.set_readable_bytes(&readable_bytes_0);
        assert_eq!(result, 3);
        assert_eq!(t.read_bytes(), &readable_bytes_0);

        let mut read_buf = vec![0; 4];

        // drain the read buffer
        let read_result = t.read(&mut read_buf);
        assert_eq!(read_result.unwrap(), 3);
        assert_eq!(t.read_bytes(), &read_buf[0..3]);

        // check that a subsequent read fails
        let read_result = t.read(&mut read_buf);
        assert_eq!(read_result.unwrap(), 0);

        // we don't modify the read buffer on failure
        let mut expected_bytes = Vec::with_capacity(4);
        expected_bytes.extend_from_slice(&readable_bytes_0);
        expected_bytes.push(0x00);
        assert_eq!(&read_buf, &expected_bytes);

        // replenish the read buffer again
        let readable_bytes_1: [u8; 2] = [0x91, 0xAA];

        // check that we're able to set the bytes to be read
        let result = t.set_readable_bytes(&readable_bytes_1);
        assert_eq!(result, 2);
        assert_eq!(t.read_bytes(), &readable_bytes_1);

        // read again
        let read_result = t.read(&mut read_buf);
        assert_eq!(read_result.unwrap(), 2);
        assert_eq!(t.read_bytes(), &read_buf[0..2]);
    }
}