1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
//! Parking and unparking timely fibers.
use std::rc::Rc;
use std::cell::RefCell;
use std::thread::Thread;
use std::collections::BinaryHeap;
use std::time::{Duration, Instant};
use std::cmp::Reverse;
use crossbeam_channel::{Sender, Receiver};
/// Methods required to act as a timely scheduler.
///
/// The core methods are the activation of "paths", sequences of integers, and
/// the enumeration of active paths by prefix. A scheduler may delay the report
/// of a path indefinitely, but it should report at least one extension for the
/// empty path `&[]` or risk parking the worker thread without a certain unpark.
///
/// There is no known harm to "spurious wake-ups" where a not-active path is
/// returned through `extensions()`.
pub trait Scheduler {
/// Mark a path as immediately scheduleable.
fn activate(&mut self, path: &[usize]);
/// Populates `dest` with next identifiers on active extensions of `path`.
///
/// This method is where a scheduler is allowed to exercise some discretion,
/// in that it does not need to present *all* extensions, but it can instead
/// present only those that the runtime should schedule.
fn extensions(&mut self, path: &[usize], dest: &mut Vec<usize>);
}
// Trait objects can be schedulers too.
impl Scheduler for Box<dyn Scheduler> {
fn activate(&mut self, path: &[usize]) { (**self).activate(path) }
fn extensions(&mut self, path: &[usize], dest: &mut Vec<usize>) { (**self).extensions(path, dest) }
}
/// Allocation-free activation tracker.
#[derive(Debug)]
pub struct Activations {
clean: usize,
/// `(offset, length)`
bounds: Vec<(usize, usize)>,
slices: Vec<usize>,
buffer: Vec<usize>,
// Inter-thread activations.
tx: Sender<Vec<usize>>,
rx: Receiver<Vec<usize>>,
// Delayed activations.
timer: Instant,
queue: BinaryHeap<Reverse<(Duration, Vec<usize>)>>,
}
impl Activations {
/// Creates a new activation tracker.
pub fn new(timer: Instant) -> Self {
let (tx, rx) = crossbeam_channel::unbounded();
Self {
clean: 0,
bounds: Vec::new(),
slices: Vec::new(),
buffer: Vec::new(),
tx,
rx,
timer,
queue: BinaryHeap::new(),
}
}
/// Activates the task addressed by `path`.
pub fn activate(&mut self, path: &[usize]) {
self.bounds.push((self.slices.len(), path.len()));
self.slices.extend(path);
}
/// Schedules a future activation for the task addressed by `path`.
pub fn activate_after(&mut self, path: &[usize], delay: Duration) {
// TODO: We could have a minimum delay and immediately schedule anything less than that delay.
if delay == Duration::new(0, 0) {
self.activate(path);
}
else {
let moment = self.timer.elapsed() + delay;
self.queue.push(Reverse((moment, path.to_vec())));
}
}
/// Discards the current active set and presents the next active set.
pub fn advance(&mut self) {
// Drain inter-thread activations.
while let Ok(path) = self.rx.try_recv() {
self.activate(&path[..])
}
// Drain timer-based activations.
let now = self.timer.elapsed();
while self.queue.peek().map(|Reverse((t,_))| t <= &now) == Some(true) {
let Reverse((_time, path)) = self.queue.pop().unwrap();
self.activate(&path[..]);
}
self.bounds.drain(.. self.clean);
{ // Scoped, to allow borrow to drop.
let slices = &self.slices[..];
self.bounds.sort_by_key(|x| &slices[x.0 .. (x.0 + x.1)]);
self.bounds.dedup_by_key(|x| &slices[x.0 .. (x.0 + x.1)]);
}
// Compact the slices.
self.buffer.clear();
for (offset, length) in self.bounds.iter_mut() {
self.buffer.extend(&self.slices[*offset .. (*offset + *length)]);
*offset = self.buffer.len() - *length;
}
::std::mem::swap(&mut self.buffer, &mut self.slices);
self.clean = self.bounds.len();
}
/// Maps a function across activated paths.
pub fn map_active(&self, logic: impl Fn(&[usize])) {
for (offset, length) in self.bounds.iter() {
logic(&self.slices[*offset .. (*offset + *length)]);
}
}
/// Sets as active any symbols that follow `path`.
pub fn for_extensions(&self, path: &[usize], mut action: impl FnMut(usize)) {
let position =
self.bounds[..self.clean]
.binary_search_by_key(&path, |x| &self.slices[x.0 .. (x.0 + x.1)]);
let position = match position {
Ok(x) => x,
Err(x) => x,
};
let mut previous = None;
self.bounds
.iter()
.cloned()
.skip(position)
.map(|(offset, length)| &self.slices[offset .. (offset + length)])
.take_while(|x| x.starts_with(path))
.for_each(|x| {
// push non-empty, non-duplicate extensions.
if let Some(extension) = x.get(path.len()) {
if previous != Some(*extension) {
action(*extension);
previous = Some(*extension);
}
}
});
}
/// Constructs a thread-safe `SyncActivations` handle to this activator.
pub fn sync(&self) -> SyncActivations {
SyncActivations {
tx: self.tx.clone(),
thread: std::thread::current(),
}
}
/// Time until next scheduled event.
