mz_txn_wal/txn_write.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Interfaces for writing txn shards as well as data shards.
use std::collections::BTreeMap;
use std::fmt::Debug;
use std::sync::Arc;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::Hashable;
use futures::stream::FuturesUnordered;
use futures::StreamExt;
use mz_ore::cast::CastFrom;
use mz_ore::instrument;
use mz_persist_client::batch::Batch;
use mz_persist_client::ShardId;
use mz_persist_types::txn::{TxnsCodec, TxnsEntry};
use mz_persist_types::{Codec, Codec64, Opaque, StepForward};
use prost::Message;
use timely::order::TotalOrder;
use timely::progress::{Antichain, Timestamp};
use tracing::debug;
use crate::proto::ProtoIdBatch;
use crate::txns::{Tidy, TxnsHandle};
/// Pending writes to a shard for an in-progress transaction.
#[derive(Debug)]
pub(crate) struct TxnWrite<K, V, T, D> {
pub(crate) batches: Vec<Batch<K, V, T, D>>,
pub(crate) writes: Vec<(K, V, D)>,
}
impl<K, V, T, D> TxnWrite<K, V, T, D> {
/// Merges the staged writes in `other` into this.
pub fn merge(&mut self, other: Self) {
self.batches.extend(other.batches);
self.writes.extend(other.writes);
}
}
impl<K, V, T, D> Default for TxnWrite<K, V, T, D> {
fn default() -> Self {
Self {
batches: Vec::default(),
writes: Vec::default(),
}
}
}
/// An in-progress transaction.
#[derive(Debug)]
pub struct Txn<K, V, T, D> {
pub(crate) writes: BTreeMap<ShardId, TxnWrite<K, V, T, D>>,
tidy: Tidy,
}
impl<K, V, T, D> Txn<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
D: Debug + Semigroup + Ord + Codec64 + Send + Sync,
{
pub(crate) fn new() -> Self {
Txn {
writes: BTreeMap::default(),
tidy: Tidy::default(),
}
}
/// Stage a write to the in-progress txn.
///
/// The timestamp will be assigned at commit time.
///
/// TODO: Allow this to spill to s3 (for bounded memory) once persist can
/// make the ts rewrite op efficient.
#[allow(clippy::unused_async)]
pub async fn write(&mut self, data_id: &ShardId, key: K, val: V, diff: D) {
self.writes
.entry(*data_id)
.or_default()
.writes
.push((key, val, diff))
}
/// Commit this transaction at `commit_ts`.
///
/// This either atomically commits all staged writes or, if that's no longer
/// possible at the requested timestamp, returns an error with the least
/// commit-able timestamp.
///
/// On success a token is returned representing apply work expected to be
/// promptly performed by the caller. At this point, the txn is durable and
/// it's safe to bubble up success, but reads at the commit timestamp will
/// block until this apply work finishes. In the event of a crash, neither
/// correctness nor liveness require this followup be done.
///
/// Panics if any involved data shards were not registered before commit ts.
#[instrument(level = "debug", fields(ts = ?commit_ts))]
pub async fn commit_at<O, C>(
&mut self,
handle: &mut TxnsHandle<K, V, T, D, O, C>,
commit_ts: T,
) -> Result<TxnApply<T>, T>
where
O: Opaque + Debug + Codec64,
C: TxnsCodec,
{
let op = &Arc::clone(&handle.metrics).commit;
op.run(async {
let mut txns_upper = handle
.txns_write
.shared_upper()
.into_option()
.expect("txns shard should not be closed");
loop {
txns_upper = handle.txns_cache.update_ge(&txns_upper).await.clone();
// txns_upper is the (inclusive) minimum timestamp at which we
// could possibly write. If our requested commit timestamp is before
// that, then it's no longer possible to write and the caller needs
// to decide what to do.
if commit_ts < txns_upper {
debug!(
"commit_at {:?} mismatch current={:?}",
commit_ts, txns_upper
);
return Err(txns_upper);
}
// Validate that the involved data shards are all registered.
