use std::cmp::Ordering;
use std::fmt::Formatter;
use std::sync::Arc;
use arrow_array::cast::AsArray;
use arrow_array::timezone::Tz;
use arrow_array::types::*;
use arrow_array::*;
use arrow_buffer::ArrowNativeType;
use arrow_schema::{ArrowError, DataType, IntervalUnit, TimeUnit};
use crate::arity::{binary, try_binary};
pub fn add(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
arithmetic_op(Op::Add, lhs, rhs)
}
pub fn add_wrapping(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
arithmetic_op(Op::AddWrapping, lhs, rhs)
}
pub fn sub(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
arithmetic_op(Op::Sub, lhs, rhs)
}
pub fn sub_wrapping(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
arithmetic_op(Op::SubWrapping, lhs, rhs)
}
pub fn mul(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
arithmetic_op(Op::Mul, lhs, rhs)
}
pub fn mul_wrapping(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
arithmetic_op(Op::MulWrapping, lhs, rhs)
}
pub fn div(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
arithmetic_op(Op::Div, lhs, rhs)
}
pub fn rem(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
arithmetic_op(Op::Rem, lhs, rhs)
}
macro_rules! neg_checked {
($t:ty, $a:ident) => {{
let array = $a
.as_primitive::<$t>()
.try_unary::<_, $t, _>(|x| x.neg_checked())?;
Ok(Arc::new(array))
}};
}
macro_rules! neg_wrapping {
($t:ty, $a:ident) => {{
let array = $a.as_primitive::<$t>().unary::<_, $t>(|x| x.neg_wrapping());
Ok(Arc::new(array))
}};
}
pub fn neg(array: &dyn Array) -> Result<ArrayRef, ArrowError> {
use DataType::*;
use IntervalUnit::*;
use TimeUnit::*;
match array.data_type() {
Int8 => neg_checked!(Int8Type, array),
Int16 => neg_checked!(Int16Type, array),
Int32 => neg_checked!(Int32Type, array),
Int64 => neg_checked!(Int64Type, array),
Float16 => neg_wrapping!(Float16Type, array),
Float32 => neg_wrapping!(Float32Type, array),
Float64 => neg_wrapping!(Float64Type, array),
Decimal128(p, s) => {
let a = array
.as_primitive::<Decimal128Type>()
.try_unary::<_, Decimal128Type, _>(|x| x.neg_checked())?;
Ok(Arc::new(a.with_precision_and_scale(*p, *s)?))
}
Decimal256(p, s) => {
let a = array
.as_primitive::<Decimal256Type>()
.try_unary::<_, Decimal256Type, _>(|x| x.neg_checked())?;
Ok(Arc::new(a.with_precision_and_scale(*p, *s)?))
}
Duration(Second) => neg_checked!(DurationSecondType, array),
Duration(Millisecond) => neg_checked!(DurationMillisecondType, array),
Duration(Microsecond) => neg_checked!(DurationMicrosecondType, array),
Duration(Nanosecond) => neg_checked!(DurationNanosecondType, array),
Interval(YearMonth) => neg_checked!(IntervalYearMonthType, array),
Interval(DayTime) => {
let a = array
.as_primitive::<IntervalDayTimeType>()
.try_unary::<_, IntervalDayTimeType, ArrowError>(|x| {
let (days, ms) = IntervalDayTimeType::to_parts(x);
Ok(IntervalDayTimeType::make_value(
days.neg_checked()?,
ms.neg_checked()?,
))
})?;
Ok(Arc::new(a))
}
Interval(MonthDayNano) => {
let a = array
.as_primitive::<IntervalMonthDayNanoType>()
.try_unary::<_, IntervalMonthDayNanoType, ArrowError>(|x| {
let (months, days, nanos) = IntervalMonthDayNanoType::to_parts(x);
Ok(IntervalMonthDayNanoType::make_value(
months.neg_checked()?,
days.neg_checked()?,
nanos.neg_checked()?,
))
})?;
Ok(Arc::new(a))
}
t => Err(ArrowError::InvalidArgumentError(format!(
"Invalid arithmetic operation: !{t}"
))),
}
}
pub fn neg_wrapping(array: &dyn Array) -> Result<ArrayRef, ArrowError> {
downcast_integer! {
array.data_type() => (neg_wrapping, array),
_ => neg(array),
}
}
#[derive(Debug, Copy, Clone)]
enum Op {
AddWrapping,
Add,
SubWrapping,
Sub,
MulWrapping,
Mul,
Div,
Rem,
}
impl std::fmt::Display for Op {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
Op::AddWrapping | Op::Add => write!(f, "+"),
Op::SubWrapping | Op::Sub => write!(f, "-"),
Op::MulWrapping | Op::Mul => write!(f, "*"),
Op::Div => write!(f, "/"),
Op::Rem => write!(f, "%"),
}
}
}
impl Op {
fn commutative(&self) -> bool {
matches!(self, Self::Add | Self::AddWrapping)
}
}
fn arithmetic_op(op: Op, lhs: &dyn Datum, rhs: &dyn Datum) -> Result<ArrayRef, ArrowError> {
use DataType::*;
use IntervalUnit::*;
use TimeUnit::*;
macro_rules! integer_helper {
($t:ty, $op:ident, $l:ident, $l_scalar:ident, $r:ident, $r_scalar:ident) => {
integer_op::<$t>($op, $l, $l_scalar, $r, $r_scalar)
};
}
let (l, l_scalar) = lhs.get();
let (r, r_scalar) = rhs.get();
downcast_integer! {
l.data_type(), r.data_type() => (integer_helper, op, l, l_scalar, r, r_scalar),
(Float16, Float16) => float_op::<Float16Type>(op, l, l_scalar, r, r_scalar),
(Float32, Float32) => float_op::<Float32Type>(op, l, l_scalar, r, r_scalar),
(Float64, Float64) => float_op::<Float64Type>(op, l, l_scalar, r, r_scalar),
(Timestamp(Second, _), _) => timestamp_op::<TimestampSecondType>(op, l, l_scalar, r, r_scalar),
(Timestamp(Millisecond, _), _) => timestamp_op::<TimestampMillisecondType>(op, l, l_scalar, r, r_scalar),
(Timestamp(Microsecond, _), _) => timestamp_op::<TimestampMicrosecondType>(op, l, l_scalar, r, r_scalar),
