1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Utils for working with packed bit masks
use crate::bit_util::ceil;
/// Util function to set bits in a slice of bytes.
///
/// This will sets all bits on `write_data` in the range `[offset_write..offset_write+len]`
/// to be equal to the bits in `data` in the range `[offset_read..offset_read+len]`
/// returns the number of `0` bits `data[offset_read..offset_read+len]`
/// `offset_write`, `offset_read`, and `len` are in terms of bits
pub fn set_bits(
write_data: &mut [u8],
data: &[u8],
offset_write: usize,
offset_read: usize,
len: usize,
) -> usize {
assert!(offset_write + len <= write_data.len() * 8);
assert!(offset_read + len <= data.len() * 8);
let mut null_count = 0;
let mut acc = 0;
while len > acc {
// SAFETY: the arguments to `set_upto_64bits` are within the valid range because
// (offset_write + acc) + (len - acc) == offset_write + len <= write_data.len() * 8
// (offset_read + acc) + (len - acc) == offset_read + len <= data.len() * 8
let (n, len_set) = unsafe {
set_upto_64bits(
write_data,
data,
offset_write + acc,
offset_read + acc,
len - acc,
)
};
null_count += n;
acc += len_set;
}
null_count
}
/// Similar to `set_bits` but sets only upto 64 bits, actual number of bits set may vary.
/// Returns a pair of the number of `0` bits and the number of bits set
///
/// # Safety
/// The caller must ensure all arguments are within the valid range.
#[inline]
unsafe fn set_upto_64bits(
write_data: &mut [u8],
data: &[u8],
offset_write: usize,
offset_read: usize,
len: usize,
) -> (usize, usize) {
let read_byte = offset_read / 8;
let read_shift = offset_read % 8;
let write_byte = offset_write / 8;
let write_shift = offset_write % 8;
if len >= 64 {
let chunk = unsafe { (data.as_ptr().add(read_byte) as *const u64).read_unaligned() };
if read_shift == 0 {
if write_shift == 0 {
// no shifting necessary
let len = 64;
let null_count = chunk.count_zeros() as usize;
unsafe { write_u64_bytes(write_data, write_byte, chunk) };
(null_count, len)
} else {
// only write shifting necessary
let len = 64 - write_shift;
let chunk = chunk << write_shift;
let null_count = len - chunk.count_ones() as usize;
unsafe { or_write_u64_bytes(write_data, write_byte, chunk) };
(null_count, len)
}
} else if write_shift == 0 {
// only read shifting necessary
let len = 64 - 8; // 56 bits so the next set_upto_64bits call will see write_shift == 0
let chunk = (chunk >> read_shift) & 0x00FFFFFFFFFFFFFF; // 56 bits mask
let null_count = len - chunk.count_ones() as usize;
unsafe { write_u64_bytes(write_data, write_byte, chunk) };
(null_count, len)
} else {
let len = 64 - std::cmp::max(read_shift, write_shift);
let chunk = (chunk >> read_shift) << write_shift;
let null_count = len - chunk.count_ones() as usize;
unsafe { or_write_u64_bytes(write_data, write_byte, chunk) };
(null_count, len)
}
} else if len == 1 {
let byte_chunk = (unsafe { data.get_unchecked(read_byte) } >> read_shift) & 1;
unsafe { *write_data.get_unchecked_mut(write_byte) |= byte_chunk << write_shift };
((byte_chunk ^ 1) as usize, 1)
} else {
let len = std::cmp::min(len, 64 - std::cmp::max(read_shift, write_shift));
let bytes = ceil(len + read_shift, 8);
// SAFETY: the args of `read_bytes_to_u64` are valid as read_byte + bytes <= data.len()
let chunk = unsafe { read_bytes_to_u64(data, read_byte, bytes) };
let mask = u64::MAX >> (64 - len);
let chunk = (chunk >> read_shift) & mask; // masking to read `len` bits only
let chunk = chunk << write_shift; // shifting back to align with `write_data`
let null_count = len - chunk.count_ones() as usize;
let bytes = ceil(len + write_shift, 8);
for (i, c) in chunk.to_le_bytes().iter().enumerate().take(bytes) {
unsafe { *write_data.get_unchecked_mut(write_byte + i) |= c };
}
(null_count, len)
}
}
/// # Safety
/// The caller must ensure `data` has `offset..(offset + 8)` range, and `count <= 8`.