for (data_id, _) in self.writes.iter() {
assert!(
handle
.txns_cache
.registered_at_progress(data_id, &txns_upper),
"{} should be registered to commit at {:?}",
data_id,
txns_upper,
);
}
debug!(
"commit_at {:?}: [{:?}, {:?}) begin",
commit_ts,
txns_upper,
commit_ts.step_forward(),
);
let txn_batches_updates = FuturesUnordered::new();
while let Some((data_id, updates)) = self.writes.pop_first() {
let data_write =
handle
.datas
.take_write_for_commit(&data_id)
.unwrap_or_else(|| {
panic!(
"data shard {} must be registered with this Txn handle to commit",
data_id
)
});
let commit_ts = commit_ts.clone();
txn_batches_updates.push(async move {
let mut batches = updates
.batches
.into_iter()
.map(|mut batch| {
batch
.rewrite_ts(
&Antichain::from_elem(commit_ts.clone()),
Antichain::from_elem(commit_ts.step_forward()),
)
.expect("invalid usage");
batch.into_transmittable_batch()
})
.collect::<Vec<_>>();
if !updates.writes.is_empty() {
let mut batch = data_write.builder(Antichain::from_elem(T::minimum()));
for (k, v, d) in updates.writes.iter() {
batch.add(k, v, &commit_ts, d).await.expect("valid usage");
}
let batch = batch
.finish(Antichain::from_elem(commit_ts.step_forward()))
.await
.expect("valid usage");
let batch = batch.into_transmittable_batch();
batches.push(batch);
}
let batch_updates = batches
.into_iter()
.map(|batch| {
// The code to handle retracting applied batches assumes
// that the encoded representation of each is unique (it
// works by retracting and cancelling out the raw
// bytes). It's possible to make that code handle any
// diff value but the complexity isn't worth it.
//
// So ensure that every committed batch has a unique
// serialization. Technically, I'm pretty sure that
// they're naturally unique but the justification is
// long, subtle, and brittle. Instead, just slap a
// random uuid on it.
let batch_raw = ProtoIdBatch::new(batch.clone()).encode_to_vec();
debug!(
"wrote {:.9} batch {}",
data_id.to_string(),
batch_raw.hashed(),
);
let update = C::encode(TxnsEntry::Append(
data_id,
T::encode(&commit_ts),
batch_raw,
));
(batch, update)
})
.collect::<Vec<_>>();
(data_write, batch_updates)
})
}
let txn_batches_updates = txn_batches_updates.collect::<Vec<_>>().await;
let mut txns_updates = txn_batches_updates
.iter()
.flat_map(|(_, batch_updates)| batch_updates.iter().map(|(_, updates)| updates))
.map(|(key, val)| ((key, val), &commit_ts, 1))
.collect::<Vec<_>>();
let apply_is_empty = txns_updates.is_empty();
// Tidy guarantees that anything in retractions has been applied,
// but races mean someone else may have written the retraction. If
// the following CaA goes through, then the `update_ge(txns_upper)`
// above means that anything the cache thinks is still unapplied
// but we know is applied indeed still needs to be retracted.
let filtered_retractions = handle
.read_cache()
.filter_retractions(&txns_upper, self.tidy.retractions.iter())
.map(|(batch_raw, (ts, data_id))| {
C::encode(TxnsEntry::Append(*data_id, *ts, batch_raw.clone()))
})
.collect::<Vec<_>>();
txns_updates.extend(
filtered_retractions
.iter()
.map(|(key, val)| ((key, val), &commit_ts, -1)),
);
let res = crate::small_caa(
|| "txns commit",
&mut handle.txns_write,
&txns_updates,
txns_upper.clone(),
commit_ts.step_forward(),
)
.await;
match res {
Ok(()) => {
debug!(
"commit_at {:?}: [{:?}, {:?}) success",
commit_ts,
txns_upper,
commit_ts.step_forward(),
);
// The batch we wrote at commit_ts did commit. Mark it as
// such to avoid a WARN in the logs.
for (data_write, batch_updates) in txn_batches_updates {
for (batch, _) in batch_updates {
let batch = data_write
.batch_from_transmittable_batch(batch)
.into_hollow_batch();
handle.metrics.batches.commit_count.inc();
handle
.metrics
.batches
.commit_bytes
.inc_by(u64::cast_from(batch.encoded_size_bytes()));
}
handle.datas.put_write_for_commit(data_write);
}
return Ok(TxnApply {
is_empty: apply_is_empty,
commit_ts,
});
}
Err(new_txns_upper) => {
handle.metrics.commit.retry_count.inc();
assert!(txns_upper < new_txns_upper);
txns_upper = new_txns_upper;
for (data_write, batch_updates) in txn_batches_updates {
let batches = batch_updates
.into_iter()
.map(|(batch, _)| {
data_write.batch_from_transmittable_batch(batch.clone())
})
.collect();
let txn_write = TxnWrite {
writes: Vec::new(),
batches,
};
self.writes.insert(data_write.shard_id(), txn_write);
handle.datas.put_write_for_commit(data_write);
}
let _ = handle.txns_cache.update_ge(&txns_upper).await;
continue;
}
}
}
})
.await
}
/// Merges the staged writes in the other txn into this one.
pub fn merge(&mut self, other: Self) {
for (data_id, writes) in other.writes {
self.writes.entry(data_id).or_default().merge(writes);
}
self.tidy.merge(other.tidy);
}
/// Merges the work represented by given tidy into this txn.