(Timestamp(Nanosecond, _), _) => timestamp_op::<TimestampNanosecondType>(op, l, l_scalar, r, r_scalar),
(Duration(Second), Duration(Second)) => duration_op::<DurationSecondType>(op, l, l_scalar, r, r_scalar),
(Duration(Millisecond), Duration(Millisecond)) => duration_op::<DurationMillisecondType>(op, l, l_scalar, r, r_scalar),
(Duration(Microsecond), Duration(Microsecond)) => duration_op::<DurationMicrosecondType>(op, l, l_scalar, r, r_scalar),
(Duration(Nanosecond), Duration(Nanosecond)) => duration_op::<DurationNanosecondType>(op, l, l_scalar, r, r_scalar),
(Interval(YearMonth), Interval(YearMonth)) => interval_op::<IntervalYearMonthType>(op, l, l_scalar, r, r_scalar),
(Interval(DayTime), Interval(DayTime)) => interval_op::<IntervalDayTimeType>(op, l, l_scalar, r, r_scalar),
(Interval(MonthDayNano), Interval(MonthDayNano)) => interval_op::<IntervalMonthDayNanoType>(op, l, l_scalar, r, r_scalar),
(Date32, _) => date_op::<Date32Type>(op, l, l_scalar, r, r_scalar),
(Date64, _) => date_op::<Date64Type>(op, l, l_scalar, r, r_scalar),
(Decimal128(_, _), Decimal128(_, _)) => decimal_op::<Decimal128Type>(op, l, l_scalar, r, r_scalar),
(Decimal256(_, _), Decimal256(_, _)) => decimal_op::<Decimal256Type>(op, l, l_scalar, r, r_scalar),
(l_t, r_t) => match (l_t, r_t) {
(Duration(_) | Interval(_), Date32 | Date64 | Timestamp(_, _)) if op.commutative() => {
arithmetic_op(op, rhs, lhs)
}
_ => Err(ArrowError::InvalidArgumentError(
format!("Invalid arithmetic operation: {l_t} {op} {r_t}")
))
}
}
}
macro_rules! op {
($l:ident, $l_s:expr, $r:ident, $r_s:expr, $op:expr) => {
match ($l_s, $r_s) {
(true, true) | (false, false) => binary($l, $r, |$l, $r| $op)?,
(true, false) => match ($l.null_count() == 0).then(|| $l.value(0)) {
None => PrimitiveArray::new_null($r.len()),
Some($l) => $r.unary(|$r| $op),
},
(false, true) => match ($r.null_count() == 0).then(|| $r.value(0)) {
None => PrimitiveArray::new_null($l.len()),
Some($r) => $l.unary(|$l| $op),
},
}
};
}
macro_rules! op_ref {
($t:ty, $l:ident, $l_s:expr, $r:ident, $r_s:expr, $op:expr) => {{
let array: PrimitiveArray<$t> = op!($l, $l_s, $r, $r_s, $op);
Arc::new(array)
}};
}
macro_rules! try_op {
($l:ident, $l_s:expr, $r:ident, $r_s:expr, $op:expr) => {
match ($l_s, $r_s) {
(true, true) | (false, false) => try_binary($l, $r, |$l, $r| $op)?,
(true, false) => match ($l.null_count() == 0).then(|| $l.value(0)) {
None => PrimitiveArray::new_null($r.len()),
Some($l) => $r.try_unary(|$r| $op)?,
},
(false, true) => match ($r.null_count() == 0).then(|| $r.value(0)) {
None => PrimitiveArray::new_null($l.len()),
Some($r) => $l.try_unary(|$l| $op)?,
},
}
};
}
macro_rules! try_op_ref {
($t:ty, $l:ident, $l_s:expr, $r:ident, $r_s:expr, $op:expr) => {{
let array: PrimitiveArray<$t> = try_op!($l, $l_s, $r, $r_s, $op);
Arc::new(array)
}};
}
fn integer_op<T: ArrowPrimitiveType>(
op: Op,
l: &dyn Array,
l_s: bool,
r: &dyn Array,
r_s: bool,
) -> Result<ArrayRef, ArrowError> {
let l = l.as_primitive::<T>();
let r = r.as_primitive::<T>();
let array: PrimitiveArray<T> = match op {
Op::AddWrapping => op!(l, l_s, r, r_s, l.add_wrapping(r)),
Op::Add => try_op!(l, l_s, r, r_s, l.add_checked(r)),
Op::SubWrapping => op!(l, l_s, r, r_s, l.sub_wrapping(r)),
Op::Sub => try_op!(l, l_s, r, r_s, l.sub_checked(r)),
Op::MulWrapping => op!(l, l_s, r, r_s, l.mul_wrapping(r)),
Op::Mul => try_op!(l, l_s, r, r_s, l.mul_checked(r)),
Op::Div => try_op!(l, l_s, r, r_s, l.div_checked(r)),
Op::Rem => try_op!(l, l_s, r, r_s, l.mod_checked(r)),
};
Ok(Arc::new(array))
}
fn float_op<T: ArrowPrimitiveType>(
op: Op,
l: &dyn Array,
l_s: bool,
r: &dyn Array,
r_s: bool,
) -> Result<ArrayRef, ArrowError> {
let l = l.as_primitive::<T>();
let r = r.as_primitive::<T>();
let array: PrimitiveArray<T> = match op {
Op::AddWrapping | Op::Add => op!(l, l_s, r, r_s, l.add_wrapping(r)),
Op::SubWrapping | Op::Sub => op!(l, l_s, r, r_s, l.sub_wrapping(r)),
Op::MulWrapping | Op::Mul => op!(l, l_s, r, r_s, l.mul_wrapping(r)),
Op::Div => op!(l, l_s, r, r_s, l.div_wrapping(r)),
Op::Rem => op!(l, l_s, r, r_s, l.mod_wrapping(r)),
};
Ok(Arc::new(array))
}
trait TimestampOp: ArrowTimestampType {
type Duration: ArrowPrimitiveType<Native = i64>;
fn add_year_month(timestamp: i64, delta: i32, tz: Tz) -> Option<i64>;
fn add_day_time(timestamp: i64, delta: i64, tz: Tz) -> Option<i64>;
fn add_month_day_nano(timestamp: i64, delta: i128, tz: Tz) -> Option<i64>;
fn sub_year_month(timestamp: i64, delta: i32, tz: Tz) -> Option<i64>;
fn sub_day_time(timestamp: i64, delta: i64, tz: Tz) -> Option<i64>;
fn sub_month_day_nano(timestamp: i64, delta: i128, tz: Tz) -> Option<i64>;
}
macro_rules! timestamp {
($t:ty, $d:ty) => {
impl TimestampOp for $t {
type Duration = $d;
fn add_year_month(left: i64, right: i32, tz: Tz) -> Option<i64> {
Self::add_year_months(left, right, tz)
}
fn add_day_time(left: i64, right: i64, tz: Tz) -> Option<i64> {
Self::add_day_time(left, right, tz)
}
fn add_month_day_nano(left: i64, right: i128, tz: Tz) -> Option<i64> {
Self::add_month_day_nano(left, right, tz)
}
