lz4_flex/block/compress.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
//! The compression algorithm.
//!
//! We make use of hash tables to find duplicates. This gives a reasonable compression ratio with a
//! high performance. It has fixed memory usage, which contrary to other approachs, makes it less
//! memory hungry.
use crate::block::hashtable::HashTable;
use crate::block::END_OFFSET;
use crate::block::LZ4_MIN_LENGTH;
use crate::block::MAX_DISTANCE;
use crate::block::MFLIMIT;
use crate::block::MINMATCH;
#[cfg(not(feature = "safe-encode"))]
use crate::sink::PtrSink;
use crate::sink::Sink;
use crate::sink::SliceSink;
#[allow(unused_imports)]
use alloc::vec;
#[allow(unused_imports)]
use alloc::vec::Vec;
use super::hashtable::HashTable4K;
use super::hashtable::HashTable4KU16;
use super::{CompressError, WINDOW_SIZE};
/// Increase step size after 1<<INCREASE_STEPSIZE_BITSHIFT non matches
const INCREASE_STEPSIZE_BITSHIFT: usize = 5;
/// Read a 4-byte "batch" from some position.
///
/// This will read a native-endian 4-byte integer from some position.
#[inline]
#[cfg(not(feature = "safe-encode"))]
pub(super) fn get_batch(input: &[u8], n: usize) -> u32 {
unsafe { read_u32_ptr(input.as_ptr().add(n)) }
}
#[inline]
#[cfg(feature = "safe-encode")]
pub(super) fn get_batch(input: &[u8], n: usize) -> u32 {
u32::from_ne_bytes(input[n..n + 4].try_into().unwrap())
}
/// Read an usize sized "batch" from some position.
///
/// This will read a native-endian usize from some position.
#[inline]
#[allow(dead_code)]
#[cfg(not(feature = "safe-encode"))]
pub(super) fn get_batch_arch(input: &[u8], n: usize) -> usize {
unsafe { read_usize_ptr(input.as_ptr().add(n)) }
}
#[inline]
#[allow(dead_code)]
#[cfg(feature = "safe-encode")]
pub(super) fn get_batch_arch(input: &[u8], n: usize) -> usize {
const USIZE_SIZE: usize = core::mem::size_of::<usize>();
let arr: &[u8; USIZE_SIZE] = input[n..n + USIZE_SIZE].try_into().unwrap();
usize::from_ne_bytes(*arr)
}
#[inline]
fn token_from_literal(lit_len: usize) -> u8 {
if lit_len < 0xF {
// Since we can fit the literals length into it, there is no need for saturation.
(lit_len as u8) << 4
} else {
// We were unable to fit the literals into it, so we saturate to 0xF. We will later
// write the extensional value.
0xF0
}
}
#[inline]
fn token_from_literal_and_match_length(lit_len: usize, duplicate_length: usize) -> u8 {
let mut token = if lit_len < 0xF {
// Since we can fit the literals length into it, there is no need for saturation.
(lit_len as u8) << 4
} else {
// We were unable to fit the literals into it, so we saturate to 0xF. We will later
// write the extensional value.
0xF0
};
token |= if duplicate_length < 0xF {
// We could fit it in.
duplicate_length as u8
} else {
// We were unable to fit it in, so we default to 0xF, which will later be extended.
0xF
};
token
}
/// Counts the number of same bytes in two byte streams.
/// `input` is the complete input
/// `cur` is the current position in the input. it will be incremented by the number of matched
/// bytes `source` either the same as input or an external slice
/// `candidate` is the candidate position in `source`
///
/// The function ignores the last END_OFFSET bytes in input as those should be literals.