///
/// If this txn commits, the tidy work will be written at the commit ts.
pub fn tidy(&mut self, tidy: Tidy) {
self.tidy.merge(tidy);
}
/// Extracts any tidy work that has been merged into this txn with
/// [Self::tidy].
pub fn take_tidy(&mut self) -> Tidy {
std::mem::take(&mut self.tidy)
}
}
/// A token representing the asynchronous "apply" work expected to be promptly
/// performed by a txn committer.
#[derive(Debug)]
#[cfg_attr(any(test, debug_assertions), derive(PartialEq))]
pub struct TxnApply<T> {
is_empty: bool,
pub(crate) commit_ts: T,
}
impl<T> TxnApply<T> {
/// Applies the txn, unblocking reads at timestamp it was committed at.
pub async fn apply<K, V, D, O, C>(self, handle: &mut TxnsHandle<K, V, T, D, O, C>) -> Tidy
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
D: Debug + Semigroup + Ord + Codec64 + Send + Sync,
O: Opaque + Debug + Codec64,
C: TxnsCodec,
{
debug!("txn apply {:?}", self.commit_ts);
handle.apply_le(&self.commit_ts).await
}
/// Returns whether the apply represents a txn with any non-tidy writes.
///
/// If this returns true, the apply is essentially a no-op and safe to
/// discard.
pub fn is_empty(&self) -> bool {
self.is_empty
}
}
#[cfg(test)]
mod tests {
use std::time::{Duration, SystemTime};
use futures::stream::FuturesUnordered;
use futures::StreamExt;
use mz_ore::assert_err;
use mz_persist_client::PersistClient;
use crate::tests::writer;
use crate::txn_cache::TxnsCache;
use super::*;
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn commit_at() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let mut cache = TxnsCache::expect_open(0, &txns).await;
let d0 = txns.expect_register(1).await;
let d1 = txns.expect_register(2).await;
// Can merge two txns. Can have multiple data shards in a txn.
let mut txn = txns.begin();
txn.write(&d0, "0".into(), (), 1).await;
let mut other = txns.begin();
other.write(&d0, "1".into(), (), 1).await;
other.write(&d1, "A".into(), (), 1).await;
txn.merge(other);
txn.commit_at(&mut txns, 3).await.unwrap();
// Can commit an empty txn. Can "skip" timestamps.
txns.begin().commit_at(&mut txns, 5).await.unwrap();
// Txn cannot be committed at a closed out time. The Err includes the
// earliest committable time. Failed txn can commit on retry.
let mut txn = txns.begin();
txn.write(&d0, "2".into(), (), 1).await;
assert_eq!(txn.commit_at(&mut txns, 4).await, Err(6));
txn.commit_at(&mut txns, 6).await.unwrap();
txns.apply_le(&6).await;
let expected_d0 = vec!["0".to_owned(), "1".to_owned(), "2".to_owned()];
let actual_d0 = cache.expect_snapshot(&client, d0, 6).await;
assert_eq!(actual_d0, expected_d0);
let expected_d1 = vec!["A".to_owned()];
let actual_d1 = cache.expect_snapshot(&client, d1, 6).await;
assert_eq!(actual_d1, expected_d1);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn apply_and_tidy() {
let mut txns = TxnsHandle::expect_open(PersistClient::new_for_tests().await).await;
let log = txns.new_log();
let mut cache = TxnsCache::expect_open(0, &txns).await;
let d0 = txns.expect_register(1).await;
// Non-empty txn means non-empty apply. Min unapplied ts is the commit
// ts.
let mut txn = txns.begin_test();
txn.write(&d0, "2".into(), (), 1).await;
let apply_2 = txn.commit_at(&mut txns, 2).await.unwrap();
log.record_txn(2, &txn);
assert_eq!(apply_2.is_empty(), false);
let _ = cache.update_gt(&2).await;
cache.mark_register_applied(&2);
assert_eq!(cache.min_unapplied_ts(), &2);
assert_eq!(cache.unapplied().count(), 1);
// Running the apply unblocks reads but does not advance the min
// unapplied ts.