fn sub_year_month(left: i64, right: i32, tz: Tz) -> Option<i64> {
Self::subtract_year_months(left, right, tz)
}
fn sub_day_time(left: i64, right: i64, tz: Tz) -> Option<i64> {
Self::subtract_day_time(left, right, tz)
}
fn sub_month_day_nano(left: i64, right: i128, tz: Tz) -> Option<i64> {
Self::subtract_month_day_nano(left, right, tz)
}
}
};
}
timestamp!(TimestampSecondType, DurationSecondType);
timestamp!(TimestampMillisecondType, DurationMillisecondType);
timestamp!(TimestampMicrosecondType, DurationMicrosecondType);
timestamp!(TimestampNanosecondType, DurationNanosecondType);
fn timestamp_op<T: TimestampOp>(
op: Op,
l: &dyn Array,
l_s: bool,
r: &dyn Array,
r_s: bool,
) -> Result<ArrayRef, ArrowError> {
use DataType::*;
use IntervalUnit::*;
let l = l.as_primitive::<T>();
let l_tz: Tz = l.timezone().unwrap_or("+00:00").parse()?;
let array: PrimitiveArray<T> = match (op, r.data_type()) {
(Op::Sub | Op::SubWrapping, Timestamp(unit, _)) if unit == &T::UNIT => {
let r = r.as_primitive::<T>();
return Ok(try_op_ref!(T::Duration, l, l_s, r, r_s, l.sub_checked(r)));
}
(Op::Add | Op::AddWrapping, Duration(unit)) if unit == &T::UNIT => {
let r = r.as_primitive::<T::Duration>();
try_op!(l, l_s, r, r_s, l.add_checked(r))
}
(Op::Sub | Op::SubWrapping, Duration(unit)) if unit == &T::UNIT => {
let r = r.as_primitive::<T::Duration>();
try_op!(l, l_s, r, r_s, l.sub_checked(r))
}
(Op::Add | Op::AddWrapping, Interval(YearMonth)) => {
let r = r.as_primitive::<IntervalYearMonthType>();
try_op!(
l,
l_s,
r,
r_s,
T::add_year_month(l, r, l_tz).ok_or(ArrowError::ComputeError(
"Timestamp out of range".to_string()
))
)
}
(Op::Sub | Op::SubWrapping, Interval(YearMonth)) => {
let r = r.as_primitive::<IntervalYearMonthType>();
try_op!(
l,
l_s,
r,
r_s,
T::sub_year_month(l, r, l_tz).ok_or(ArrowError::ComputeError(
"Timestamp out of range".to_string()
))
)
}
(Op::Add | Op::AddWrapping, Interval(DayTime)) => {
let r = r.as_primitive::<IntervalDayTimeType>();
try_op!(
l,
l_s,
r,
r_s,
T::add_day_time(l, r, l_tz).ok_or(ArrowError::ComputeError(
"Timestamp out of range".to_string()
))
)
}
(Op::Sub | Op::SubWrapping, Interval(DayTime)) => {
let r = r.as_primitive::<IntervalDayTimeType>();
try_op!(
l,
l_s,
r,
r_s,
T::sub_day_time(l, r, l_tz).ok_or(ArrowError::ComputeError(
"Timestamp out of range".to_string()
))
)
}
(Op::Add | Op::AddWrapping, Interval(MonthDayNano)) => {
let r = r.as_primitive::<IntervalMonthDayNanoType>();
try_op!(
l,
l_s,
r,
r_s,
T::add_month_day_nano(l, r, l_tz).ok_or(ArrowError::ComputeError(
"Timestamp out of range".to_string()
))
)
}
(Op::Sub | Op::SubWrapping, Interval(MonthDayNano)) => {
let r = r.as_primitive::<IntervalMonthDayNanoType>();
try_op!(
l,
l_s,
r,
r_s,
T::sub_month_day_nano(l, r, l_tz).ok_or(ArrowError::ComputeError(
"Timestamp out of range".to_string()
))
)
}
_ => {
return Err(ArrowError::InvalidArgumentError(format!(
"Invalid timestamp arithmetic operation: {} {op} {}",
l.data_type(),
r.data_type()
)))
}
};
Ok(Arc::new(array.with_timezone_opt(l.timezone())))
}
trait DateOp: ArrowTemporalType {
fn add_year_month(timestamp: Self::Native, delta: i32) -> Self::Native;
fn add_day_time(timestamp: Self::Native, delta: i64) -> Self::Native;
fn add_month_day_nano(timestamp: Self::Native, delta: i128) -> Self::Native;
fn sub_year_month(timestamp: Self::Native, delta: i32) -> Self::Native;
fn sub_day_time(timestamp: Self::Native, delta: i64) -> Self::Native;
fn sub_month_day_nano(timestamp: Self::Native, delta: i128) -> Self::Native;
}
macro_rules! date {
($t:ty) => {
impl DateOp for $t {
fn add_year_month(left: Self::Native, right: i32) -> Self::Native {
Self::add_year_months(left, right)
}
fn add_day_time(left: Self::Native, right: i64) -> Self::Native {
Self::add_day_time(left, right)
}
fn add_month_day_nano(left: Self::Native, right: i128) -> Self::Native {
Self::add_month_day_nano(left, right)
}
fn sub_year_month(left: Self::Native, right: i32) -> Self::Native {
Self::subtract_year_months(left, right)
}
fn sub_day_time(left: Self::Native, right: i64) -> Self::Native {
Self::subtract_day_time(left, right)
}
fn sub_month_day_nano(left: Self::Native, right: i128) -> Self::Native {
Self::subtract_month_day_nano(left, right)
}
}
};
}
date!(Date32Type);
date!(Date64Type);
trait IntervalOp: ArrowPrimitiveType {
fn add(left: Self::Native, right: Self::Native) -> Result<Self::Native, ArrowError>;
fn sub(left: Self::Native, right: Self::Native) -> Result<Self::Native, ArrowError>;
}
impl IntervalOp for IntervalYearMonthType {
fn add(left: Self::Native, right: Self::Native) -> Result<Self::Native, ArrowError> {
left.add_checked(right)
}
fn sub(left: Self::Native, right: Self::Native) -> Result<Self::Native, ArrowError> {
left.sub_checked(right)
}
}
impl IntervalOp for IntervalDayTimeType {
fn add(left: Self::Native, right: Self::Native) -> Result<Self::Native, ArrowError> {
let (l_days, l_ms) = Self::to_parts(left);
let (r_days, r_ms) = Self::to_parts(right);
let days = l_days.add_checked(r_days)?;
let ms = l_ms.add_checked(r_ms)?;