#[inline]
#[cfg(feature = "safe-encode")]
fn count_same_bytes(input: &[u8], cur: &mut usize, source: &[u8], candidate: usize) -> usize {
const USIZE_SIZE: usize = core::mem::size_of::<usize>();
let cur_slice = &input[*cur..input.len() - END_OFFSET];
let cand_slice = &source[candidate..];
let mut num = 0;
for (block1, block2) in cur_slice
.chunks_exact(USIZE_SIZE)
.zip(cand_slice.chunks_exact(USIZE_SIZE))
{
let input_block = usize::from_ne_bytes(block1.try_into().unwrap());
let match_block = usize::from_ne_bytes(block2.try_into().unwrap());
if input_block == match_block {
num += USIZE_SIZE;
} else {
let diff = input_block ^ match_block;
num += (diff.to_le().trailing_zeros() / 8) as usize;
*cur += num;
return num;
}
}
// If we're here we may have 1 to 7 bytes left to check close to the end of input
// or source slices. Since this is rare occurrence we mark it cold to get better
// ~5% better performance.
#[cold]
fn count_same_bytes_tail(a: &[u8], b: &[u8], offset: usize) -> usize {
a.iter()
.zip(b)
.skip(offset)
.take_while(|(a, b)| a == b)
.count()
}
num += count_same_bytes_tail(cur_slice, cand_slice, num);
*cur += num;
num
}
/// Counts the number of same bytes in two byte streams.
/// `input` is the complete input
/// `cur` is the current position in the input. it will be incremented by the number of matched
/// bytes `source` either the same as input OR an external slice
/// `candidate` is the candidate position in `source`
///
/// The function ignores the last END_OFFSET bytes in input as those should be literals.
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn count_same_bytes(input: &[u8], cur: &mut usize, source: &[u8], candidate: usize) -> usize {
let max_input_match = input.len().saturating_sub(*cur + END_OFFSET);
let max_candidate_match = source.len() - candidate;
// Considering both limits calc how far we may match in input.
let input_end = *cur + max_input_match.min(max_candidate_match);
let start = *cur;
let mut source_ptr = unsafe { source.as_ptr().add(candidate) };
// compare 4/8 bytes blocks depending on the arch
const STEP_SIZE: usize = core::mem::size_of::<usize>();
while *cur + STEP_SIZE <= input_end {
let diff = read_usize_ptr(unsafe { input.as_ptr().add(*cur) }) ^ read_usize_ptr(source_ptr);
if diff == 0 {
*cur += STEP_SIZE;
unsafe {
source_ptr = source_ptr.add(STEP_SIZE);
}
} else {
*cur += (diff.to_le().trailing_zeros() / 8) as usize;
return *cur - start;
}
}
// compare 4 bytes block
#[cfg(target_pointer_width = "64")]
{
if input_end - *cur >= 4 {
let diff = read_u32_ptr(unsafe { input.as_ptr().add(*cur) }) ^ read_u32_ptr(source_ptr);
if diff == 0 {
*cur += 4;
unsafe {
source_ptr = source_ptr.add(4);
}
} else {
*cur += (diff.to_le().trailing_zeros() / 8) as usize;
return *cur - start;
}
}
}
// compare 2 bytes block
if input_end - *cur >= 2
&& unsafe { read_u16_ptr(input.as_ptr().add(*cur)) == read_u16_ptr(source_ptr) }
{
*cur += 2;
unsafe {
source_ptr = source_ptr.add(2);
}
}
if *cur < input_end
&& unsafe { input.as_ptr().add(*cur).read() } == unsafe { source_ptr.read() }
{
*cur += 1;
}
*cur - start
}
/// Write an integer to the output.
///
/// Each additional byte then represent a value from 0 to 255, which is added to the previous value
/// to produce a total length. When the byte value is 255, another byte must read and added, and so
/// on. There can be any number of bytes of value "255" following token
#[inline]
#[cfg(feature = "safe-encode")]
fn write_integer(output: &mut impl Sink, mut n: usize) {
// Note: Since `n` is usually < 0xFF and writing multiple bytes to the output
// requires 2 branches of bound check (due to the possibility of add overflows)
// the simple byte at a time implementation below is faster in most cases.
while n >= 0xFF {
n -= 0xFF;
push_byte(output, 0xFF);
}
push_byte(output, n as u8);
}
/// Write an integer to the output.
