differential_dataflow/operators/iterate.rs
1//! Iterative application of a differential dataflow fragment.
2//!
3//! The `iterate` operator takes as an argument a closure from a differential dataflow collection
4//! to a collection of the same type. The output collection is the result of applying this closure
5//! an unbounded number of times.
6//!
7//! The implementation of `iterate` does not directly apply the closure, but rather establishes an
8//! iterative timely dataflow subcomputation, in which differences circulate until they dissipate
9//! (indicating that the computation has reached fixed point), or until some number of iterations
10//! have passed.
11//!
12//! **Note**: The dataflow assembled by `iterate` does not automatically insert `consolidate` for
13//! you. This means that either (i) you should insert one yourself, (ii) you should be certain that
14//! all paths from the input to the output of the loop involve consolidation, or (iii) you should
15//! be worried that logically cancelable differences may circulate indefinitely.
16//!
17//! # Details
18//!
19//! The `iterate` method is written using a `Variable`, which lets you define your own iterative
20//! computations when `iterate` itself is not sufficient. This can happen when you have two
21//! collections that should evolve simultaneously, or when you would like to rotate your loop and
22//! return an intermediate result.
23//!
24//! Using `Variable` requires more explicit arrangement of your computation, but isn't much more
25//! complicated. You must define a new variable from an existing stream (its initial value), and
26//! then set it to be a function of this variable (and perhaps other collections and variables).
27//!
28//! A `Variable` dereferences to a `Collection`, the one corresponding to its value in each iteration,
29//! and it can be used in most situations where a collection can be used. The act of setting a
30//! `Variable` consumes it and returns the corresponding `Collection`, preventing you from setting
31//! it multiple times.
32
33use std::fmt::Debug;
34use std::ops::Deref;
35
36use timely::Container;
37use timely::progress::{Timestamp, PathSummary};
38use timely::order::Product;
39
40use timely::dataflow::*;
41use timely::dataflow::scopes::child::Iterative;
42use timely::dataflow::operators::{Feedback, ConnectLoop};
43use timely::dataflow::operators::feedback::Handle;
44
45use crate::{Data, Collection, AsCollection};
46use crate::difference::{Semigroup, Abelian};
47use crate::lattice::Lattice;
48
49/// An extension trait for the `iterate` method.
50pub trait Iterate<G: Scope, D: Data, R: Semigroup> {
51 /// Iteratively apply `logic` to the source collection until convergence.
52 ///
53 /// Importantly, this method does not automatically consolidate results.
54 /// It may be important to conclude with `consolidate()` to ensure that
55 /// logically empty collections that contain cancelling records do not
56 /// result in non-termination. Operators like `reduce`, `distinct`, and
57 /// `count` also perform consolidation, and are safe to conclude with.
58 ///
59 /// # Examples
60 ///
61 /// ```
62 /// use differential_dataflow::input::Input;
63 /// use differential_dataflow::operators::Iterate;
64 ///
65 /// ::timely::example(|scope| {
66 ///
67 /// scope.new_collection_from(1 .. 10u32).1
68 /// .iterate(|values| {
69 /// values.map(|x| if x % 2 == 0 { x/2 } else { x })
70 /// .consolidate()
71 /// });
72 /// });
73 /// ```
74 fn iterate<F>(&self, logic: F) -> Collection<G, D, R>
75 where
76 G::Timestamp: Lattice,
77 for<'a> F: FnOnce(&Collection<Iterative<'a, G, u64>, D, R>)->Collection<Iterative<'a, G, u64>, D, R>;
78}
79
80impl<G: Scope, D: Ord+Data+Debug, R: Abelian+'static> Iterate<G, D, R> for Collection<G, D, R> {
81 fn iterate<F>(&self, logic: F) -> Collection<G, D, R>
82 where G::Timestamp: Lattice,
83 for<'a> F: FnOnce(&Collection<Iterative<'a, G, u64>, D, R>)->Collection<Iterative<'a, G, u64>, D, R> {
84
85 self.inner.scope().scoped("Iterate", |subgraph| {
86 // create a new variable, apply logic, bind variable, return.
87 //
88 // this could be much more succinct if we returned the collection
89 // wrapped by `variable`, but it also results in substantially more
90 // diffs produced; `result` is post-consolidation, and means fewer
91 // records are yielded out of the loop.
