mz_compute_types/plan/join.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Planning of `Plan::Join` operators, and supporting types.
//!
//! Join planning proceeds by repeatedly introducing collections that
//! extend the set of available output columns. The expected location
//! of each output column is determined by the order of inputs to the
//! join operator: columns are appended in that order.
//!
//! While planning the join, we also have access to logic in the form
//! of expressions, predicates, and projections that we intended to
//! apply to the output of the join. This logic uses "output column
//! reckoning" where columns are identified by their intended output
//! position.
//!
//! As we consider applying expressions to partial results, we will
//! place the results in column locations *after* the intended output
//! column locations. These output locations in addition to the new
//! distinct identifiers for constructed expressions is "extended
//! output column reckoning", as is what we use when reasoning about
//! work still available to be done on the partial join results.
use std::collections::BTreeMap;
use mz_expr::{MapFilterProject, MirScalarExpr};
use mz_proto::{IntoRustIfSome, ProtoType, RustType, TryFromProtoError};
use mz_repr::{Datum, Row, RowArena};
use proptest::prelude::*;
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
pub mod delta_join;
pub mod linear_join;
pub use delta_join::DeltaJoinPlan;
pub use linear_join::LinearJoinPlan;
include!(concat!(env!("OUT_DIR"), "/mz_compute_types.plan.join.rs"));
/// A complete enumeration of possible join plans to render.
#[derive(Arbitrary, Clone, Debug, Serialize, Deserialize, Eq, PartialEq, Ord, PartialOrd)]
pub enum JoinPlan {
/// A join implemented by a linear join.
Linear(LinearJoinPlan),
/// A join implemented by a delta join.
Delta(DeltaJoinPlan),
}
impl RustType<ProtoJoinPlan> for JoinPlan {
fn into_proto(&self) -> ProtoJoinPlan {
use proto_join_plan::Kind::*;
ProtoJoinPlan {
kind: Some(match self {
JoinPlan::Linear(inner) => Linear(inner.into_proto()),
JoinPlan::Delta(inner) => Delta(inner.into_proto()),
}),
}
}
fn from_proto(value: ProtoJoinPlan) -> Result<Self, TryFromProtoError> {
use proto_join_plan::Kind::*;
let kind = value
.kind
.ok_or_else(|| TryFromProtoError::missing_field("ProtoJoinPlan::kind"))?;
Ok(match kind {
Linear(inner) => JoinPlan::Linear(inner.into_rust()?),
Delta(inner) => JoinPlan::Delta(inner.into_rust()?),
})
}
}
/// A manual closure implementation of filtering and logic application.
///
/// This manual implementation exists to express lifetime constraints clearly,
/// as there is a relationship between the borrowed lifetime of the closed-over
/// state and the arguments it takes when invoked. It was not clear how to do
/// this with a Rust closure (glorious battle was waged, but ultimately lost).
#[derive(Clone, Debug, Serialize, Deserialize, Eq, PartialEq, Ord, PartialOrd)]
pub struct JoinClosure {
/// TODO(database-issues#7533): Add documentation.
pub ready_equivalences: Vec<Vec<MirScalarExpr>>,
/// TODO(database-issues#7533): Add documentation.
pub before: mz_expr::SafeMfpPlan,
}
impl Arbitrary for JoinClosure {
type Parameters = ();
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(_: Self::Parameters) -> Self::Strategy {
(
prop::collection::vec(prop::collection::vec(any::<MirScalarExpr>(), 0..3), 0..3),
any::<mz_expr::SafeMfpPlan>(),
)
.prop_map(|(ready_equivalences, before)| JoinClosure {
ready_equivalences,
before,
})
.boxed()
}
}
impl RustType<ProtoJoinClosure> for JoinClosure {
fn into_proto(&self) -> ProtoJoinClosure {
ProtoJoinClosure {
ready_equivalences: self.ready_equivalences.into_proto(),
before: Some(self.before.into_proto()),
}
}
fn from_proto(proto: ProtoJoinClosure) -> Result<Self, TryFromProtoError> {
Ok(Self {
ready_equivalences: proto.ready_equivalences.into_rust()?,
before: proto.before.into_rust_if_some("ProtoJoinClosure::before")?,
})
}
}
impl JoinClosure {
/// Applies per-row filtering and logic.
#[inline(always)]
pub fn apply<'a>(
&'a self,
datums: &mut Vec<Datum<'a>>,
temp_storage: &'a RowArena,
row: &'a mut Row,
) -> Result<Option<Row>, mz_expr::EvalError> {
for exprs in self.ready_equivalences.iter() {
// Each list of expressions should be equal to the same value.
let val = exprs[0].eval(&datums[..], temp_storage)?;
for expr in exprs[1..].iter() {
if expr.eval(datums, temp_storage)? != val {
return Ok(None);
}
}
}
self.before.evaluate_into(datums, temp_storage, row)
}
/// Construct an instance of the closure from available columns.