Ok(Self::make_value(days, ms))
}
fn sub(left: Self::Native, right: Self::Native) -> Result<Self::Native, ArrowError> {
let (l_days, l_ms) = Self::to_parts(left);
let (r_days, r_ms) = Self::to_parts(right);
let days = l_days.sub_checked(r_days)?;
let ms = l_ms.sub_checked(r_ms)?;
Ok(Self::make_value(days, ms))
}
}
impl IntervalOp for IntervalMonthDayNanoType {
fn add(left: Self::Native, right: Self::Native) -> Result<Self::Native, ArrowError> {
let (l_months, l_days, l_nanos) = Self::to_parts(left);
let (r_months, r_days, r_nanos) = Self::to_parts(right);
let months = l_months.add_checked(r_months)?;
let days = l_days.add_checked(r_days)?;
let nanos = l_nanos.add_checked(r_nanos)?;
Ok(Self::make_value(months, days, nanos))
}
fn sub(left: Self::Native, right: Self::Native) -> Result<Self::Native, ArrowError> {
let (l_months, l_days, l_nanos) = Self::to_parts(left);
let (r_months, r_days, r_nanos) = Self::to_parts(right);
let months = l_months.sub_checked(r_months)?;
let days = l_days.sub_checked(r_days)?;
let nanos = l_nanos.sub_checked(r_nanos)?;
Ok(Self::make_value(months, days, nanos))
}
}
fn interval_op<T: IntervalOp>(
op: Op,
l: &dyn Array,
l_s: bool,
r: &dyn Array,
r_s: bool,
) -> Result<ArrayRef, ArrowError> {
let l = l.as_primitive::<T>();
let r = r.as_primitive::<T>();
match op {
Op::Add | Op::AddWrapping => Ok(try_op_ref!(T, l, l_s, r, r_s, T::add(l, r))),
Op::Sub | Op::SubWrapping => Ok(try_op_ref!(T, l, l_s, r, r_s, T::sub(l, r))),
_ => Err(ArrowError::InvalidArgumentError(format!(
"Invalid interval arithmetic operation: {} {op} {}",
l.data_type(),
r.data_type()
))),
}
}
fn duration_op<T: ArrowPrimitiveType>(
op: Op,
l: &dyn Array,
l_s: bool,
r: &dyn Array,
r_s: bool,
) -> Result<ArrayRef, ArrowError> {
let l = l.as_primitive::<T>();
let r = r.as_primitive::<T>();
match op {
Op::Add | Op::AddWrapping => Ok(try_op_ref!(T, l, l_s, r, r_s, l.add_checked(r))),
Op::Sub | Op::SubWrapping => Ok(try_op_ref!(T, l, l_s, r, r_s, l.sub_checked(r))),
_ => Err(ArrowError::InvalidArgumentError(format!(
"Invalid duration arithmetic operation: {} {op} {}",
l.data_type(),
r.data_type()
))),
}
}
fn date_op<T: DateOp>(
op: Op,
l: &dyn Array,
l_s: bool,
r: &dyn Array,
r_s: bool,
) -> Result<ArrayRef, ArrowError> {
use DataType::*;
use IntervalUnit::*;
const NUM_SECONDS_IN_DAY: i64 = 60 * 60 * 24;
let r_t = r.data_type();
match (T::DATA_TYPE, op, r_t) {
(Date32, Op::Sub | Op::SubWrapping, Date32) => {
let l = l.as_primitive::<Date32Type>();
let r = r.as_primitive::<Date32Type>();
return Ok(op_ref!(
DurationSecondType,
l,
l_s,
r,
r_s,
((l as i64) - (r as i64)) * NUM_SECONDS_IN_DAY
));
}
(Date64, Op::Sub | Op::SubWrapping, Date64) => {
let l = l.as_primitive::<Date64Type>();
let r = r.as_primitive::<Date64Type>();
let result = try_op_ref!(DurationMillisecondType, l, l_s, r, r_s, l.sub_checked(r));
return Ok(result);
}
_ => {}
}
let l = l.as_primitive::<T>();
match (op, r_t) {
(Op::Add | Op::AddWrapping, Interval(YearMonth)) => {
let r = r.as_primitive::<IntervalYearMonthType>();
Ok(op_ref!(T, l, l_s, r, r_s, T::add_year_month(l, r)))
}
(Op::Sub | Op::SubWrapping, Interval(YearMonth)) => {
let r = r.as_primitive::<IntervalYearMonthType>();
Ok(op_ref!(T, l, l_s, r, r_s, T::sub_year_month(l, r)))
}
(Op::Add | Op::AddWrapping, Interval(DayTime)) => {
let r = r.as_primitive::<IntervalDayTimeType>();
Ok(op_ref!(T, l, l_s, r, r_s, T::add_day_time(l, r)))
}
(Op::Sub | Op::SubWrapping, Interval(DayTime)) => {
let r = r.as_primitive::<IntervalDayTimeType>();
Ok(op_ref!(T, l, l_s, r, r_s, T::sub_day_time(l, r)))
}
(Op::Add | Op::AddWrapping, Interval(MonthDayNano)) => {
let r = r.as_primitive::<IntervalMonthDayNanoType>();
Ok(op_ref!(T, l, l_s, r, r_s, T::add_month_day_nano(l, r)))
}
(Op::Sub | Op::SubWrapping, Interval(MonthDayNano)) => {
let r = r.as_primitive::<IntervalMonthDayNanoType>();
Ok(op_ref!(T, l, l_s, r, r_s, T::sub_month_day_nano(l, r)))
}
_ => Err(ArrowError::InvalidArgumentError(format!(
"Invalid date arithmetic operation: {} {op} {}",
l.data_type(),
r.data_type()
))),
}
}
fn decimal_op<T: DecimalType>(
op: Op,
l: &dyn Array,
l_s: bool,
r: &dyn Array,
r_s: bool,
) -> Result<ArrayRef, ArrowError> {
let l = l.as_primitive::<T>();
let r = r.as_primitive::<T>();
let (p1, s1, p2, s2) = match (l.data_type(), r.data_type()) {
(DataType::Decimal128(p1, s1), DataType::Decimal128(p2, s2)) => (p1, s1, p2, s2),
(DataType::Decimal256(p1, s1), DataType::Decimal256(p2, s2)) => (p1, s1, p2, s2),
_ => unreachable!(),
};
let array: PrimitiveArray<T> = match op {
Op::Add | Op::AddWrapping | Op::Sub | Op::SubWrapping => {
let result_scale = *s1.max(s2);
let result_precision =
(result_scale.saturating_add((*p1 as i8 - s1).max(*p2 as i8 - s2)) as u8)
.saturating_add(1)
.min(T::MAX_PRECISION);
let l_mul = T::Native::usize_as(10).pow_checked((result_scale - s1) as _)?;
let r_mul = T::Native::usize_as(10).pow_checked((result_scale - s2) as _)?;
match op {
Op::Add | Op::AddWrapping => {
try_op!(
l,
l_s,
r,
r_s,
l.mul_checked(l_mul)?.add_checked(r.mul_checked(r_mul)?)