let tidy_2 = apply_2.apply(&mut txns).await;
assert_eq!(cache.min_unapplied_ts(), &2);
// Running the tidy advances the min unapplied ts.
txns.tidy_at(3, tidy_2).await.unwrap();
let _ = cache.update_gt(&3).await;
assert_eq!(cache.min_unapplied_ts(), &4);
assert_eq!(cache.unapplied().count(), 0);
// We can also sneak the tidy into a normal txn. Tidies copy across txn
// merges.
let tidy_4 = txns.expect_commit_at(4, d0, &["4"], &log).await;
let _ = cache.update_gt(&4).await;
assert_eq!(cache.min_unapplied_ts(), &4);
let mut txn0 = txns.begin_test();
txn0.write(&d0, "5".into(), (), 1).await;
txn0.tidy(tidy_4);
let mut txn1 = txns.begin_test();
txn1.merge(txn0);
let apply_5 = txn1.commit_at(&mut txns, 5).await.unwrap();
log.record_txn(5, &txn1);
let _ = cache.update_gt(&5).await;
assert_eq!(cache.min_unapplied_ts(), &5);
let tidy_5 = apply_5.apply(&mut txns).await;
// It's fine to drop a tidy, someone else will do it eventually.
let tidy_6 = txns.expect_commit_at(6, d0, &["6"], &log).await;
txns.tidy_at(7, tidy_6).await.unwrap();
let _ = cache.update_gt(&7).await;
assert_eq!(cache.min_unapplied_ts(), &8);
// Also fine if we don't drop it, but instead do it late (no-op but
// consumes a ts).
txns.tidy_at(8, tidy_5).await.unwrap();
let _ = cache.update_gt(&8).await;
assert_eq!(cache.min_unapplied_ts(), &9);
// Tidies can be merged and also can be stolen back out of a txn.
let tidy_9 = txns.expect_commit_at(9, d0, &["9"], &log).await;
let tidy_10 = txns.expect_commit_at(10, d0, &["10"], &log).await;
let mut txn = txns.begin();
txn.tidy(tidy_9);
let mut tidy_9 = txn.take_tidy();
tidy_9.merge(tidy_10);
txns.tidy_at(11, tidy_9).await.unwrap();
let _ = cache.update_gt(&11).await;
assert_eq!(cache.min_unapplied_ts(), &12);
// Can't tidy at an already committed ts.
let tidy_12 = txns.expect_commit_at(12, d0, &["12"], &log).await;
assert_eq!(txns.tidy_at(12, tidy_12).await, Err(13));
let () = log.assert_snapshot(d0, 12).await;
}
#[mz_ore::test(tokio::test(flavor = "multi_thread"))]
#[cfg_attr(miri, ignore)] // too slow
async fn conflicting_writes() {
fn jitter() -> u64 {
// We could also use something like `rand`.
let time = SystemTime::UNIX_EPOCH.elapsed().unwrap();
u64::from(time.subsec_micros() % 20)
}
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
let mut cache = TxnsCache::expect_open(0, &txns).await;
let d0 = txns.expect_register(1).await;
const NUM_WRITES: usize = 25;
let tasks = FuturesUnordered::new();
for idx in 0..NUM_WRITES {
let mut txn = txns.begin_test();
txn.write(&d0, format!("{:05}", idx), (), 1).await;
let (txns_id, client, log) = (txns.txns_id(), client.clone(), log.clone());
let task = async move {
let mut txns = TxnsHandle::expect_open_id(client.clone(), txns_id).await;
let mut register_ts = 1;
loop {
let data_write = writer(&client, d0).await;
match txns.register(register_ts, [data_write]).await {
Ok(_) => {
debug!("{} registered at {}", idx, register_ts);
break;
}
Err(ts) => {
register_ts = ts;
continue;
}
}
}
// Add some jitter to the commit timestamps (to create gaps) and
// to the execution (to create interleaving).
let jitter_ms = jitter();
let mut commit_ts = register_ts + 1 + jitter_ms;
let apply = loop {
let () = tokio::time::sleep(Duration::from_millis(jitter_ms)).await;
match txn.commit_at(&mut txns, commit_ts).await {
Ok(apply) => break apply,
Err(new_commit_ts) => commit_ts = new_commit_ts,
}
};
debug!("{} committed at {}", idx, commit_ts);
log.record_txn(commit_ts, &txn);
// Ditto sleep before apply.
let () = tokio::time::sleep(Duration::from_millis(jitter_ms)).await;
let tidy = apply.apply(&mut txns).await;
// Ditto jitter the tidy timestamps and execution.