///
/// This method updates the available columns, equivalences, and
/// the `MapFilterProject` instance. The columns are updated to
/// include reference to any columns added by the application of
/// this logic, which might result from partial application of
/// the `MapFilterProject` instance.
///
/// If all columns are available for `mfp`, this method works
/// extra hard to ensure that the closure contains all the work,
/// and `mfp` is left as an identity transform (which can then
/// be ignored).
fn build(
columns: &mut BTreeMap<usize, usize>,
equivalences: &mut Vec<Vec<MirScalarExpr>>,
mfp: &mut MapFilterProject,
permutation: BTreeMap<usize, usize>,
thinned_arity_with_key: usize,
) -> Self {
// First, determine which columns should be compared due to `equivalences`.
let mut ready_equivalences = Vec::new();
for equivalence in equivalences.iter_mut() {
if let Some(pos) = equivalence
.iter()
.position(|e| e.support().into_iter().all(|c| columns.contains_key(&c)))
{
let mut should_equate = Vec::new();
let mut cursor = pos + 1;
while cursor < equivalence.len() {
if equivalence[cursor]
.support()
.into_iter()
.all(|c| columns.contains_key(&c))
{
// Remove expression and equate with the first bound expression.
should_equate.push(equivalence.remove(cursor));
} else {
cursor += 1;
}
}
if !should_equate.is_empty() {
should_equate.push(equivalence[pos].clone());
ready_equivalences.push(should_equate);
}
}
}
equivalences.retain(|e| e.len() > 1);
let permuted_columns = columns.iter().map(|(k, v)| (*k, permutation[v])).collect();
// Update ready_equivalences to reference correct column locations.
for exprs in ready_equivalences.iter_mut() {
for expr in exprs.iter_mut() {
expr.permute_map(&permuted_columns);
}
}
// Next, partition `mfp` into `before` and `after`, the former of which can be
// applied now.
let (mut before, after) = std::mem::replace(mfp, MapFilterProject::new(mfp.input_arity))
.partition(columns.clone(), columns.len());
// Add any newly created columns to `columns`. These columns may be referenced
// by `after`, and it will be important to track their locations.
let bonus_columns = before.projection.len() - before.input_arity;
for bonus_column in 0..bonus_columns {
columns.insert(mfp.input_arity + bonus_column, columns.len());
}
*mfp = after;
// Before constructing and returning the result, we can remove output columns of `before`
// that are not needed in further `equivalences` or by `after` (now `mfp`).
let mut demand = Vec::new();
demand.extend(mfp.demand());
for equivalence in equivalences.iter() {
for expr in equivalence.iter() {
demand.extend(expr.support());
}
}
demand.sort();
demand.dedup();
// We only want to remove columns that are presented as outputs (i.e. can be found as in
// `columns`). Other columns have yet to be introduced, and we shouldn't have any opinion
// about them yet.
demand.retain(|column| columns.contains_key(column));
// Project `before` output columns using current locations of demanded columns.
before = before.project(demand.iter().map(|column| columns[column]));
// Update `columns` to reflect location of retained columns.
columns.clear();
for (index, column) in demand.iter().enumerate() {
columns.insert(*column, index);
}
// If `mfp` is a permutation of the columns present in `columns`, then we can
// apply that permutation to `before` and `columns`, so that `mfp` becomes the
// identity operation.
if mfp.expressions.is_empty()
&& mfp.predicates.is_empty()
&& mfp.projection.len() == columns.len()
&& mfp.projection.iter().all(|col| columns.contains_key(col))
&& columns.keys().all(|col| mfp.projection.contains(col))
{
// The projection we want to apply to `before` comes to us from `mfp` in the
// extended output column reckoning.
let projection = mfp
.projection
.iter()
.map(|col| columns[col])
.collect::<Vec<_>>();
before = before.project(projection);
// Update the physical locations of each output column.
columns.clear();
for (index, column) in mfp.projection.iter().enumerate() {
columns.insert(*column, index);
}
}
before.permute_fn(|c| permutation[&c], thinned_arity_with_key);
// `before` should not be modified after this point.
before.optimize();
// Cons up an instance of the closure with the closed-over state.
Self {
ready_equivalences,
before: before.into_plan().unwrap().into_nontemporal().unwrap(),
}
}
/// True iff the closure neither filters nor transforms records.
pub fn is_identity(&self) -> bool {
self.ready_equivalences.is_empty() && self.before.is_identity()
}
/// Returns true if evaluation could introduce an error on non-error inputs.
pub fn could_error(&self) -> bool {
self.before.could_error()
|| self
.ready_equivalences
.iter()
.any(|es| es.iter().any(|e| e.could_error()))
}
}
/// Maintained state as we construct join dataflows.