92 let variable = Variable::new_from(self.enter(subgraph), Product::new(Default::default(), 1));
93 let result = logic(&variable);
94 variable.set(&result);
95 result.leave()
96 })
97 }
98}
99
100impl<G: Scope, D: Ord+Data+Debug, R: Semigroup+'static> Iterate<G, D, R> for G {
101 fn iterate<F>(&self, logic: F) -> Collection<G, D, R>
102 where G::Timestamp: Lattice,
103 for<'a> F: FnOnce(&Collection<Iterative<'a, G, u64>, D, R>)->Collection<Iterative<'a, G, u64>, D, R> {
104
105 // TODO: This makes me think we have the wrong ownership pattern here.
106 let mut clone = self.clone();
107 clone
108 .scoped("Iterate", |subgraph| {
109 // create a new variable, apply logic, bind variable, return.
110 //
111 // this could be much more succinct if we returned the collection
112 // wrapped by `variable`, but it also results in substantially more
113 // diffs produced; `result` is post-consolidation, and means fewer
114 // records are yielded out of the loop.
115 let variable = SemigroupVariable::new(subgraph, Product::new(Default::default(), 1));
116 let result = logic(&variable);
117 variable.set(&result);
118 result.leave()
119 }
120 )
121 }
122}
123
124/// A recursively defined collection.
125///
126/// The `Variable` struct allows differential dataflow programs requiring more sophisticated
127/// iterative patterns than singly recursive iteration. For example: in mutual recursion two
128/// collections evolve simultaneously.
129///
130/// # Examples
131///
132/// The following example is equivalent to the example for the `Iterate` trait.
133///
134/// ```
135/// use timely::order::Product;
136/// use timely::dataflow::Scope;
137///
138/// use differential_dataflow::input::Input;
139/// use differential_dataflow::operators::iterate::Variable;
140///
141/// ::timely::example(|scope| {
142///
143/// let numbers = scope.new_collection_from(1 .. 10u32).1;
144///
145/// scope.iterative::<u64,_,_>(|nested| {
146/// let summary = Product::new(Default::default(), 1);
147/// let variable = Variable::new_from(numbers.enter(nested), summary);
148/// let result = variable.map(|x| if x % 2 == 0 { x/2 } else { x })
149/// .consolidate();
150/// variable.set(&result)
151/// .leave()
152/// });
153/// })
154/// ```
155pub struct Variable<G, D, R, C = Vec<(D, <G as ScopeParent>::Timestamp, R)>>
156where
157 G: Scope,
158 G::Timestamp: Lattice,
159 D: Data,
160 R: Abelian + 'static,
161 C: Container + Clone + 'static,
162{
163 collection: Collection<G, D, R, C>,
164 feedback: Handle<G, C>,
165 source: Option<Collection<G, D, R, C>>,
166 step: <G::Timestamp as Timestamp>::Summary,
167}
168
169impl<G: Scope, D: Data, R: Abelian, C: Container + Clone + 'static> Variable<G, D, R, C>
170where
171 G::Timestamp: Lattice,
172 StreamCore<G, C>: crate::operators::Negate<G, C> + ResultsIn<G, C>,
173{
174 /// Creates a new initially empty `Variable`.
175 ///
176 /// This method produces a simpler dataflow graph than `new_from`, and should
177 /// be used whenever the variable has an empty input.
178 pub fn new(scope: &mut G, step: <G::Timestamp as Timestamp>::Summary) -> Self {
179 let (feedback, updates) = scope.feedback(step.clone());
180 let collection = Collection::<G, D, R, C>::new(updates);
181 Self { collection, feedback, source: None, step }
182 }
183
184 /// Creates a new `Variable` from a supplied `source` stream.
185 pub fn new_from(source: Collection<G, D, R, C>, step: <G::Timestamp as Timestamp>::Summary) -> Self {
186 let (feedback, updates) = source.inner.scope().feedback(step.clone());
187 let collection = Collection::<G, D, R, C>::new(updates).concat(&source);
188 Variable { collection, feedback, source: Some(source), step }
189 }
190
191 /// Set the definition of the `Variable` to a collection.
192 ///
193 /// This method binds the `Variable` to be equal to the supplied collection,
194 /// which may be recursively defined in terms of the variable itself.
195 pub fn set(self, result: &Collection<G, D, R, C>) -> Collection<G, D, R, C> {
196 let mut in_result = result.clone();
197 if let Some(source) = &self.source {
198 in_result = in_result.concat(&source.negate());
199 }
200 self.set_concat(&in_result)
201 }
202
203 /// Set the definition of the `Variable` to a collection concatenated to `self`.
204 ///
205 /// This method is a specialization of `set` which has the effect of concatenating
206 /// `result` and `self` before calling `set`. This method avoids some dataflow
207 /// complexity related to retracting the initial input, and will do less work in
208 /// that case.
