1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::cmp;
use std::io;
use std::io::{Read, Write};
use super::{TReadTransport, TReadTransportFactory, TWriteTransport, TWriteTransportFactory};
/// Default capacity of the read buffer in bytes.
const READ_CAPACITY: usize = 4096;
/// Default capacity of the write buffer in bytes..
const WRITE_CAPACITY: usize = 4096;
/// Transport that reads messages via an internal buffer.
///
/// A `TBufferedReadTransport` maintains a fixed-size internal read buffer.
/// On a call to `TBufferedReadTransport::read(...)` one full message - both
/// fixed-length header and bytes - is read from the wrapped channel and buffered.
/// Subsequent read calls are serviced from the internal buffer until it is
/// exhausted, at which point the next full message is read from the wrapped
/// channel.
///
/// # Examples
///
/// Create and use a `TBufferedReadTransport`.
///
/// ```no_run
/// use std::io::Read;
/// use thrift::transport::{TBufferedReadTransport, TTcpChannel};
///
/// let mut c = TTcpChannel::new();
/// c.open("localhost:9090").unwrap();
///
/// let mut t = TBufferedReadTransport::new(c);
///
/// t.read(&mut vec![0u8; 1]).unwrap();
/// ```
#[derive(Debug)]
pub struct TBufferedReadTransport<C>
where
C: Read,
{
buf: Box<[u8]>,
pos: usize,
cap: usize,
chan: C,
}
impl<C> TBufferedReadTransport<C>
where
C: Read,
{
/// Create a `TBufferedTransport` with default-sized internal read and
/// write buffers that wraps the given `TIoChannel`.
pub fn new(channel: C) -> TBufferedReadTransport<C> {
TBufferedReadTransport::with_capacity(READ_CAPACITY, channel)
}
/// Create a `TBufferedTransport` with an internal read buffer of size
/// `read_capacity` and an internal write buffer of size
/// `write_capacity` that wraps the given `TIoChannel`.
pub fn with_capacity(read_capacity: usize, channel: C) -> TBufferedReadTransport<C> {
TBufferedReadTransport {
buf: vec![0; read_capacity].into_boxed_slice(),
pos: 0,
cap: 0,
chan: channel,
}
}
fn get_bytes(&mut self) -> io::Result<&[u8]> {
if self.cap - self.pos == 0 {
self.pos = 0;
self.cap = self.chan.read(&mut self.buf)?;
}
Ok(&self.buf[self.pos..self.cap])
}
fn consume(&mut self, consumed: usize) {
// TODO: was a bug here += <-- test somehow
self.pos = cmp::min(self.cap, self.pos + consumed);
}
}
impl<C> Read for TBufferedReadTransport<C>
where
C: Read,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let mut bytes_read = 0;
loop {
let nread = {
let avail_bytes = self.get_bytes()?;
let avail_space = buf.len() - bytes_read;
let nread = cmp::min(avail_space, avail_bytes.len());
buf[bytes_read..(bytes_read + nread)].copy_from_slice(&avail_bytes[..nread]);
nread
};
self.consume(nread);
bytes_read += nread;
if bytes_read == buf.len() || nread == 0 {
break;
}
}
Ok(bytes_read)
}
}
/// Factory for creating instances of `TBufferedReadTransport`.
#[derive(Default)]
pub struct TBufferedReadTransportFactory;
impl TBufferedReadTransportFactory {
pub fn new() -> TBufferedReadTransportFactory {
TBufferedReadTransportFactory {}
}
}
impl TReadTransportFactory for TBufferedReadTransportFactory {
/// Create a `TBufferedReadTransport`.
fn create(&self, channel: Box<dyn Read + Send>) -> Box<dyn TReadTransport + Send> {
Box::new(TBufferedReadTransport::new(channel))
}
}
/// Transport that writes messages via an internal buffer.
///
/// A `TBufferedWriteTransport` maintains a fixed-size internal write buffer.
/// All writes are made to this buffer and are sent to the wrapped channel only
/// when `TBufferedWriteTransport::flush()` is called. On a flush a fixed-length
/// header with a count of the buffered bytes is written, followed by the bytes
/// themselves.
///
/// # Examples
///
/// Create and use a `TBufferedWriteTransport`.