///
/// This method should be used before putting a worker thread to sleep, as it
/// indicates the amount of time before the thread should be unparked for the
/// next scheduled activation.
pub fn empty_for(&self) -> Option<Duration> {
if !self.bounds.is_empty() {
Some(Duration::new(0,0))
}
else {
self.queue.peek().map(|Reverse((t,_a))| {
let elapsed = self.timer.elapsed();
if t < &elapsed { Duration::new(0,0) }
else { *t - elapsed }
})
}
}
}
/// A thread-safe handle to an `Activations`.
#[derive(Clone, Debug)]
pub struct SyncActivations {
tx: Sender<Vec<usize>>,
thread: Thread,
}
impl SyncActivations {
/// Unparks the task addressed by `path` and unparks the associated worker
/// thread.
pub fn activate(&self, path: Vec<usize>) -> Result<(), SyncActivationError> {
self.activate_batch(std::iter::once(path))
}
/// Unparks the tasks addressed by `paths` and unparks the associated worker
/// thread.
///
/// This method can be more efficient than calling `activate` repeatedly, as
/// it only unparks the worker thread after sending all of the activations.
pub fn activate_batch<I>(&self, paths: I) -> Result<(), SyncActivationError>
where
I: IntoIterator<Item = Vec<usize>>
{
for path in paths.into_iter() {
self.tx.send(path).map_err(|_| SyncActivationError)?;
}
self.thread.unpark();
Ok(())
}
}
/// A capability to activate a specific path.
#[derive(Clone, Debug)]
pub struct Activator {
path: Rc<[usize]>,
queue: Rc<RefCell<Activations>>,
}
impl Activator {
/// Creates a new activation handle
pub fn new(path: Rc<[usize]>, queue: Rc<RefCell<Activations>>) -> Self {
Self {
path,
queue,
}
}
/// Activates the associated path.
pub fn activate(&self) {
self.queue
.borrow_mut()
.activate(&self.path[..]);
}
/// Activates the associated path after a specified duration.
pub fn activate_after(&self, delay: Duration) {
if delay == Duration::new(0, 0) {
self.activate();
}
else {
self.queue
.borrow_mut()
.activate_after(&self.path[..], delay);
}
}
}
/// A thread-safe version of `Activator`.
#[derive(Clone, Debug)]
pub struct SyncActivator {
path: Vec<usize>,
queue: SyncActivations,
}
impl SyncActivator {
/// Creates a new thread-safe activation handle.
pub fn new(path: Vec<usize>, queue: SyncActivations) -> Self {
Self {
path,
queue,
}
}
/// Activates the associated path and unparks the associated worker thread.
pub fn activate(&self) -> Result<(), SyncActivationError> {
self.queue.activate(self.path.clone())
}
}
/// The error returned when activation fails across thread boundaries because
/// the receiving end has hung up.
#[derive(Clone, Copy, Debug)]
pub struct SyncActivationError;
impl std::fmt::Display for SyncActivationError {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.write_str("sync activation error in timely")
}
}
impl std::error::Error for SyncActivationError {}
/// A wrapper that unparks on drop.
#[derive(Clone, Debug)]
pub struct ActivateOnDrop<T> {
wrapped: T,
address: Rc<[usize]>,
activator: Rc<RefCell<Activations>>,
}
use std::ops::{Deref, DerefMut};
impl<T> ActivateOnDrop<T> {
/// Wraps an element so that it is unparked on drop.
pub fn new(wrapped: T, address: Rc<[usize]>, activator: Rc<RefCell<Activations>>) -> Self {
Self { wrapped, address, activator }
}
}
impl<T> Deref for ActivateOnDrop<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.wrapped
}
}
impl<T> DerefMut for ActivateOnDrop<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.wrapped
}
}
impl<T> Drop for ActivateOnDrop<T> {
fn drop(&mut self) {
self.activator.borrow_mut().activate(&self.address[..]);
}
}