///
/// Each additional byte then represent a value from 0 to 255, which is added to the previous value
/// to produce a total length. When the byte value is 255, another byte must read and added, and so
/// on. There can be any number of bytes of value "255" following token
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn write_integer(output: &mut impl Sink, mut n: usize) {
// Write the 0xFF bytes as long as the integer is higher than said value.
if n >= 4 * 0xFF {
// In this unlikelly branch we use a fill instead of a loop,
// otherwise rustc may output a large unrolled/vectorized loop.
let bulk = n / (4 * 0xFF);
n %= 4 * 0xFF;
unsafe {
core::ptr::write_bytes(output.pos_mut_ptr(), 0xFF, 4 * bulk);
output.set_pos(output.pos() + 4 * bulk);
}
}
// Handle last 1 to 4 bytes
push_u32(output, 0xFFFFFFFF);
// Updating output len for the remainder
unsafe {
output.set_pos(output.pos() - 4 + 1 + n / 255);
// Write the remaining byte.
*output.pos_mut_ptr().sub(1) = (n % 255) as u8;
}
}
/// Handle the last bytes from the input as literals
#[cold]
fn handle_last_literals(output: &mut impl Sink, input: &[u8], start: usize) {
let lit_len = input.len() - start;
let token = token_from_literal(lit_len);
push_byte(output, token);
if lit_len >= 0xF {
write_integer(output, lit_len - 0xF);
}
// Now, write the actual literals.
output.extend_from_slice(&input[start..]);
}
/// Moves the cursors back as long as the bytes match, to find additional bytes in a duplicate
#[inline]
#[cfg(feature = "safe-encode")]
fn backtrack_match(
input: &[u8],
cur: &mut usize,
literal_start: usize,
source: &[u8],
candidate: &mut usize,
) {
// Note: Even if iterator version of this loop has less branches inside the loop it has more
// branches before the loop. That in practice seems to make it slower than the while version
// bellow. TODO: It should be possible remove all bounds checks, since we are walking
// backwards
while *candidate > 0 && *cur > literal_start && input[*cur - 1] == source[*candidate - 1] {
*cur -= 1;
*candidate -= 1;
}
}
/// Moves the cursors back as long as the bytes match, to find additional bytes in a duplicate
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn backtrack_match(
input: &[u8],
cur: &mut usize,
literal_start: usize,
source: &[u8],
candidate: &mut usize,
) {
while unsafe {
*candidate > 0
&& *cur > literal_start
&& input.get_unchecked(*cur - 1) == source.get_unchecked(*candidate - 1)
} {
*cur -= 1;
*candidate -= 1;
}
}
/// Compress all bytes of `input[input_pos..]` into `output`.
///
/// Bytes in `input[..input_pos]` are treated as a preamble and can be used for lookback.
/// This part is known as the compressor "prefix".
/// Bytes in `ext_dict` logically precede the bytes in `input` and can also be used for lookback.
///
/// `input_stream_offset` is the logical position of the first byte of `input`. This allows same
/// `dict` to be used for many calls to `compress_internal` as we can "readdress" the first byte of
/// `input` to be something other than 0.
///
/// `dict` is the dictionary of previously encoded sequences.
///
/// This is used to find duplicates in the stream so they are not written multiple times.
///
/// Every four bytes are hashed, and in the resulting slot their position in the input buffer
/// is placed in the dict. This way we can easily look up a candidate to back references.
///
/// Returns the number of bytes written (compressed) into `output`.
///
/// # Const parameters
/// `USE_DICT`: Disables usage of ext_dict (it'll panic if a non-empty slice is used).
/// In other words, this generates more optimized code when an external dictionary isn't used.
///
/// A similar const argument could be used to disable the Prefix mode (eg. USE_PREFIX),
/// which would impose `input_pos == 0 && input_stream_offset == 0`. Experiments didn't
/// show significant improvement though.