209 ///
210 /// This behavior can also be achieved by using `new` to create an empty initial
211 /// collection, and then using `self.set(self.concat(result))`.
212 pub fn set_concat(self, result: &Collection<G, D, R, C>) -> Collection<G, D, R, C> {
213 let step = self.step;
214 result
215 .inner
216 .results_in(step)
217 .connect_loop(self.feedback);
218
219 self.collection
220 }
221}
222
223impl<G: Scope, D: Data, R: Abelian, C: Container + Clone + 'static> Deref for Variable<G, D, R, C> where G::Timestamp: Lattice {
224 type Target = Collection<G, D, R, C>;
225 fn deref(&self) -> &Self::Target {
226 &self.collection
227 }
228}
229
230/// A recursively defined collection that only "grows".
231///
232/// `SemigroupVariable` is a weakening of `Variable` to allow difference types
233/// that do not implement `Abelian` and only implement `Semigroup`. This means
234/// that it can be used in settings where the difference type does not support
235/// negation.
236pub struct SemigroupVariable<G, D, R, C = Vec<(D, <G as ScopeParent>::Timestamp, R)>>
237where
238 G::Timestamp: Lattice,
239 G: Scope,
240 D: Data,
241 R: Semigroup + 'static,
242 C: Container + Clone + 'static,
243{
244 collection: Collection<G, D, R, C>,
245 feedback: Handle<G, C>,
246 step: <G::Timestamp as Timestamp>::Summary,
247}
248
249impl<G: Scope, D: Data, R: Semigroup, C: Container+Clone> SemigroupVariable<G, D, R, C>
250where
251 G::Timestamp: Lattice,
252 StreamCore<G, C>: ResultsIn<G, C>,
253{
254 /// Creates a new initially empty `SemigroupVariable`.
255 pub fn new(scope: &mut G, step: <G::Timestamp as Timestamp>::Summary) -> Self {
256 let (feedback, updates) = scope.feedback(step.clone());
257 let collection = Collection::<G,D,R,C>::new(updates);
258 SemigroupVariable { collection, feedback, step }
259 }
260
261 /// Adds a new source of data to `self`.
262 pub fn set(self, result: &Collection<G, D, R, C>) -> Collection<G, D, R, C> {
263 let step = self.step;
264 result
265 .inner
266 .results_in(step)
267 .connect_loop(self.feedback);
268
269 self.collection
270 }
271}
272
273impl<G: Scope, D: Data, R: Semigroup, C: Container+Clone+'static> Deref for SemigroupVariable<G, D, R, C> where G::Timestamp: Lattice {
274 type Target = Collection<G, D, R, C>;
275 fn deref(&self) -> &Self::Target {
276 &self.collection
277 }
278}
279
280/// Extension trait for streams.
281pub trait ResultsIn<G: Scope, C> {
282 /// Advances a timestamp in the stream according to the timestamp actions on the path.
283 ///
284 /// The path may advance the timestamp sufficiently that it is no longer valid, for example if
285 /// incrementing fields would result in integer overflow. In this case, the record is dropped.
286 ///
287 /// # Examples
288 /// ```
289 /// use timely::dataflow::Scope;
290 /// use timely::dataflow::operators::{ToStream, Concat, Inspect, BranchWhen};
291 ///
292 /// use differential_dataflow::input::Input;
293 /// use differential_dataflow::operators::ResultsIn;
294 ///
295 /// timely::example(|scope| {
296 /// let summary1 = 5;
297 ///
298 /// let data = scope.new_collection_from(1 .. 10).1;
299 /// /// Applies `results_in` on every timestamp in the collection.
300 /// data.results_in(summary1);
301 /// });
302 /// ```
303 fn results_in(&self, step: <G::Timestamp as Timestamp>::Summary) -> Self;
304}
305
306impl<G, D, R, C> ResultsIn<G, C> for Collection<G, D, R, C>
307where
308 G: Scope,
309 C: Clone,
310 StreamCore<G, C>: ResultsIn<G, C>,
311{
312 fn results_in(&self, step: <G::Timestamp as Timestamp>::Summary) -> Self {
313 self.inner.results_in(step).as_collection()
314 }
315}
316
317impl<G: Scope, D: timely::Data, R: timely::Data> ResultsIn<G, Vec<(D, G::Timestamp, R)>> for Stream<G, (D, G::Timestamp, R)> {
318 fn results_in(&self, step: <G::Timestamp as Timestamp>::Summary) -> Self {
319 use timely::dataflow::operators::Map;
320 self.flat_map(move |(x,t,d)| step.results_in(&t).map(|t| (x,t,d)))
321 }
322}