)
}
Op::Sub | Op::SubWrapping => {
try_op!(
l,
l_s,
r,
r_s,
l.mul_checked(l_mul)?.sub_checked(r.mul_checked(r_mul)?)
)
}
_ => unreachable!(),
}
.with_precision_and_scale(result_precision, result_scale)?
}
Op::Mul | Op::MulWrapping => {
let result_precision = p1.saturating_add(p2 + 1).min(T::MAX_PRECISION);
let result_scale = s1.saturating_add(*s2);
if result_scale > T::MAX_SCALE {
return Err(ArrowError::InvalidArgumentError(format!(
"Output scale of {} {op} {} would exceed max scale of {}",
l.data_type(),
r.data_type(),
T::MAX_SCALE
)));
}
try_op!(l, l_s, r, r_s, l.mul_checked(r))
.with_precision_and_scale(result_precision, result_scale)?
}
Op::Div => {
let result_scale = s1.saturating_add(4).min(T::MAX_SCALE);
let mul_pow = result_scale - s1 + s2;
let result_precision = (mul_pow.saturating_add(*p1 as i8) as u8).min(T::MAX_PRECISION);
let (l_mul, r_mul) = match mul_pow.cmp(&0) {
Ordering::Greater => (
T::Native::usize_as(10).pow_checked(mul_pow as _)?,
T::Native::ONE,
),
Ordering::Equal => (T::Native::ONE, T::Native::ONE),
Ordering::Less => (
T::Native::ONE,
T::Native::usize_as(10).pow_checked(mul_pow.neg_wrapping() as _)?,
),
};
try_op!(
l,
l_s,
r,
r_s,
l.mul_checked(l_mul)?.div_checked(r.mul_checked(r_mul)?)
)
.with_precision_and_scale(result_precision, result_scale)?
}
Op::Rem => {
let result_scale = *s1.max(s2);
let result_precision =
(result_scale.saturating_add((*p1 as i8 - s1).min(*p2 as i8 - s2)) as u8)
.min(T::MAX_PRECISION);
let l_mul = T::Native::usize_as(10).pow_wrapping((result_scale - s1) as _);
let r_mul = T::Native::usize_as(10).pow_wrapping((result_scale - s2) as _);
try_op!(
l,
l_s,
r,
r_s,
l.mul_checked(l_mul)?.mod_checked(r.mul_checked(r_mul)?)
)
.with_precision_and_scale(result_precision, result_scale)?
}
};
Ok(Arc::new(array))
}
#[cfg(test)]
mod tests {
use super::*;
use arrow_array::temporal_conversions::{as_date, as_datetime};
use arrow_buffer::{i256, ScalarBuffer};
use chrono::{DateTime, NaiveDate};
fn test_neg_primitive<T: ArrowPrimitiveType>(
input: &[T::Native],
out: Result<&[T::Native], &str>,
) {
let a = PrimitiveArray::<T>::new(ScalarBuffer::from(input.to_vec()), None);
match out {
Ok(expected) => {
let result = neg(&a).unwrap();
assert_eq!(result.as_primitive::<T>().values(), expected);
}
Err(e) => {
let err = neg(&a).unwrap_err().to_string();
assert_eq!(e, err);
}
}
}
#[test]
fn test_neg() {
let input = &[1, -5, 2, 693, 3929];
let output = &[-1, 5, -2, -693, -3929];
test_neg_primitive::<Int32Type>(input, Ok(output));
let input = &[1, -5, 2, 693, 3929];
let output = &[-1, 5, -2, -693, -3929];
test_neg_primitive::<Int64Type>(input, Ok(output));
test_neg_primitive::<DurationSecondType>(input, Ok(output));
test_neg_primitive::<DurationMillisecondType>(input, Ok(output));
test_neg_primitive::<DurationMicrosecondType>(input, Ok(output));
test_neg_primitive::<DurationNanosecondType>(input, Ok(output));
let input = &[f32::MAX, f32::MIN, f32::INFINITY, 1.3, 0.5];
let output = &[f32::MIN, f32::MAX, f32::NEG_INFINITY, -1.3, -0.5];
test_neg_primitive::<Float32Type>(input, Ok(output));
test_neg_primitive::<Int32Type>(
&[i32::MIN],
Err("Compute error: Overflow happened on: -2147483648"),
);
test_neg_primitive::<Int64Type>(
&[i64::MIN],
Err("Compute error: Overflow happened on: -9223372036854775808"),
);
test_neg_primitive::<DurationSecondType>(
&[i64::MIN],
Err("Compute error: Overflow happened on: -9223372036854775808"),
);
let r = neg_wrapping(&Int32Array::from(vec![i32::MIN])).unwrap();
assert_eq!(r.as_primitive::<Int32Type>().value(0), i32::MIN);
let r = neg_wrapping(&Int64Array::from(vec![i64::MIN])).unwrap();
assert_eq!(r.as_primitive::<Int64Type>().value(0), i64::MIN);
let err = neg_wrapping(&DurationSecondArray::from(vec![i64::MIN]))
.unwrap_err()
.to_string();
assert_eq!(
err,
"Compute error: Overflow happened on: -9223372036854775808"
);
let a = Decimal128Array::from(vec![1, 3, -44, 2, 4])
.with_precision_and_scale(9, 6)
.unwrap();
let r = neg(&a).unwrap();
assert_eq!(r.data_type(), a.data_type());
assert_eq!(
r.as_primitive::<Decimal128Type>().values(),
&[-1, -3, 44, -2, -4]
);
let a = Decimal256Array::from(vec![
i256::from_i128(342),
i256::from_i128(-4949),
i256::from_i128(3),
])
.with_precision_and_scale(9, 6)
.unwrap();
let r = neg(&a).unwrap();
assert_eq!(r.data_type(), a.data_type());