///
/// ```no_run
/// use std::io::Write;
/// use thrift::transport::{TBufferedWriteTransport, TTcpChannel};
///
/// let mut c = TTcpChannel::new();
/// c.open("localhost:9090").unwrap();
///
/// let mut t = TBufferedWriteTransport::new(c);
///
/// t.write(&[0x00]).unwrap();
/// t.flush().unwrap();
/// ```
#[derive(Debug)]
pub struct TBufferedWriteTransport<C>
where
C: Write,
{
buf: Vec<u8>,
cap: usize,
channel: C,
}
impl<C> TBufferedWriteTransport<C>
where
C: Write,
{
/// Create a `TBufferedTransport` with default-sized internal read and
/// write buffers that wraps the given `TIoChannel`.
pub fn new(channel: C) -> TBufferedWriteTransport<C> {
TBufferedWriteTransport::with_capacity(WRITE_CAPACITY, channel)
}
/// Create a `TBufferedTransport` with an internal read buffer of size
/// `read_capacity` and an internal write buffer of size
/// `write_capacity` that wraps the given `TIoChannel`.
pub fn with_capacity(write_capacity: usize, channel: C) -> TBufferedWriteTransport<C> {
assert!(
write_capacity > 0,
"write buffer size must be a positive integer"
);
TBufferedWriteTransport {
buf: Vec::with_capacity(write_capacity),
cap: write_capacity,
channel,
}
}
}
impl<C> Write for TBufferedWriteTransport<C>
where
C: Write,
{
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
if !buf.is_empty() {
let mut avail_bytes;
loop {
avail_bytes = cmp::min(buf.len(), self.cap - self.buf.len());
if avail_bytes == 0 {
self.flush()?;
} else {
break;
}
}
let avail_bytes = avail_bytes;
self.buf.extend_from_slice(&buf[..avail_bytes]);
assert!(self.buf.len() <= self.cap, "copy overflowed buffer");
Ok(avail_bytes)
} else {
Ok(0)
}
}
fn flush(&mut self) -> io::Result<()> {
self.channel.write_all(&self.buf)?;
self.channel.flush()?;
self.buf.clear();
Ok(())
}
}
/// Factory for creating instances of `TBufferedWriteTransport`.
#[derive(Default)]
pub struct TBufferedWriteTransportFactory;
impl TBufferedWriteTransportFactory {
pub fn new() -> TBufferedWriteTransportFactory {
TBufferedWriteTransportFactory {}
}
}
impl TWriteTransportFactory for TBufferedWriteTransportFactory {
/// Create a `TBufferedWriteTransport`.
fn create(&self, channel: Box<dyn Write + Send>) -> Box<dyn TWriteTransport + Send> {
Box::new(TBufferedWriteTransport::new(channel))
}
}
#[cfg(test)]
mod tests {
use std::io::{Read, Write};
use super::*;
use crate::transport::TBufferChannel;
#[test]
fn must_return_zero_if_read_buffer_is_empty() {
let mem = TBufferChannel::with_capacity(10, 0);
let mut t = TBufferedReadTransport::with_capacity(10, mem);
let mut b = vec![0; 10];
let read_result = t.read(&mut b);
assert_eq!(read_result.unwrap(), 0);
}
#[test]
fn must_return_zero_if_caller_reads_into_zero_capacity_buffer() {
let mem = TBufferChannel::with_capacity(10, 0);
let mut t = TBufferedReadTransport::with_capacity(10, mem);
let read_result = t.read(&mut []);
assert_eq!(read_result.unwrap(), 0);
}
#[test]
fn must_return_zero_if_nothing_more_can_be_read() {
let mem = TBufferChannel::with_capacity(4, 0);
let mut t = TBufferedReadTransport::with_capacity(4, mem);
t.chan.set_readable_bytes(&[0, 1, 2, 3]);
// read buffer is exactly the same size as bytes available
let mut buf = vec![0u8; 4];
let read_result = t.read(&mut buf);
// we've read exactly 4 bytes
assert_eq!(read_result.unwrap(), 4);
assert_eq!(&buf, &[0, 1, 2, 3]);
// try read again
let buf_again = vec![0u8; 4];
let read_result = t.read(&mut buf);
// this time, 0 bytes and we haven't changed the buffer
assert_eq!(read_result.unwrap(), 0);
assert_eq!(&buf_again, &[0, 0, 0, 0])
}
#[test]
fn must_fill_user_buffer_with_only_as_many_bytes_as_available() {
let mem = TBufferChannel::with_capacity(4, 0);
let mut t = TBufferedReadTransport::with_capacity(4, mem);
t.chan.set_readable_bytes(&[0, 1, 2, 3]);
// read buffer is much larger than the bytes available
let mut buf = vec![0u8; 8];
let read_result = t.read(&mut buf);
// we've read exactly 4 bytes
assert_eq!(read_result.unwrap(), 4);
assert_eq!(&buf[..4], &[0, 1, 2, 3]);
// try read again
let read_result = t.read(&mut buf[4..]);
// this time, 0 bytes and we haven't changed the buffer
assert_eq!(read_result.unwrap(), 0);