// Intentionally avoid inlining.
// Empirical tests revealed it to be rarely better but often significantly detrimental.
#[inline(never)]
pub(crate) fn compress_internal<T: HashTable, const USE_DICT: bool, S: Sink>(
input: &[u8],
input_pos: usize,
output: &mut S,
dict: &mut T,
ext_dict: &[u8],
input_stream_offset: usize,
) -> Result<usize, CompressError> {
assert!(input_pos <= input.len());
if USE_DICT {
assert!(ext_dict.len() <= super::WINDOW_SIZE);
assert!(ext_dict.len() <= input_stream_offset);
// Check for overflow hazard when using ext_dict
assert!(input_stream_offset
.checked_add(input.len())
.and_then(|i| i.checked_add(ext_dict.len()))
.map_or(false, |i| i <= isize::MAX as usize));
} else {
assert!(ext_dict.is_empty());
}
if output.capacity() - output.pos() < get_maximum_output_size(input.len() - input_pos) {
return Err(CompressError::OutputTooSmall);
}
let output_start_pos = output.pos();
if input.len() - input_pos < LZ4_MIN_LENGTH {
handle_last_literals(output, input, input_pos);
return Ok(output.pos() - output_start_pos);
}
let ext_dict_stream_offset = input_stream_offset - ext_dict.len();
let end_pos_check = input.len() - MFLIMIT;
let mut literal_start = input_pos;
let mut cur = input_pos;
if cur == 0 && input_stream_offset == 0 {
// According to the spec we can't start with a match,
// except when referencing another block.
let hash = T::get_hash_at(input, 0);
dict.put_at(hash, 0);
cur = 1;
}
loop {
// Read the next block into two sections, the literals and the duplicates.
let mut step_size;
let mut candidate;
let mut candidate_source;
let mut offset;
let mut non_match_count = 1 << INCREASE_STEPSIZE_BITSHIFT;
// The number of bytes before our cursor, where the duplicate starts.
let mut next_cur = cur;
// In this loop we search for duplicates via the hashtable. 4bytes or 8bytes are hashed and
// compared.
loop {
step_size = non_match_count >> INCREASE_STEPSIZE_BITSHIFT;
non_match_count += 1;
cur = next_cur;
next_cur += step_size;
// Same as cur + MFLIMIT > input.len()
if cur > end_pos_check {
handle_last_literals(output, input, literal_start);
return Ok(output.pos() - output_start_pos);
}
// Find a candidate in the dictionary with the hash of the current four bytes.
// Unchecked is safe as long as the values from the hash function don't exceed the size
// of the table. This is ensured by right shifting the hash values
// (`dict_bitshift`) to fit them in the table
// [Bounds Check]: Can be elided due to `end_pos_check` above
let hash = T::get_hash_at(input, cur);
candidate = dict.get_at(hash);
dict.put_at(hash, cur + input_stream_offset);
// Sanity check: Matches can't be ahead of `cur`.
debug_assert!(candidate <= input_stream_offset + cur);
// Two requirements to the candidate exists:
// - We should not return a position which is merely a hash collision, so that the
// candidate actually matches what we search for.
// - We can address up to 16-bit offset, hence we are only able to address the candidate
// if its offset is less than or equals to 0xFFFF.
if input_stream_offset + cur - candidate > MAX_DISTANCE {
continue;
}
if candidate >= input_stream_offset {
// match within input
offset = (input_stream_offset + cur - candidate) as u16;
candidate -= input_stream_offset;
candidate_source = input;
} else if USE_DICT {
// Sanity check, which may fail if we lost history beyond MAX_DISTANCE
debug_assert!(
candidate >= ext_dict_stream_offset,
"Lost history in ext dict mode"
);
// match within ext dict
offset = (input_stream_offset + cur - candidate) as u16;
candidate -= ext_dict_stream_offset;
candidate_source = ext_dict;
} else {
// Match is not reachable anymore
// eg. compressing an independent block frame w/o clearing
// the matches tables, only increasing input_stream_offset.
