openssl/envelope.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
//! Envelope encryption.
//!
//! # Example
//!
//! ```rust
//! use openssl::rsa::Rsa;
//! use openssl::envelope::Seal;
//! use openssl::pkey::PKey;
//! use openssl::symm::Cipher;
//!
//! let rsa = Rsa::generate(2048).unwrap();
//! let key = PKey::from_rsa(rsa).unwrap();
//!
//! let cipher = Cipher::aes_256_cbc();
//! let mut seal = Seal::new(cipher, &[key]).unwrap();
//!
//! let secret = b"My secret message";
//! let mut encrypted = vec![0; secret.len() + cipher.block_size()];
//!
//! let mut enc_len = seal.update(secret, &mut encrypted).unwrap();
//! enc_len += seal.finalize(&mut encrypted[enc_len..]).unwrap();
//! encrypted.truncate(enc_len);
//! ```
use crate::cipher::CipherRef;
use crate::cipher_ctx::CipherCtx;
use crate::error::ErrorStack;
use crate::pkey::{HasPrivate, HasPublic, PKey, PKeyRef};
use crate::symm::Cipher;
use foreign_types::ForeignTypeRef;
/// Represents an EVP_Seal context.
pub struct Seal {
ctx: CipherCtx,
iv: Option<Vec<u8>>,
enc_keys: Vec<Vec<u8>>,
}
impl Seal {
/// Creates a new `Seal`.
pub fn new<T>(cipher: Cipher, pub_keys: &[PKey<T>]) -> Result<Seal, ErrorStack>
where
T: HasPublic,
{
let mut iv = cipher.iv_len().map(|len| vec![0; len]);
let mut enc_keys = vec![vec![]; pub_keys.len()];
let mut ctx = CipherCtx::new()?;
ctx.seal_init(
Some(unsafe { CipherRef::from_ptr(cipher.as_ptr() as *mut _) }),
pub_keys,
&mut enc_keys,
iv.as_deref_mut(),
)?;
Ok(Seal { ctx, iv, enc_keys })
}
/// Returns the initialization vector, if the cipher uses one.
#[allow(clippy::option_as_ref_deref)]
pub fn iv(&self) -> Option<&[u8]> {
self.iv.as_ref().map(|v| &**v)
}
/// Returns the encrypted keys.
pub fn encrypted_keys(&self) -> &[Vec<u8>] {
&self.enc_keys
}
/// Feeds data from `input` through the cipher, writing encrypted bytes into `output`.
///
/// The number of bytes written to `output` is returned. Note that this may
/// not be equal to the length of `input`.
///
/// # Panics
///
/// Panics if `output.len() < input.len() + block_size` where `block_size` is
/// the block size of the cipher (see `Cipher::block_size`), or if
/// `output.len() > c_int::MAX`.
pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result<usize, ErrorStack> {
self.ctx.cipher_update(input, Some(output))
}
/// Finishes the encryption process, writing any remaining data to `output`.
///
/// The number of bytes written to `output` is returned.
///
/// `update` should not be called after this method.
///
/// # Panics
///
/// Panics if `output` is less than the cipher's block size.
pub fn finalize(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
self.ctx.cipher_final(output)
}
}
/// Represents an EVP_Open context.
pub struct Open {
ctx: CipherCtx,
}
impl Open {
/// Creates a new `Open`.
pub fn new<T>(
cipher: Cipher,
priv_key: &PKeyRef<T>,
iv: Option<&[u8]>,
encrypted_key: &[u8],
) -> Result<Open, ErrorStack>
where
T: HasPrivate,
{
let mut ctx = CipherCtx::new()?;
ctx.open_init(
Some(unsafe { CipherRef::from_ptr(cipher.as_ptr() as *mut _) }),
encrypted_key,
iv,
Some(priv_key),
)?;
Ok(Open { ctx })
}
/// Feeds data from `input` through the cipher, writing decrypted bytes into `output`.
///
/// The number of bytes written to `output` is returned. Note that this may
/// not be equal to the length of `input`.
///
/// # Panics
///
/// Panics if `output.len() < input.len() + block_size` where
/// `block_size` is the block size of the cipher (see `Cipher::block_size`),
/// or if `output.len() > c_int::MAX`.
pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result<usize, ErrorStack> {
self.ctx.cipher_update(input, Some(output))
}
/// Finishes the decryption process, writing any remaining data to `output`.
///
/// The number of bytes written to `output` is returned.
///
/// `update` should not be called after this method.
///
/// # Panics
///
/// Panics if `output` is less than the cipher's block size.
pub fn finalize(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
self.ctx.cipher_final(output)
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::pkey::PKey;
use crate::symm::Cipher;
#[test]
fn public_encrypt_private_decrypt() {
let private_pem = include_bytes!("../test/rsa.pem");
let public_pem = include_bytes!("../test/rsa.pem.pub");
let private_key = PKey::private_key_from_pem(private_pem).unwrap();
let public_key = PKey::public_key_from_pem(public_pem).unwrap();
let cipher = Cipher::aes_256_cbc();
let secret = b"My secret message";
let mut seal = Seal::new(cipher, &[public_key]).unwrap();
let mut encrypted = vec![0; secret.len() + cipher.block_size()];
let mut enc_len = seal.update(secret, &mut encrypted).unwrap();
enc_len += seal.finalize(&mut encrypted[enc_len..]).unwrap();
let iv = seal.iv();
let encrypted_key = &seal.encrypted_keys()[0];
let mut open = Open::new(cipher, &private_key, iv, encrypted_key).unwrap();
let mut decrypted = vec![0; enc_len + cipher.block_size()];
let mut dec_len = open.update(&encrypted[..enc_len], &mut decrypted).unwrap();
dec_len += open.finalize(&mut decrypted[dec_len..]).unwrap();
assert_eq!(&secret[..], &decrypted[..dec_len]);
}
}