let jitter_ms = jitter();
let mut txn = txns.begin();
txn.tidy(tidy);
let mut tidy_ts = commit_ts + jitter_ms;
loop {
let () = tokio::time::sleep(Duration::from_millis(jitter_ms)).await;
match txn.commit_at(&mut txns, tidy_ts).await {
Ok(apply) => {
debug!("{} tidied at {}", idx, tidy_ts);
assert!(apply.is_empty());
return commit_ts;
}
Err(new_tidy_ts) => tidy_ts = new_tidy_ts,
}
}
};
tasks.push(task)
}
let max_commit_ts = tasks
.collect::<Vec<_>>()
.await
.into_iter()
.max()
.unwrap_or_default();
// Also manually create expected as a failsafe in case we ever end up
// with a bug in CommitLog.
let expected = (0..NUM_WRITES)
.map(|x| format!("{:05}", x))
.collect::<Vec<_>>();
let actual = cache.expect_snapshot(&client, d0, max_commit_ts).await;
assert_eq!(actual, expected);
log.assert_snapshot(d0, max_commit_ts).await;
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn tidy_race() {
let client = PersistClient::new_for_tests().await;
let mut txns0 = TxnsHandle::expect_open(client.clone()).await;
let log = txns0.new_log();
let d0 = txns0.expect_register(1).await;
// Commit something and apply it, but don't tidy yet.
let tidy0 = txns0.expect_commit_at(2, d0, &["foo"], &log).await;
// Now open an independent TxnsHandle, commit, apply, and tidy.
let mut txns1 = TxnsHandle::expect_open_id(client.clone(), txns0.txns_id()).await;
let d1 = txns1.expect_register(3).await;
let tidy1 = txns1.expect_commit_at(4, d1, &["foo"], &log).await;
let () = txns1.tidy_at(5, tidy1).await.unwrap();
// Now try the original tidy0. tidy1 has already done the retraction for
// it, so this needs to be careful not to double-retract.
let () = txns0.tidy_at(6, tidy0).await.unwrap();
// Replay a cache from the beginning and make sure we don't see a
// double retraction.
let mut cache = TxnsCache::expect_open(0, &txns0).await;
let _ = cache.update_gt(&6).await;
assert_eq!(cache.validate(), Ok(()));
log.assert_snapshot(d0, 6).await;
log.assert_snapshot(d1, 6).await;
}
// Regression test for a bug caught during code review, where it was
// possible to commit to an unregistered data shard.
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn commit_unregistered_table() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
// This panics because the commit ts is before the register ts.
let commit = mz_ore::task::spawn(|| "", {
let (txns_id, client) = (txns.txns_id(), client.clone());
async move {
let mut txns = TxnsHandle::expect_open_id(client, txns_id).await;
let mut txn = txns.begin();
txn.write(&ShardId::new(), "foo".into(), (), 1).await;
txn.commit_at(&mut txns, 1).await
}
});
assert_err!(commit.await);
let d0 = txns.expect_register(2).await;
txns.forget(3, [d0]).await.unwrap();
// This panics because the commit ts is after the forget ts.
let commit = mz_ore::task::spawn(|| "", {
let (txns_id, client) = (txns.txns_id(), client.clone());
async move {
let mut txns = TxnsHandle::expect_open_id(client, txns_id).await;
let mut txn = txns.begin();
txn.write(&d0, "foo".into(), (), 1).await;
txn.commit_at(&mut txns, 4).await
}
});
assert_err!(commit.await);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn commit_retry() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let mut cache = TxnsCache::expect_open(0, &txns).await;
let d0 = txns.expect_register(1).await;
let d1 = txns.expect_register(2).await;
// `txn` commit is interrupted by `other` commit.
let mut txn = txns.begin();
txn.write(&d0, "0".into(), (), 1).await;
let mut other = txns.begin();
other.write(&d1, "42".into(), (), 1).await;
other.commit_at(&mut txns, 3).await.unwrap();
let upper = txn.commit_at(&mut txns, 3).await.unwrap_err();
assert_eq!(upper, 4);
// Add more writes to `txn` and try again.
txn.write(&d0, "1".into(), (), 1).await;
txn.commit_at(&mut txns, 4).await.unwrap();
txns.apply_le(&4).await;
let expected_d0 = vec!["0".to_owned(), "1".to_owned()];
let actual_d0 = cache.expect_snapshot(&client, d0, 4).await;
assert_eq!(actual_d0, expected_d0);
}
}