assert_eq!(&buf, &[0, 1, 2, 3, 0, 0, 0, 0])
}
#[test]
fn must_read_successfully() {
// this test involves a few loops within the buffered transport
// itself where it has to drain the underlying transport in order
// to service a read
// we have a much smaller buffer than the
// underlying transport has bytes available
let mem = TBufferChannel::with_capacity(10, 0);
let mut t = TBufferedReadTransport::with_capacity(2, mem);
// fill the underlying transport's byte buffer
let mut readable_bytes = [0u8; 10];
for (i, b) in readable_bytes.iter_mut().enumerate() {
*b = i as u8;
}
t.chan.set_readable_bytes(&readable_bytes);
// we ask to read into a buffer that's much larger
// than the one the buffered transport has; as a result
// it's going to have to keep asking the underlying
// transport for more bytes
let mut buf = [0u8; 8];
let read_result = t.read(&mut buf);
// we should have read 8 bytes
assert_eq!(read_result.unwrap(), 8);
assert_eq!(&buf, &[0, 1, 2, 3, 4, 5, 6, 7]);
// let's clear out the buffer and try read again
for b in &mut buf {
*b = 0;
}
let read_result = t.read(&mut buf);
// this time we were only able to read 2 bytes
// (all that's remaining from the underlying transport)
// let's also check that the remaining bytes are untouched
assert_eq!(read_result.unwrap(), 2);
assert_eq!(&buf[0..2], &[8, 9]);
assert_eq!(&buf[2..], &[0, 0, 0, 0, 0, 0]);
// try read again (we should get 0)
// and all the existing bytes were untouched
let read_result = t.read(&mut buf);
assert_eq!(read_result.unwrap(), 0);
assert_eq!(&buf[0..2], &[8, 9]);
assert_eq!(&buf[2..], &[0, 0, 0, 0, 0, 0]);
}
#[test]
fn must_return_error_when_nothing_can_be_written_to_underlying_channel() {
let mem = TBufferChannel::with_capacity(0, 0);
let mut t = TBufferedWriteTransport::with_capacity(1, mem);
let b = vec![0; 10];
let r = t.write(&b);
// should have written 1 byte
assert_eq!(r.unwrap(), 1);
// let's try again...
let r = t.write(&b[1..]);
// this time we'll error out because the auto-flush failed
assert!(r.is_err());
}
#[test]
fn must_return_zero_if_caller_calls_write_with_empty_buffer() {
let mem = TBufferChannel::with_capacity(0, 10);
let mut t = TBufferedWriteTransport::with_capacity(10, mem);
let r = t.write(&[]);
let expected: [u8; 0] = [];
assert_eq!(r.unwrap(), 0);
assert_eq_transport_written_bytes!(t, expected);
}
#[test]
fn must_auto_flush_if_write_buffer_full() {
let mem = TBufferChannel::with_capacity(0, 8);
let mut t = TBufferedWriteTransport::with_capacity(4, mem);
let b0 = [0x00, 0x01, 0x02, 0x03];
let b1 = [0x04, 0x05, 0x06, 0x07];
// write the first 4 bytes; we've now filled the transport's write buffer
let r = t.write(&b0);
assert_eq!(r.unwrap(), 4);
// try write the next 4 bytes; this causes the transport to auto-flush the first 4 bytes
let r = t.write(&b1);
assert_eq!(r.unwrap(), 4);
// check that in writing the second 4 bytes we auto-flushed the first 4 bytes
assert_eq_transport_num_written_bytes!(t, 4);
assert_eq_transport_written_bytes!(t, b0);
t.channel.empty_write_buffer();
// now flush the transport to push the second 4 bytes to the underlying channel
assert!(t.flush().is_ok());
// check that we wrote out the second 4 bytes
assert_eq_transport_written_bytes!(t, b1);
}
#[test]
fn must_write_to_inner_transport_on_flush() {
let mem = TBufferChannel::with_capacity(10, 10);
let mut t = TBufferedWriteTransport::new(mem);
let b: [u8; 5] = [0, 1, 2, 3, 4];
assert_eq!(t.write(&b).unwrap(), 5);
assert_eq_transport_num_written_bytes!(t, 0);
assert!(t.flush().is_ok());
assert_eq_transport_written_bytes!(t, b);
}
#[test]
fn must_write_successfully_after_flush() {
let mem = TBufferChannel::with_capacity(0, 5);
let mut t = TBufferedWriteTransport::with_capacity(5, mem);
// write and flush
let b: [u8; 5] = [0, 1, 2, 3, 4];
assert_eq!(t.write(&b).unwrap(), 5);
assert!(t.flush().is_ok());
// check the flushed bytes
assert_eq_transport_written_bytes!(t, b);
// reset our underlying transport
t.channel.empty_write_buffer();
// write and flush again
assert_eq!(t.write(&b).unwrap(), 5);
assert!(t.flush().is_ok());
// check the flushed bytes
assert_eq_transport_written_bytes!(t, b);
}
}