#[inline]
unsafe fn read_bytes_to_u64(data: &[u8], offset: usize, count: usize) -> u64 {
debug_assert!(count <= 8);
let mut tmp: u64 = 0;
let src = data.as_ptr().add(offset);
unsafe {
std::ptr::copy_nonoverlapping(src, &mut tmp as *mut _ as *mut u8, count);
}
tmp
}
/// # Safety
/// The caller must ensure `data` has `offset..(offset + 8)` range
#[inline]
unsafe fn write_u64_bytes(data: &mut [u8], offset: usize, chunk: u64) {
let ptr = data.as_mut_ptr().add(offset) as *mut u64;
ptr.write_unaligned(chunk);
}
/// Similar to `write_u64_bytes`, but this method ORs the offset addressed `data` and `chunk`
/// instead of overwriting
///
/// # Safety
/// The caller must ensure `data` has `offset..(offset + 8)` range
#[inline]
unsafe fn or_write_u64_bytes(data: &mut [u8], offset: usize, chunk: u64) {
let ptr = data.as_mut_ptr().add(offset);
let chunk = chunk | (*ptr) as u64;
(ptr as *mut u64).write_unaligned(chunk);
}
#[cfg(test)]
mod tests {
use super::*;
use crate::bit_util::{get_bit, set_bit, unset_bit};
use rand::prelude::StdRng;
use rand::{Fill, Rng, SeedableRng};
use std::fmt::Display;
#[test]
fn test_set_bits_aligned() {
SetBitsTest {
write_data: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
data: vec![
0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111,
0b10100101,
],
offset_write: 8,
offset_read: 0,
len: 64,
expected_data: vec![
0, 0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011,
0b11100111, 0b10100101, 0,
],
expected_null_count: 24,
}
.verify();
}
#[test]
fn test_set_bits_unaligned_destination_start() {
SetBitsTest {
write_data: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
data: vec![
0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111,
0b10100101,
],
offset_write: 3,
offset_read: 0,
len: 64,
expected_data: vec![
0b00111000, 0b00101111, 0b11001101, 0b11011100, 0b01011110, 0b00011111, 0b00111110,
0b00101111, 0b00000101, 0b00000000,
],
expected_null_count: 24,
}
.verify();
}
#[test]
fn test_set_bits_unaligned_destination_end() {
SetBitsTest {
write_data: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
data: vec![
0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111,
0b10100101,
],
offset_write: 8,
offset_read: 0,
len: 62,
expected_data: vec![
0, 0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011,
0b11100111, 0b00100101, 0,
],
expected_null_count: 23,
}
.verify();
}
#[test]
fn test_set_bits_unaligned() {
SetBitsTest {
write_data: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
data: vec![
0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111,
0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111, 0b10100101,
0b10011001, 0b11011011, 0b11101011, 0b11000011,
],
offset_write: 3,
offset_read: 5,
len: 95,
expected_data: vec![
0b01111000, 0b01101001, 0b11100110, 0b11110110, 0b11111010, 0b11110000, 0b01111001,
0b01101001, 0b11100110, 0b11110110, 0b11111010, 0b11110000, 0b00000001,
],
expected_null_count: 35,
}
.verify();
}
#[test]
fn set_bits_fuzz() {
let mut rng = StdRng::seed_from_u64(42);
let mut data = SetBitsTest::new();
for _ in 0..100 {
data.regen(&mut rng);
data.verify();
}
}
#[derive(Debug, Default)]
struct SetBitsTest {
/// target write data
write_data: Vec<u8>,
/// source data
data: Vec<u8>,
offset_write: usize,
offset_read: usize,
len: usize,
/// the expected contents of write_data after the test
expected_data: Vec<u8>,
/// the expected number of nulls copied at the end of the test
expected_null_count: usize,
}
/// prints a byte slice as a binary string like "01010101 10101010"
struct BinaryFormatter<'a>(&'a [u8]);
impl Display for BinaryFormatter<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
for byte in self.0 {
write!(f, "{:08b} ", byte)?;
}
write!(f, " ")?;
Ok(())
}
}
impl Display for SetBitsTest {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(f, "SetBitsTest {{")?;
writeln!(f, " write_data: {}", BinaryFormatter(&self.write_data))?;
writeln!(f, " data: {}", BinaryFormatter(&self.data))?;
writeln!(
f,
" expected_data: {}",
BinaryFormatter(&self.expected_data)
)?;
writeln!(f, " offset_write: {}", self.offset_write)?;
writeln!(f, " offset_read: {}", self.offset_read)?;
writeln!(f, " len: {}", self.len)?;
writeln!(f, " expected_null_count: {}", self.expected_null_count)?;
writeln!(f, "}}")
}
}
impl SetBitsTest {
/// create a new instance of FuzzData
fn new() -> Self {
Self::default()
}
/// Update this instance's fields with randomly selected values and expected data
fn regen(&mut self, rng: &mut StdRng) {
// (read) data
// ------------------+-----------------+-------
// .. offset_read .. | data | ...