// Sanity check
debug_assert!(input_pos == 0, "Lost history in prefix mode");
continue;
}
// [Bounds Check]: Candidate is coming from the Hashmap. It can't be out of bounds, but
// impossible to prove for the compiler and remove the bounds checks.
let cand_bytes: u32 = get_batch(candidate_source, candidate);
// [Bounds Check]: Should be able to be elided due to `end_pos_check`.
let curr_bytes: u32 = get_batch(input, cur);
if cand_bytes == curr_bytes {
break;
}
}
// Extend the match backwards if we can
backtrack_match(
input,
&mut cur,
literal_start,
candidate_source,
&mut candidate,
);
// The length (in bytes) of the literals section.
let lit_len = cur - literal_start;
// Generate the higher half of the token.
cur += MINMATCH;
candidate += MINMATCH;
let duplicate_length = count_same_bytes(input, &mut cur, candidate_source, candidate);
// Note: The `- 2` offset was copied from the reference implementation, it could be
// arbitrary.
let hash = T::get_hash_at(input, cur - 2);
dict.put_at(hash, cur - 2 + input_stream_offset);
let token = token_from_literal_and_match_length(lit_len, duplicate_length);
// Push the token to the output stream.
push_byte(output, token);
// If we were unable to fit the literals length into the token, write the extensional
// part.
if lit_len >= 0xF {
write_integer(output, lit_len - 0xF);
}
// Now, write the actual literals.
//
// The unsafe version copies blocks of 8bytes, and therefore may copy up to 7bytes more than
// needed. This is safe, because the last 12 bytes (MF_LIMIT) are handled in
// handle_last_literals.
copy_literals_wild(output, input, literal_start, lit_len);
// write the offset in little endian.
push_u16(output, offset);
// If we were unable to fit the duplicates length into the token, write the
// extensional part.
if duplicate_length >= 0xF {
write_integer(output, duplicate_length - 0xF);
}
literal_start = cur;
}
}
#[inline]
#[cfg(feature = "safe-encode")]
fn push_byte(output: &mut impl Sink, el: u8) {
output.push(el);
}
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn push_byte(output: &mut impl Sink, el: u8) {
unsafe {
core::ptr::write(output.pos_mut_ptr(), el);
output.set_pos(output.pos() + 1);
}
}
#[inline]
#[cfg(feature = "safe-encode")]
fn push_u16(output: &mut impl Sink, el: u16) {
output.extend_from_slice(&el.to_le_bytes());
}
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn push_u16(output: &mut impl Sink, el: u16) {
unsafe {
core::ptr::copy_nonoverlapping(el.to_le_bytes().as_ptr(), output.pos_mut_ptr(), 2);
output.set_pos(output.pos() + 2);
}
}
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn push_u32(output: &mut impl Sink, el: u32) {
unsafe {
core::ptr::copy_nonoverlapping(el.to_le_bytes().as_ptr(), output.pos_mut_ptr(), 4);
output.set_pos(output.pos() + 4);
}
}
#[inline(always)] // (always) necessary otherwise compiler fails to inline it
#[cfg(feature = "safe-encode")]
fn copy_literals_wild(output: &mut impl Sink, input: &[u8], input_start: usize, len: usize) {
output.extend_from_slice_wild(&input[input_start..input_start + len], len)
}
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn copy_literals_wild(output: &mut impl Sink, input: &[u8], input_start: usize, len: usize) {
debug_assert!(input_start + len / 8 * 8 + ((len % 8) != 0) as usize * 8 <= input.len());
debug_assert!(output.pos() + len / 8 * 8 + ((len % 8) != 0) as usize * 8 <= output.capacity());
unsafe {
// Note: This used to be a wild copy loop of 8 bytes, but the compiler consistently
// transformed it into a call to memcopy, which hurts performance significantly for
// small copies, which are common.
let start_ptr = input.as_ptr().add(input_start);
match len {
0..=8 => core::ptr::copy_nonoverlapping(start_ptr, output.pos_mut_ptr(), 8),
9..=16 => core::ptr::copy_nonoverlapping(start_ptr, output.pos_mut_ptr(), 16),
17..=24 => core::ptr::copy_nonoverlapping(start_ptr, output.pos_mut_ptr(), 24),
_ => core::ptr::copy_nonoverlapping(start_ptr, output.pos_mut_ptr(), len),
}
output.set_pos(output.pos() + len);
}
}
/// Compress all bytes of `input` into `output`.