assert_eq!(
r.as_primitive::<Decimal256Type>().values(),
&[
i256::from_i128(-342),
i256::from_i128(4949),
i256::from_i128(-3),
]
);
let a = IntervalYearMonthArray::from(vec![
IntervalYearMonthType::make_value(2, 4),
IntervalYearMonthType::make_value(2, -4),
IntervalYearMonthType::make_value(-3, -5),
]);
let r = neg(&a).unwrap();
assert_eq!(
r.as_primitive::<IntervalYearMonthType>().values(),
&[
IntervalYearMonthType::make_value(-2, -4),
IntervalYearMonthType::make_value(-2, 4),
IntervalYearMonthType::make_value(3, 5),
]
);
let a = IntervalDayTimeArray::from(vec![
IntervalDayTimeType::make_value(2, 4),
IntervalDayTimeType::make_value(2, -4),
IntervalDayTimeType::make_value(-3, -5),
]);
let r = neg(&a).unwrap();
assert_eq!(
r.as_primitive::<IntervalDayTimeType>().values(),
&[
IntervalDayTimeType::make_value(-2, -4),
IntervalDayTimeType::make_value(-2, 4),
IntervalDayTimeType::make_value(3, 5),
]
);
let a = IntervalMonthDayNanoArray::from(vec![
IntervalMonthDayNanoType::make_value(2, 4, 5953394),
IntervalMonthDayNanoType::make_value(2, -4, -45839),
IntervalMonthDayNanoType::make_value(-3, -5, 6944),
]);
let r = neg(&a).unwrap();
assert_eq!(
r.as_primitive::<IntervalMonthDayNanoType>().values(),
&[
IntervalMonthDayNanoType::make_value(-2, -4, -5953394),
IntervalMonthDayNanoType::make_value(-2, 4, 45839),
IntervalMonthDayNanoType::make_value(3, 5, -6944),
]
);
}
#[test]
fn test_integer() {
let a = Int32Array::from(vec![4, 3, 5, -6, 100]);
let b = Int32Array::from(vec![6, 2, 5, -7, 3]);
let result = add(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&Int32Array::from(vec![10, 5, 10, -13, 103])
);
let result = sub(&a, &b).unwrap();
assert_eq!(result.as_ref(), &Int32Array::from(vec![-2, 1, 0, 1, 97]));
let result = div(&a, &b).unwrap();
assert_eq!(result.as_ref(), &Int32Array::from(vec![0, 1, 1, 0, 33]));
let result = mul(&a, &b).unwrap();
assert_eq!(result.as_ref(), &Int32Array::from(vec![24, 6, 25, 42, 300]));
let result = rem(&a, &b).unwrap();
assert_eq!(result.as_ref(), &Int32Array::from(vec![4, 1, 0, -6, 1]));
let a = Int8Array::from(vec![Some(2), None, Some(45)]);
let b = Int8Array::from(vec![Some(5), Some(3), None]);
let result = add(&a, &b).unwrap();
assert_eq!(result.as_ref(), &Int8Array::from(vec![Some(7), None, None]));
let a = UInt8Array::from(vec![56, 5, 3]);
let b = UInt8Array::from(vec![200, 2, 5]);
let err = add(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Compute error: Overflow happened on: 56 + 200");
let result = add_wrapping(&a, &b).unwrap();
assert_eq!(result.as_ref(), &UInt8Array::from(vec![0, 7, 8]));
let a = UInt8Array::from(vec![34, 5, 3]);
let b = UInt8Array::from(vec![200, 2, 5]);
let err = sub(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Compute error: Overflow happened on: 34 - 200");
let result = sub_wrapping(&a, &b).unwrap();
assert_eq!(result.as_ref(), &UInt8Array::from(vec![90, 3, 254]));
let a = UInt8Array::from(vec![34, 5, 3]);
let b = UInt8Array::from(vec![200, 2, 5]);
let err = mul(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Compute error: Overflow happened on: 34 * 200");
let result = mul_wrapping(&a, &b).unwrap();
assert_eq!(result.as_ref(), &UInt8Array::from(vec![144, 10, 15]));
let a = Int16Array::from(vec![i16::MIN]);
let b = Int16Array::from(vec![-1]);
let err = div(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Compute error: Overflow happened on: -32768 / -1");
let a = Int16Array::from(vec![21]);
let b = Int16Array::from(vec![0]);
let err = div(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Divide by zero error");
let a = Int16Array::from(vec![21]);
let b = Int16Array::from(vec![0]);
let err = rem(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Divide by zero error");
}
#[test]
fn test_float() {
let a = Float32Array::from(vec![1., f32::MAX, 6., -4., -1., 0.]);
let b = Float32Array::from(vec![1., f32::MAX, f32::MAX, -3., 45., 0.]);
let result = add(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&Float32Array::from(vec![2., f32::INFINITY, f32::MAX, -7., 44.0, 0.])
);
let result = sub(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&Float32Array::from(vec![0., 0., f32::MIN, -1., -46., 0.])
);
let result = mul(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&Float32Array::from(vec![1., f32::INFINITY, f32::INFINITY, 12., -45., 0.])
