encoding_index_tests/
index_tests.rs#[macro_export]
macro_rules! single_byte_tests {
(
mod = $parentmod:ident ) => (
mod tests {
extern crate test;
use $parentmod::{forward, backward};
#[test]
fn test_correct_table() {
for i in 0x80..0x100 {
let i = i as u8;
let j = forward(i);
if j != 0xffff { assert_eq!(backward(j as u32), i); }
}
}
#[bench]
fn bench_forward_sequential_128(bencher: &mut test::Bencher) {
bencher.iter(|| {
for i in 0x80..0x100 {
test::black_box(forward(i as u8));
}
})
}
#[bench]
fn bench_backward_sequential_128(bencher: &mut test::Bencher) {
let mut start: u32 = 0;
bencher.iter(|| {
for i in start..(start + 0x80) {
test::black_box(backward(i));
}
start += 0x80;
})
}
}
);
}
#[macro_export]
macro_rules! multi_byte_tests {
(make shared tests and benches with dups = $dups:expr) => ( #[test]
fn test_correct_table() {
static DUPS: &'static [u16] = &$dups;
for i in 0..0x10000 {
let i = i as u16;
if DUPS.contains(&i) { continue; }
let j = forward(i);
if j != 0xffff { assert_eq!(backward(j), i); }
}
}
#[bench]
fn bench_forward_sequential_128(bencher: &mut test::Bencher) {
let mut start: u32 = 0;
bencher.iter(|| {
for i in start..(start + 0x80) {
test::black_box(forward(i as u16));
}
start += 0x80;
})
}
#[bench]
fn bench_backward_sequential_128(bencher: &mut test::Bencher) {
let mut start: u32 = 0;
bencher.iter(|| {
for i in start..(start + 0x80) {
test::black_box(backward(i));
}
start += 0x80;
if start >= 0x110000 { start = 0; }
})
}
);
(
mod = $parentmod:ident, dups = $dups:expr
) => (
mod tests {
extern crate test;
use $parentmod::{forward, backward};
multi_byte_tests!(make shared tests and benches with dups = $dups);
}
);
(
mod = $parentmod:ident, remap = [$remap_min:expr, $remap_max:expr],
dups = $dups:expr
) => (
mod tests {
extern crate test;
use $parentmod::{forward, backward, backward_remapped};
multi_byte_tests!(make shared tests and benches with dups = $dups);
static REMAP_MIN: u16 = $remap_min;
static REMAP_MAX: u16 = $remap_max;
#[test]
fn test_correct_remapping() {
for i in REMAP_MIN..(REMAP_MAX+1) {
let j = forward(i);
if j != 0xffff {
let ii = backward_remapped(j);
assert!(ii != i && ii != 0xffff);
let jj = forward(ii);
assert_eq!(j, jj);
}
}
}
#[bench]
fn bench_backward_remapped_sequential_128(bencher: &mut test::Bencher) {
let mut start: u32 = 0;
bencher.iter(|| {
for i in start..(start + 0x80) {
test::black_box(backward_remapped(i));
}
start += 0x80;
if start >= 0x110000 { start = 0; }
})
}
}
);
}
#[macro_export]
macro_rules! multi_byte_range_tests {
(
mod = $parentmod:ident,
key = [$minkey:expr, $maxkey:expr], key < $keyubound:expr,
value = [$minvalue:expr, $maxvalue:expr], value < $valueubound:expr
) => (
mod tests {
extern crate test;
use $parentmod::{forward, backward};
static MIN_KEY: u32 = $minkey;
static MAX_KEY: u32 = $maxkey;
static KEY_UBOUND: u32 = $keyubound;
static MIN_VALUE: u32 = $minvalue;
static MAX_VALUE: u32 = $maxvalue;
static VALUE_UBOUND: u32 = $valueubound;
#[test]
#[allow(unused_comparisons)]
fn test_no_failure() {
for i in (if MIN_KEY>0 {MIN_KEY-1} else {0})..(MAX_KEY+2) {
forward(i);
}
for j in (if MIN_VALUE>0 {MIN_VALUE-1} else {0})..(MAX_VALUE+2) {
backward(j);
}
}
#[test]
fn test_correct_table() {
for i in MIN_KEY..(MAX_KEY+2) {
let j = forward(i);
if j == 0xffffffff { continue; }
let i_ = backward(j);
if i_ == 0xffffffff { continue; }
assert!(i_ == i,
"backward(forward({})) = backward({}) = {} != {}", i, j, i_, i);
}
}
#[bench]
fn bench_forward_sequential_128(bencher: &mut test::Bencher) {
let mut start: u32 = 0;
bencher.iter(|| {
for i in start..(start + 0x80) {
test::black_box(forward(i));
}
start += 0x80;
if start >= KEY_UBOUND { start = 0; }
})
}
#[bench]
fn bench_backward_sequential_128(bencher: &mut test::Bencher) {
let mut start: u32 = 0;
bencher.iter(|| {
for i in start..(start + 0x80) {
test::black_box(backward(i));
}
start += 0x80;
if start >= VALUE_UBOUND { start = 0; }
})
}
}
);
}