/// The method chooses an appropriate hashtable to lookup duplicates.
/// output should be preallocated with a size of
/// `get_maximum_output_size`.
///
/// Returns the number of bytes written (compressed) into `output`.
#[inline]
pub(crate) fn compress_into_sink_with_dict<const USE_DICT: bool>(
input: &[u8],
output: &mut impl Sink,
mut dict_data: &[u8],
) -> Result<usize, CompressError> {
if dict_data.len() + input.len() < u16::MAX as usize {
let mut dict = HashTable4KU16::new();
init_dict(&mut dict, &mut dict_data);
compress_internal::<_, USE_DICT, _>(input, 0, output, &mut dict, dict_data, dict_data.len())
} else {
let mut dict = HashTable4K::new();
init_dict(&mut dict, &mut dict_data);
compress_internal::<_, USE_DICT, _>(input, 0, output, &mut dict, dict_data, dict_data.len())
}
}
#[inline]
fn init_dict<T: HashTable>(dict: &mut T, dict_data: &mut &[u8]) {
if dict_data.len() > WINDOW_SIZE {
*dict_data = &dict_data[dict_data.len() - WINDOW_SIZE..];
}
let mut i = 0usize;
while i + core::mem::size_of::<usize>() <= dict_data.len() {
let hash = T::get_hash_at(dict_data, i);
dict.put_at(hash, i);
// Note: The 3 byte step was copied from the reference implementation, it could be
// arbitrary.
i += 3;
}
}
/// Returns the maximum output size of the compressed data.
/// Can be used to preallocate capacity on the output vector
#[inline]
pub const fn get_maximum_output_size(input_len: usize) -> usize {
16 + 4 + (input_len * 110 / 100) as usize
}
/// Compress all bytes of `input` into `output`.
/// The method chooses an appropriate hashtable to lookup duplicates.
/// output should be preallocated with a size of
/// `get_maximum_output_size`.
///
/// Returns the number of bytes written (compressed) into `output`.
#[inline]
pub fn compress_into(input: &[u8], output: &mut [u8]) -> Result<usize, CompressError> {
compress_into_sink_with_dict::<false>(input, &mut SliceSink::new(output, 0), b"")
}
/// Compress all bytes of `input` into `output`.
/// The method chooses an appropriate hashtable to lookup duplicates.
/// output should be preallocated with a size of
/// `get_maximum_output_size`.
///
/// Returns the number of bytes written (compressed) into `output`.
#[inline]
pub fn compress_into_with_dict(
input: &[u8],
output: &mut [u8],
dict_data: &[u8],
) -> Result<usize, CompressError> {
compress_into_sink_with_dict::<true>(input, &mut SliceSink::new(output, 0), dict_data)
}
#[inline]
fn compress_into_vec_with_dict<const USE_DICT: bool>(
input: &[u8],
prepend_size: bool,
mut dict_data: &[u8],
) -> Vec<u8> {
let prepend_size_num_bytes = if prepend_size { 4 } else { 0 };
let max_compressed_size = get_maximum_output_size(input.len()) + prepend_size_num_bytes;
if dict_data.len() <= 3 {
dict_data = b"";
}
#[cfg(feature = "safe-encode")]
let mut compressed = {
let mut compressed: Vec<u8> = vec![0u8; max_compressed_size];
let out = if prepend_size {
compressed[..4].copy_from_slice(&(input.len() as u32).to_le_bytes());
&mut compressed[4..]