);
let result = div(&a, &b).unwrap();
let r = result.as_primitive::<Float32Type>();
assert_eq!(r.value(0), 1.);
assert_eq!(r.value(1), 1.);
assert!(r.value(2) < f32::EPSILON);
assert_eq!(r.value(3), -4. / -3.);
assert!(r.value(5).is_nan());
let result = rem(&a, &b).unwrap();
let r = result.as_primitive::<Float32Type>();
assert_eq!(&r.values()[..5], &[0., 0., 6., -1., -1.]);
assert!(r.value(5).is_nan());
}
#[test]
fn test_decimal() {
let a = Decimal128Array::from(vec![15, 0, -577, 334, -78, 3])
.with_precision_and_scale(12, 3)
.unwrap();
let b = Decimal128Array::from(vec![54, 34, -356, 3, 6, 745])
.with_precision_and_scale(12, 1)
.unwrap();
let result = add(&a, &b).unwrap();
assert_eq!(result.data_type(), &DataType::Decimal128(15, 3));
assert_eq!(
result.as_primitive::<Decimal128Type>().values(),
&[5415, 3400, -36177, 634, 522, 74503]
);
let result = sub(&a, &b).unwrap();
assert_eq!(result.data_type(), &DataType::Decimal128(15, 3));
assert_eq!(
result.as_primitive::<Decimal128Type>().values(),
&[-5385, -3400, 35023, 34, -678, -74497]
);
let result = mul(&a, &b).unwrap();
assert_eq!(result.data_type(), &DataType::Decimal128(25, 4));
assert_eq!(
result.as_primitive::<Decimal128Type>().values(),
&[810, 0, 205412, 1002, -468, 2235]
);
let result = div(&a, &b).unwrap();
assert_eq!(result.data_type(), &DataType::Decimal128(17, 7));
assert_eq!(
result.as_primitive::<Decimal128Type>().values(),
&[27777, 0, 162078, 11133333, -1300000, 402]
);
let result = rem(&a, &b).unwrap();
assert_eq!(result.data_type(), &DataType::Decimal128(12, 3));
assert_eq!(
result.as_primitive::<Decimal128Type>().values(),
&[15, 0, -577, 34, -78, 3]
);
let a = Decimal128Array::from(vec![1])
.with_precision_and_scale(3, 3)
.unwrap();
let b = Decimal128Array::from(vec![1])
.with_precision_and_scale(37, 37)
.unwrap();
let err = mul(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Invalid argument error: Output scale of Decimal128(3, 3) * Decimal128(37, 37) would exceed max scale of 38");
let a = Decimal128Array::from(vec![1])
.with_precision_and_scale(3, -2)
.unwrap();
let err = add(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Compute error: Overflow happened on: 10 ^ 39");
let a = Decimal128Array::from(vec![10])
.with_precision_and_scale(3, -1)
.unwrap();
let err = add(&a, &b).unwrap_err().to_string();
assert_eq!(
err,
"Compute error: Overflow happened on: 10 * 100000000000000000000000000000000000000"
);
let b = Decimal128Array::from(vec![0])
.with_precision_and_scale(1, 1)
.unwrap();
let err = div(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Divide by zero error");
let err = rem(&a, &b).unwrap_err().to_string();
assert_eq!(err, "Divide by zero error");
}
fn test_timestamp_impl<T: TimestampOp>() {
let a = PrimitiveArray::<T>::new(vec![2000000, 434030324, 53943340].into(), None);
let b = PrimitiveArray::<T>::new(vec![329593, 59349, 694994].into(), None);
let result = sub(&a, &b).unwrap();
assert_eq!(
result.as_primitive::<T::Duration>().values(),
&[1670407, 433970975, 53248346]
);
let r2 = add(&b, &result.as_ref()).unwrap();
assert_eq!(r2.as_ref(), &a);
let r3 = add(&result.as_ref(), &b).unwrap();
assert_eq!(r3.as_ref(), &a);
let format_array = |x: &dyn Array| -> Vec<String> {
x.as_primitive::<T>()
.values()
.into_iter()
.map(|x| as_datetime::<T>(*x).unwrap().to_string())
.collect()
};
let values = vec![
"1970-01-01T00:00:00Z",
"2010-04-01T04:00:20Z",
"1960-01-30T04:23:20Z",
]
.into_iter()
.map(|x| T::make_value(DateTime::parse_from_rfc3339(x).unwrap().naive_utc()).unwrap())
.collect();
let a = PrimitiveArray::<T>::new(values, None);
let b = IntervalYearMonthArray::from(vec![
IntervalYearMonthType::make_value(5, 34),
IntervalYearMonthType::make_value(-2, 4),
IntervalYearMonthType::make_value(7, -4),
]);
let r4 = add(&a, &b).unwrap();
assert_eq!(
&format_array(r4.as_ref()),
&[
"1977-11-01 00:00:00".to_string(),
"2008-08-01 04:00:20".to_string(),
"1966-09-30 04:23:20".to_string()
]
);
let r5 = sub(&r4, &b).unwrap();
assert_eq!(r5.as_ref(), &a);
let b = IntervalDayTimeArray::from(vec![
IntervalDayTimeType::make_value(5, 454000),
IntervalDayTimeType::make_value(-34, 0),
IntervalDayTimeType::make_value(7, -4000),
]);
let r6 = add(&a, &b).unwrap();
assert_eq!(
&format_array(r6.as_ref()),
&[
"1970-01-06 00:07:34".to_string(),
"2010-02-26 04:00:20".to_string(),
"1960-02-06 04:23:16".to_string()
]
);
let r7 = sub(&r6, &b).unwrap();
assert_eq!(r7.as_ref(), &a);
let b = IntervalMonthDayNanoArray::from(vec![
IntervalMonthDayNanoType::make_value(344, 34, -43_000_000_000),
IntervalMonthDayNanoType::make_value(-593, -33, 13_000_000_000),
IntervalMonthDayNanoType::make_value(5, 2, 493_000_000_000),
]);
let r8 = add(&a, &b).unwrap();
assert_eq!(
&format_array(r8.as_ref()),
&[
"1998-10-04 23:59:17".to_string(),
"1960-09-29 04:00:33".to_string(),
"1960-07-02 04:31:33".to_string()
]
);
let r9 = sub(&r8, &b).unwrap();
assert_eq!(
&format_array(r9.as_ref()),
&[
"1970-01-02 00:00:00".to_string(),
"2010-04-02 04:00:20".to_string(),
"1960-01-31 04:23:20".to_string()
]
);
}
#[test]
fn test_timestamp() {
test_timestamp_impl::<TimestampSecondType>();
test_timestamp_impl::<TimestampMillisecondType>();
test_timestamp_impl::<TimestampMicrosecondType>();
test_timestamp_impl::<TimestampNanosecondType>();
}
#[test]
fn test_interval() {
let a = IntervalYearMonthArray::from(vec![
IntervalYearMonthType::make_value(32, 4),
IntervalYearMonthType::make_value(32, 4),
]);
let b = IntervalYearMonthArray::from(vec![
IntervalYearMonthType::make_value(-4, 6),
IntervalYearMonthType::make_value(-3, 23),
]);
let result = add(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&IntervalYearMonthArray::from(vec![
IntervalYearMonthType::make_value(28, 10),
IntervalYearMonthType::make_value(29, 27)
])
);
let result = sub(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&IntervalYearMonthArray::from(vec![