///
/// This state primarily tracks the *remaining* work that has not yet been applied to a
/// stream of partial results.
///
/// This state is meant to reconcile the logical operations that remain to apply (e.g.
/// filtering, expressions, projection) and the physical organization of the current stream
/// of data, which columns may be partially assembled in non-standard locations and which
/// may already have been partially subjected to logic we need to apply.
#[derive(Debug)]
pub struct JoinBuildState {
/// Map from expected locations in extended output column reckoning to physical locations.
column_map: BTreeMap<usize, usize>,
/// A list of equivalence classes of expressions.
///
/// Within each equivalence class, expressions must evaluate to the same result to pass
/// the join expression. Importantly, "the same" should be evaluated with `Datum`s Rust
/// equality, rather than the equality presented by the `BinaryFunc` equality operator.
/// The distinction is important for null handling, at the least.
equivalences: Vec<Vec<MirScalarExpr>>,
/// The linear operator logic (maps, filters, and projection) that remains to be applied
/// to the output of the join.
///
/// When we advance through the construction of the join dataflow, we may be able to peel
/// off some of this work, ideally reducing `mfp` to something nearly the identity.
mfp: MapFilterProject,
}
impl JoinBuildState {
/// Create a new join state and initial closure from initial values.
///
/// The initial closure can be `None` which indicates that it is the identity operator.
fn new(
columns: std::ops::Range<usize>,
equivalences: &[Vec<MirScalarExpr>],
mfp: &MapFilterProject,
) -> Self {
let mut column_map = BTreeMap::new();
for column in columns {
column_map.insert(column, column_map.len());
}
let mut equivalences = equivalences.to_vec();
mz_expr::canonicalize::canonicalize_equivalence_classes(&mut equivalences);
Self {
column_map,
equivalences,
mfp: mfp.clone(),
}
}
/// Present new columns and extract any newly available closure.
fn add_columns(
&mut self,
new_columns: std::ops::Range<usize>,
bound_expressions: &[MirScalarExpr],
thinned_arity_with_key: usize,
// The permutation to run on the join of the thinned collections
permutation: BTreeMap<usize, usize>,
) -> JoinClosure {
// Remove each element of `bound_expressions` from `equivalences`, so that we
// avoid redundant predicate work. This removal also paves the way for
// more precise "demand" information going forward.
for equivalence in self.equivalences.iter_mut() {
equivalence.retain(|expr| !bound_expressions.contains(expr));
}
self.equivalences.retain(|e| e.len() > 1);
// Update our map of the sources of each column in the update stream.
for column in new_columns {
self.column_map.insert(column, self.column_map.len());
}
self.extract_closure(permutation, thinned_arity_with_key)
}
/// Extract a final `MapFilterProject` once all columns are available.
///
/// If not all columns are available this method will likely panic.
/// This method differs from `extract_closure` in that it forcibly
/// completes the join, extracting projections and expressions that
/// may not be extracted with `extract_closure` (for example, literals,
/// permutations, and repetition of output columns).
///
/// The resulting closure may be the identity operator, which can be
/// checked with the `is_identity()` method.
fn complete(self) -> JoinClosure {
let Self {
column_map,
mut equivalences,
mut mfp,
} = self;
for equivalence in equivalences.iter_mut() {
for expr in equivalence.iter_mut() {
expr.permute_map(&column_map);
}
}
let column_map_len = column_map.len();
mfp.permute_fn(|c| column_map[&c], column_map_len);
mfp.optimize();
JoinClosure {
ready_equivalences: equivalences,
before: mfp.into_plan().unwrap().into_nontemporal().unwrap(),
}
}
/// A method on `self` that extracts an available closure.
///
/// The extracted closure is not guaranteed to be non-trivial. Sensitive users should
/// consider using the `.is_identity()` method to determine non-triviality.
fn extract_closure(
&mut self,
permutation: BTreeMap<usize, usize>,
thinned_arity_with_key: usize,
) -> JoinClosure {
JoinClosure::build(
&mut self.column_map,
&mut self.equivalences,
&mut self.mfp,
permutation,
thinned_arity_with_key,
)
}
}
#[cfg(test)]
mod tests {
use mz_ore::assert_ok;
use mz_proto::protobuf_roundtrip;
use super::*;
proptest! {
#![proptest_config(ProptestConfig::with_cases(32))]
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decContextDefault` on OS `linux`
fn join_plan_protobuf_roundtrip(expect in any::<JoinPlan>() ) {
let actual = protobuf_roundtrip::<_, ProtoJoinPlan>(&expect);
assert_ok!(actual);
assert_eq!(actual.unwrap(), expect);
}
}
}