} else {
&mut compressed
};
let compressed_len =
compress_into_sink_with_dict::<USE_DICT>(input, &mut SliceSink::new(out, 0), dict_data)
.unwrap();
compressed.truncate(prepend_size_num_bytes + compressed_len);
compressed
};
#[cfg(not(feature = "safe-encode"))]
let mut compressed = {
let mut vec = Vec::with_capacity(max_compressed_size);
let start_pos = if prepend_size {
vec.extend_from_slice(&(input.len() as u32).to_le_bytes());
4
} else {
0
};
let compressed_len = compress_into_sink_with_dict::<USE_DICT>(
input,
&mut PtrSink::from_vec(&mut vec, start_pos),
dict_data,
)
.unwrap();
unsafe {
vec.set_len(prepend_size_num_bytes + compressed_len);
}
vec
};
compressed.shrink_to_fit();
compressed
}
/// Compress all bytes of `input` into `output`. The uncompressed size will be prepended as a little
/// endian u32. Can be used in conjunction with `decompress_size_prepended`
#[inline]
pub fn compress_prepend_size(input: &[u8]) -> Vec<u8> {
compress_into_vec_with_dict::<false>(input, true, b"")
}
/// Compress all bytes of `input`.
#[inline]
pub fn compress(input: &[u8]) -> Vec<u8> {
compress_into_vec_with_dict::<false>(input, false, b"")
}
/// Compress all bytes of `input` with an external dictionary.
#[inline]
pub fn compress_with_dict(input: &[u8], ext_dict: &[u8]) -> Vec<u8> {
compress_into_vec_with_dict::<true>(input, false, ext_dict)
}
/// Compress all bytes of `input` into `output`. The uncompressed size will be prepended as a little
/// endian u32. Can be used in conjunction with `decompress_size_prepended_with_dict`
#[inline]
pub fn compress_prepend_size_with_dict(input: &[u8], ext_dict: &[u8]) -> Vec<u8> {
compress_into_vec_with_dict::<true>(input, true, ext_dict)
}
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn read_u16_ptr(input: *const u8) -> u16 {
let mut num: u16 = 0;
unsafe {
core::ptr::copy_nonoverlapping(input, &mut num as *mut u16 as *mut u8, 2);
}
num
}
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn read_u32_ptr(input: *const u8) -> u32 {
let mut num: u32 = 0;
unsafe {
core::ptr::copy_nonoverlapping(input, &mut num as *mut u32 as *mut u8, 4);
}
num
}
#[inline]
#[cfg(not(feature = "safe-encode"))]
fn read_usize_ptr(input: *const u8) -> usize {
let mut num: usize = 0;
unsafe {
core::ptr::copy_nonoverlapping(
input,
&mut num as *mut usize as *mut u8,
core::mem::size_of::<usize>(),
);
}
num
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_count_same_bytes() {
// 8byte aligned block, zeros and ones are added because the end/offset
let first: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
];
let second: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
];
assert_eq!(count_same_bytes(first, &mut 0, second, 0), 16);
// 4byte aligned block
let first: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,
];
let second: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1,
];
assert_eq!(count_same_bytes(first, &mut 0, second, 0), 20);
// 2byte aligned block
let first: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
];
let second: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1,
];
assert_eq!(count_same_bytes(first, &mut 0, second, 0), 22);
// 1byte aligned block
let first: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 5, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
];
let second: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 5, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,
];
assert_eq!(count_same_bytes(first, &mut 0, second, 0), 23);
// 1byte aligned block - last byte different
let first: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 5, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
];
let second: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 6, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,
];
assert_eq!(count_same_bytes(first, &mut 0, second, 0), 22);
// 1byte aligned block
let first: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 3, 9, 5, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