IntervalYearMonthType::make_value(36, -2),
IntervalYearMonthType::make_value(35, -19)
])
);
let a = IntervalDayTimeArray::from(vec![
IntervalDayTimeType::make_value(32, 4),
IntervalDayTimeType::make_value(32, 4),
]);
let b = IntervalDayTimeArray::from(vec![
IntervalDayTimeType::make_value(-4, 6),
IntervalDayTimeType::make_value(-3, 23),
]);
let result = add(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&IntervalDayTimeArray::from(vec![
IntervalDayTimeType::make_value(28, 10),
IntervalDayTimeType::make_value(29, 27)
])
);
let result = sub(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&IntervalDayTimeArray::from(vec![
IntervalDayTimeType::make_value(36, -2),
IntervalDayTimeType::make_value(35, -19)
])
);
let a = IntervalMonthDayNanoArray::from(vec![
IntervalMonthDayNanoType::make_value(32, 4, 4000000000000),
IntervalMonthDayNanoType::make_value(32, 4, 45463000000000000),
]);
let b = IntervalMonthDayNanoArray::from(vec![
IntervalMonthDayNanoType::make_value(-4, 6, 46000000000000),
IntervalMonthDayNanoType::make_value(-3, 23, 3564000000000000),
]);
let result = add(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&IntervalMonthDayNanoArray::from(vec![
IntervalMonthDayNanoType::make_value(28, 10, 50000000000000),
IntervalMonthDayNanoType::make_value(29, 27, 49027000000000000)
])
);
let result = sub(&a, &b).unwrap();
assert_eq!(
result.as_ref(),
&IntervalMonthDayNanoArray::from(vec![
IntervalMonthDayNanoType::make_value(36, -2, -42000000000000),
IntervalMonthDayNanoType::make_value(35, -19, 41899000000000000)
])
);
let a = IntervalMonthDayNanoArray::from(vec![i64::MAX as i128]);
let b = IntervalMonthDayNanoArray::from(vec![1]);
let err = add(&a, &b).unwrap_err().to_string();
assert_eq!(
err,
"Compute error: Overflow happened on: 9223372036854775807 + 1"
);
}
fn test_duration_impl<T: ArrowPrimitiveType<Native = i64>>() {
let a = PrimitiveArray::<T>::new(vec![1000, 4394, -3944].into(), None);
let b = PrimitiveArray::<T>::new(vec![4, -5, -243].into(), None);
let result = add(&a, &b).unwrap();
assert_eq!(result.as_primitive::<T>().values(), &[1004, 4389, -4187]);
let result = sub(&a, &b).unwrap();
assert_eq!(result.as_primitive::<T>().values(), &[996, 4399, -3701]);
let err = mul(&a, &b).unwrap_err().to_string();
assert!(
err.contains("Invalid duration arithmetic operation"),
"{err}"
);
let err = div(&a, &b).unwrap_err().to_string();
assert!(
err.contains("Invalid duration arithmetic operation"),
"{err}"
);
let err = rem(&a, &b).unwrap_err().to_string();
assert!(
err.contains("Invalid duration arithmetic operation"),
"{err}"
);
let a = PrimitiveArray::<T>::new(vec![i64::MAX].into(), None);
let b = PrimitiveArray::<T>::new(vec![1].into(), None);
let err = add(&a, &b).unwrap_err().to_string();
assert_eq!(
err,
"Compute error: Overflow happened on: 9223372036854775807 + 1"
);
}
#[test]
fn test_duration() {
test_duration_impl::<DurationSecondType>();
test_duration_impl::<DurationMillisecondType>();
test_duration_impl::<DurationMicrosecondType>();
test_duration_impl::<DurationNanosecondType>();
}
fn test_date_impl<T: ArrowPrimitiveType, F>(f: F)
where
F: Fn(NaiveDate) -> T::Native,
T::Native: TryInto<i64>,
{
let a = PrimitiveArray::<T>::new(
vec![
f(NaiveDate::from_ymd_opt(1979, 1, 30).unwrap()),
f(NaiveDate::from_ymd_opt(2010, 4, 3).unwrap()),
f(NaiveDate::from_ymd_opt(2008, 2, 29).unwrap()),
]
.into(),
None,
);
let b = IntervalYearMonthArray::from(vec![
IntervalYearMonthType::make_value(34, 2),
IntervalYearMonthType::make_value(3, -3),
IntervalYearMonthType::make_value(-12, 4),
]);
let format_array = |x: &dyn Array| -> Vec<String> {
x.as_primitive::<T>()
.values()
.into_iter()
.map(|x| {
as_date::<T>((*x).try_into().ok().unwrap())
.unwrap()
.to_string()
})
.collect()
};
let result = add(&a, &b).unwrap();
assert_eq!(
&format_array(result.as_ref()),
&[
"2013-03-30".to_string(),
"2013-01-03".to_string(),
"1996-06-29".to_string(),
]
);
let result = sub(&result, &b).unwrap();
assert_eq!(result.as_ref(), &a);
let b = IntervalDayTimeArray::from(vec![
IntervalDayTimeType::make_value(34, 2),
IntervalDayTimeType::make_value(3, -3),
IntervalDayTimeType::make_value(-12, 4),
]);
let result = add(&a, &b).unwrap();
assert_eq!(
&format_array(result.as_ref()),
&[
"1979-03-05".to_string(),
"2010-04-06".to_string(),
"2008-02-17".to_string(),
]
);
let result = sub(&result, &b).unwrap();
assert_eq!(result.as_ref(), &a);
let b = IntervalMonthDayNanoArray::from(vec![
IntervalMonthDayNanoType::make_value(34, 2, -34353534),
IntervalMonthDayNanoType::make_value(3, -3, 2443),
IntervalMonthDayNanoType::make_value(-12, 4, 2323242423232),
]);
let result = add(&a, &b).unwrap();
assert_eq!(
&format_array(result.as_ref()),
&[
"1981-12-02".to_string(),
"2010-06-30".to_string(),
"2007-03-04".to_string(),
]
);
let result = sub(&result, &b).unwrap();
assert_eq!(
&format_array(result.as_ref()),
&[
"1979-01-31".to_string(),
"2010-04-02".to_string(),
"2008-02-29".to_string(),
]
);
}
#[test]
fn test_date() {
test_date_impl::<Date32Type, _>(Date32Type::from_naive_date);
test_date_impl::<Date64Type, _>(Date64Type::from_naive_date);
let a = Date32Array::from(vec![i32::MIN, i32::MAX, 23, 7684]);
let b = Date32Array::from(vec![i32::MIN, i32::MIN, -2, 45]);
let result = sub(&a, &b).unwrap();
assert_eq!(
result.as_primitive::<DurationSecondType>().values(),
&[0, 371085174288000, 2160000, 660009600]
);
let a = Date64Array::from(vec![4343, 76676, 3434]);
let b = Date64Array::from(vec![3, -5, 5]);
let result = sub(&a, &b).unwrap();
assert_eq!(
result.as_primitive::<DurationMillisecondType>().values(),
&[4340, 76681, 3429]
);
let a = Date64Array::from(vec![i64::MAX]);
let b = Date64Array::from(vec![-1]);
let err = sub(&a, &b).unwrap_err().to_string();
assert_eq!(
err,
"Compute error: Overflow happened on: 9223372036854775807 - -1"
);
}
}