// ------------------+-----------------+-------
// Write data
// -------------------+-----------------+-------
// .. offset_write .. | (data to write) | ...
// -------------------+-----------------+-------
// length of data to copy
let len = rng.gen_range(0..=200);
// randomly pick where we will write to
let offset_write_bits = rng.gen_range(0..=200);
let offset_write_bytes = if offset_write_bits % 8 == 0 {
offset_write_bits / 8
} else {
(offset_write_bits / 8) + 1
};
let extra_write_data_bytes = rng.gen_range(0..=5); // ensure 0 shows up often
// randomly decide where we will read from
let extra_read_data_bytes = rng.gen_range(0..=5); // make sure 0 shows up often
let offset_read_bits = rng.gen_range(0..=200);
let offset_read_bytes = if offset_read_bits % 8 != 0 {
(offset_read_bits / 8) + 1
} else {
offset_read_bits / 8
};
// create space for writing
self.write_data.clear();
self.write_data
.resize(offset_write_bytes + len + extra_write_data_bytes, 0);
// interestingly set_bits seems to assume the output is already zeroed
// the fuzz tests fail when this is uncommented
//self.write_data.try_fill(rng).unwrap();
self.offset_write = offset_write_bits;
// make source data
self.data
.resize(offset_read_bytes + len + extra_read_data_bytes, 0);
// fill source data with random bytes
self.data.try_fill(rng).unwrap();
self.offset_read = offset_read_bits;
self.len = len;
// generated expectated output (not efficient)
self.expected_data.resize(self.write_data.len(), 0);
self.expected_data.copy_from_slice(&self.write_data);
self.expected_null_count = 0;
for i in 0..self.len {
let bit = get_bit(&self.data, self.offset_read + i);
if bit {
set_bit(&mut self.expected_data, self.offset_write + i);
} else {
unset_bit(&mut self.expected_data, self.offset_write + i);
self.expected_null_count += 1;
}
}
}
/// call set_bits with the given parameters and compare with the expected output
fn verify(&self) {
// call set_bits and compare
let mut actual = self.write_data.to_vec();
let null_count = set_bits(
&mut actual,
&self.data,
self.offset_write,
self.offset_read,
self.len,
);
assert_eq!(actual, self.expected_data, "self: {}", self);
assert_eq!(null_count, self.expected_null_count, "self: {}", self);
}
}
#[test]
fn test_set_upto_64bits() {
// len >= 64
let write_data: &mut [u8] = &mut [0; 9];
let data: &[u8] = &[
0b00000001, 0b00000001, 0b00000001, 0b00000001, 0b00000001, 0b00000001, 0b00000001,
0b00000001, 0b00000001,
];
let offset_write = 1;
let offset_read = 0;
let len = 65;
let (n, len_set) =
unsafe { set_upto_64bits(write_data, data, offset_write, offset_read, len) };
assert_eq!(n, 55);
assert_eq!(len_set, 63);
assert_eq!(
write_data,
&[
0b00000010, 0b00000010, 0b00000010, 0b00000010, 0b00000010, 0b00000010, 0b00000010,
0b00000010, 0b00000000
]
);
// len = 1
let write_data: &mut [u8] = &mut [0b00000000];
let data: &[u8] = &[0b00000001];
let offset_write = 1;
let offset_read = 0;
let len = 1;
let (n, len_set) =
unsafe { set_upto_64bits(write_data, data, offset_write, offset_read, len) };
assert_eq!(n, 0);
assert_eq!(len_set, 1);
assert_eq!(write_data, &[0b00000010]);
}
}