guppy/petgraph_support/scc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
// Copyright (c) The cargo-guppy Contributors
// SPDX-License-Identifier: MIT OR Apache-2.0
use ahash::AHashMap;
use fixedbitset::FixedBitSet;
use nested::Nested;
use petgraph::{
algo::kosaraju_scc,
graph::IndexType,
prelude::*,
visit::{IntoNeighborsDirected, IntoNodeIdentifiers, VisitMap, Visitable},
};
use std::slice;
#[derive(Clone, Debug)]
pub(crate) struct Sccs<Ix: IndexType> {
sccs: Nested<Vec<NodeIndex<Ix>>>,
multi_map: AHashMap<NodeIndex<Ix>, usize>,
}
impl<Ix: IndexType> Sccs<Ix> {
/// Creates a new instance from the provided graph and the given sorter.
pub fn new<G>(graph: G, mut scc_sorter: impl FnMut(&mut Vec<NodeIndex<Ix>>)) -> Self
where
G: IntoNeighborsDirected<NodeId = NodeIndex<Ix>> + Visitable + IntoNodeIdentifiers,
<G as Visitable>::Map: VisitMap<NodeIndex<Ix>>,
{
// Use kosaraju_scc since it is iterative (tarjan_scc is recursive) and package graphs
// have unbounded depth.
let sccs = kosaraju_scc(graph);
let sccs: Nested<Vec<_>> = sccs
.into_iter()
.map(|mut scc| {
if scc.len() > 1 {
scc_sorter(&mut scc);
}
scc
})
// kosaraju_scc returns its sccs in reverse topological order. Reverse it again for
// forward topological order.
.rev()
.collect();
let mut multi_map = AHashMap::new();
for (idx, scc) in sccs.iter().enumerate() {
if scc.len() > 1 {
multi_map.extend(scc.iter().map(|ix| (*ix, idx)));
}
}
Self { sccs, multi_map }
}
/// Returns true if `a` and `b` are in the same scc.
pub fn is_same_scc(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool {
if a == b {
return true;
}
match (self.multi_map.get(&a), self.multi_map.get(&b)) {
(Some(a_scc), Some(b_scc)) => a_scc == b_scc,
_ => false,
}
}
/// Returns all the SCCs with more than one element.
pub fn multi_sccs(&self) -> impl Iterator<Item = &[NodeIndex<Ix>]> + DoubleEndedIterator {
self.sccs.iter().filter(|scc| scc.len() > 1)
}
/// Returns all the nodes of this graph that have no incoming edges to them, and all the nodes
/// in an SCC into which there are no incoming edges.
pub fn externals<'a, G>(&'a self, graph: G) -> impl Iterator<Item = NodeIndex<Ix>> + 'a
where
G: 'a + IntoNodeIdentifiers + IntoNeighborsDirected<NodeId = NodeIndex<Ix>>,
Ix: IndexType,
{
// Consider each SCC as one logical node.
let mut external_sccs = FixedBitSet::with_capacity(self.sccs.len());
let mut internal_sccs = FixedBitSet::with_capacity(self.sccs.len());
graph
.node_identifiers()
.filter(move |ix| match self.multi_map.get(ix) {
Some(&scc_idx) => {
// Consider one node identifier for each scc -- whichever one comes first.
if external_sccs.contains(scc_idx) {
return true;
}
if internal_sccs.contains(scc_idx) {
return false;
}
let scc = &self.sccs[scc_idx];
let is_external = scc
.iter()
.flat_map(|ix| {
// Look at all incoming nodes from every SCC member.
graph.neighbors_directed(*ix, Incoming)
})
.all(|neighbor_ix| {
// * Accept any nodes are in the same SCC.
// * Any other results imply that this isn't an external scc.
match self.multi_map.get(&neighbor_ix) {
Some(neighbor_scc_idx) => neighbor_scc_idx == &scc_idx,
None => false,
}
});
if is_external {
external_sccs.insert(scc_idx);
} else {
internal_sccs.insert(scc_idx);
}
is_external
}
None => {
// Not part of an SCC -- just look at whether there are any incoming nodes
// at all.
graph.neighbors_directed(*ix, Incoming).next().is_none()
}
})
}
/// Iterate over all nodes in the direction specified.
pub fn node_iter(&self, direction: Direction) -> NodeIter<Ix> {
NodeIter {
node_ixs: self.sccs.data().iter(),
direction,
}
}
}
/// An iterator over the nodes of strongly connected components.
#[derive(Clone, Debug)]
pub(crate) struct NodeIter<'a, Ix> {
node_ixs: slice::Iter<'a, NodeIndex<Ix>>,
direction: Direction,
}
impl<'a, Ix> NodeIter<'a, Ix> {
/// Returns the direction this iteration is happening in.
#[allow(dead_code)]
pub fn direction(&self) -> Direction {
self.direction
}
}
impl<'a, Ix: IndexType> Iterator for NodeIter<'a, Ix> {
type Item = NodeIndex<Ix>;
fn next(&mut self) -> Option<NodeIndex<Ix>> {
// Note that outgoing implies iterating over the sccs in forward order, while incoming means
// sccs in reverse order.
match self.direction {
Direction::Outgoing => self.node_ixs.next().copied(),
Direction::Incoming => self.node_ixs.next_back().copied(),
}
}
}