];
let second: &[u8] = &[
1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 6, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,
];
assert_eq!(count_same_bytes(first, &mut 0, second, 0), 21);
for diff_idx in 8..100 {
let first: Vec<u8> = (0u8..255).cycle().take(100 + 12).collect();
let mut second = first.clone();
second[diff_idx] = 255;
for start in 0..=diff_idx {
let same_bytes = count_same_bytes(&first, &mut start.clone(), &second, start);
assert_eq!(same_bytes, diff_idx - start);
}
}
}
#[test]
fn test_bug() {
let input: &[u8] = &[
10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18,
];
let _out = compress(input);
}
#[test]
fn test_dict() {
let input: &[u8] = &[
10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18,
];
let dict = input;
let compressed = compress_with_dict(input, dict);
assert_lt!(compressed.len(), compress(input).len());
assert!(compressed.len() < compress(input).len());
let mut uncompressed = vec![0u8; input.len()];
let uncomp_size = crate::block::decompress::decompress_into_with_dict(
&compressed,
&mut uncompressed,
dict,
)
.unwrap();
uncompressed.truncate(uncomp_size);
assert_eq!(input, uncompressed);
}
#[test]
fn test_dict_no_panic() {
let input: &[u8] = &[
10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18,
];
let dict = &[10, 12, 14];
let _compressed = compress_with_dict(input, dict);
}
#[test]
fn test_dict_match_crossing() {
let input: &[u8] = &[
10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18,
];
let dict = input;
let compressed = compress_with_dict(input, dict);
assert_lt!(compressed.len(), compress(input).len());
let mut uncompressed = vec![0u8; input.len() * 2];
// copy first half of the input into output
let dict_cutoff = dict.len() / 2;
let output_start = dict.len() - dict_cutoff;
uncompressed[..output_start].copy_from_slice(&dict[dict_cutoff..]);
let uncomp_len = {
let mut sink = SliceSink::new(&mut uncompressed[..], output_start);
crate::block::decompress::decompress_internal::<true, _>(
&compressed,
&mut sink,
&dict[..dict_cutoff],
)
.unwrap()
};
assert_eq!(input.len(), uncomp_len);
assert_eq!(
input,
&uncompressed[output_start..output_start + uncomp_len]
);
}
#[test]
fn test_conformant_last_block() {
// From the spec:
// The last match must start at least 12 bytes before the end of block.
// The last match is part of the penultimate sequence. It is followed by the last sequence,
// which contains only literals. Note that, as a consequence, an independent block <
// 13 bytes cannot be compressed, because the match must copy "something",
// so it needs at least one prior byte.
// When a block can reference data from another block, it can start immediately with a match
// and no literal, so a block of 12 bytes can be compressed.
let aaas: &[u8] = b"aaaaaaaaaaaaaaa";
// uncompressible
let out = compress(&aaas[..12]);
assert_gt!(out.len(), 12);
// compressible
let out = compress(&aaas[..13]);
assert_le!(out.len(), 13);
let out = compress(&aaas[..14]);
assert_le!(out.len(), 14);
let out = compress(&aaas[..15]);
assert_le!(out.len(), 15);
// dict uncompressible
let out = compress_with_dict(&aaas[..11], aaas);
assert_gt!(out.len(), 11);
// compressible
let out = compress_with_dict(&aaas[..12], aaas);
// According to the spec this _could_ compres, but it doesn't in this lib
// as it aborts compression for any input len < LZ4_MIN_LENGTH
assert_gt!(out.len(), 12);
let out = compress_with_dict(&aaas[..13], aaas);
assert_le!(out.len(), 13);
let out = compress_with_dict(&aaas[..14], aaas);
assert_le!(out.len(), 14);
let out = compress_with_dict(&aaas[..15], aaas);
assert_le!(out.len(), 15);
}
#[test]
fn test_dict_size() {
let dict = vec![b'a'; 1024 * 1024];
let input = &b"aaaaaaaaaaaaaaaaaaaaaaaaaaaaa"[..];
let compressed = compress_prepend_size_with_dict(input, &dict);
let decompressed =
crate::block::decompress_size_prepended_with_dict(&compressed, &dict).unwrap();
assert_eq!(decompressed, input);
}
}