rayon/iter/find_first_last/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
use super::plumbing::*;
use super::*;
use std::cell::Cell;
use std::sync::atomic::{AtomicUsize, Ordering};
#[cfg(test)]
mod test;
// The key optimization for find_first is that a consumer can stop its search if
// some consumer to its left already found a match (and similarly for consumers
// to the right for find_last). To make this work, all consumers need some
// notion of their position in the data relative to other consumers, including
// unindexed consumers that have no built-in notion of position.
//
// To solve this, we assign each consumer a lower and upper bound for an
// imaginary "range" of data that it consumes. The initial consumer starts with
// the range 0..usize::max_value(). The split divides this range in half so that
// one resulting consumer has the range 0..(usize::max_value() / 2), and the
// other has (usize::max_value() / 2)..usize::max_value(). Every subsequent
// split divides the range in half again until it cannot be split anymore
// (i.e. its length is 1), in which case the split returns two consumers with
// the same range. In that case both consumers will continue to consume all
// their data regardless of whether a better match is found, but the reducer
// will still return the correct answer.
#[derive(Copy, Clone)]
enum MatchPosition {
Leftmost,
Rightmost,
}
/// Returns true if pos1 is a better match than pos2 according to MatchPosition
#[inline]
fn better_position(pos1: usize, pos2: usize, mp: MatchPosition) -> bool {
match mp {
MatchPosition::Leftmost => pos1 < pos2,
MatchPosition::Rightmost => pos1 > pos2,
}
}
pub(super) fn find_first<I, P>(pi: I, find_op: P) -> Option<I::Item>
where
I: ParallelIterator,
P: Fn(&I::Item) -> bool + Sync,
{
let best_found = AtomicUsize::new(usize::max_value());
let consumer = FindConsumer::new(&find_op, MatchPosition::Leftmost, &best_found);
pi.drive_unindexed(consumer)
}
pub(super) fn find_last<I, P>(pi: I, find_op: P) -> Option<I::Item>
where
I: ParallelIterator,
P: Fn(&I::Item) -> bool + Sync,
{
let best_found = AtomicUsize::new(0);
let consumer = FindConsumer::new(&find_op, MatchPosition::Rightmost, &best_found);
pi.drive_unindexed(consumer)
}
struct FindConsumer<'p, P> {
find_op: &'p P,
lower_bound: Cell<usize>,
upper_bound: usize,
match_position: MatchPosition,
best_found: &'p AtomicUsize,
}
impl<'p, P> FindConsumer<'p, P> {
fn new(find_op: &'p P, match_position: MatchPosition, best_found: &'p AtomicUsize) -> Self {
FindConsumer {
find_op,
lower_bound: Cell::new(0),
upper_bound: usize::max_value(),
match_position,
best_found,
}
}
fn current_index(&self) -> usize {
match self.match_position {
MatchPosition::Leftmost => self.lower_bound.get(),
MatchPosition::Rightmost => self.upper_bound,
}
}
}
impl<'p, T, P> Consumer<T> for FindConsumer<'p, P>
where
T: Send,
P: Fn(&T) -> bool + Sync,
{
type Folder = FindFolder<'p, T, P>;
type Reducer = FindReducer;
type Result = Option<T>;
fn split_at(self, _index: usize) -> (Self, Self, Self::Reducer) {
let dir = self.match_position;
(
self.split_off_left(),
self,
FindReducer {
match_position: dir,
},
)
}
fn into_folder(self) -> Self::Folder {
FindFolder {
find_op: self.find_op,
boundary: self.current_index(),
match_position: self.match_position,
best_found: self.best_found,
item: None,
}
}
fn full(&self) -> bool {
// can stop consuming if the best found index so far is *strictly*
// better than anything this consumer will find
better_position(
self.best_found.load(Ordering::Relaxed),
self.current_index(),
self.match_position,
)
}
}
impl<'p, T, P> UnindexedConsumer<T> for FindConsumer<'p, P>
where
T: Send,
P: Fn(&T) -> bool + Sync,
{
fn split_off_left(&self) -> Self {
// Upper bound for one consumer will be lower bound for the other. This
// overlap is okay, because only one of the bounds will be used for
// comparing against best_found; the other is kept only to be able to
// divide the range in half.
//
// When the resolution of usize has been exhausted (i.e. when
// upper_bound = lower_bound), both results of this split will have the
// same range. When that happens, we lose the ability to tell one
// consumer to stop working when the other finds a better match, but the
// reducer ensures that the best answer is still returned (see the test
// above).
let old_lower_bound = self.lower_bound.get();
let median = old_lower_bound + ((self.upper_bound - old_lower_bound) / 2);
self.lower_bound.set(median);
FindConsumer {
find_op: self.find_op,
lower_bound: Cell::new(old_lower_bound),
upper_bound: median,
match_position: self.match_position,
best_found: self.best_found,
}
}
fn to_reducer(&self) -> Self::Reducer {
FindReducer {
match_position: self.match_position,
}
}
}
struct FindFolder<'p, T, P> {
find_op: &'p P,
boundary: usize,
match_position: MatchPosition,
best_found: &'p AtomicUsize,
item: Option<T>,
}
impl<'p, P: 'p + Fn(&T) -> bool, T> Folder<T> for FindFolder<'p, T, P> {
type Result = Option<T>;
fn consume(mut self, item: T) -> Self {
let found_best_in_range = match self.match_position {
MatchPosition::Leftmost => self.item.is_some(),
MatchPosition::Rightmost => false,
};
if !found_best_in_range && (self.find_op)(&item) {
// Continuously try to set best_found until we succeed or we
// discover a better match was already found.
let mut current = self.best_found.load(Ordering::Relaxed);
loop {
if better_position(current, self.boundary, self.match_position) {
break;
}
match self.best_found.compare_exchange_weak(
current,
self.boundary,
Ordering::Relaxed,
Ordering::Relaxed,
) {
Ok(_) => {
self.item = Some(item);
break;
}
Err(v) => current = v,
}
}
}
self
}
fn complete(self) -> Self::Result {
self.item
}
fn full(&self) -> bool {
let found_best_in_range = match self.match_position {
MatchPosition::Leftmost => self.item.is_some(),
MatchPosition::Rightmost => false,
};
found_best_in_range
|| better_position(
self.best_found.load(Ordering::Relaxed),
self.boundary,
self.match_position,
)
}
}
struct FindReducer {
match_position: MatchPosition,
}
impl<T> Reducer<Option<T>> for FindReducer {
fn reduce(self, left: Option<T>, right: Option<T>) -> Option<T> {
match self.match_position {
MatchPosition::Leftmost => left.or(right),
MatchPosition::Rightmost => right.or(left),
}
}
}