1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
//! Trace and batch implementations based on sorted ranges.
//!
//! The types and type aliases in this module start with either
//!
//! * `OrdVal`: Collections whose data have the form `(key, val)` where `key` is ordered.
//! * `OrdKey`: Collections whose data have the form `key` where `key` is ordered.
//!
//! Although `OrdVal` is more general than `OrdKey`, the latter has a simpler representation
//! and should consume fewer resources (computation and memory) when it applies.

use std::rc::Rc;

use crate::trace::implementations::spine_fueled::Spine;
use crate::trace::implementations::merge_batcher::MergeBatcher;
use crate::trace::implementations::merge_batcher_col::ColumnatedMergeBatcher;
use crate::trace::rc_blanket_impls::RcBuilder;

use super::{Update, Layout, Vector, TStack, Preferred};

pub use self::val_batch::{OrdValBatch, OrdValBuilder};
pub use self::key_batch::{OrdKeyBatch, OrdKeyBuilder};

/// A trace implementation using a spine of ordered lists.
pub type OrdValSpine<K, V, T, R> = Spine<
    Rc<OrdValBatch<Vector<((K,V),T,R)>>>,
    MergeBatcher<K,V,T,R>,
    RcBuilder<OrdValBuilder<Vector<((K,V),T,R)>>>,
>;
// /// A trace implementation for empty values using a spine of ordered lists.
// pub type OrdKeySpine<K, T, R> = Spine<Rc<OrdKeyBatch<Vector<((K,()),T,R)>>>>;

/// A trace implementation backed by columnar storage.
pub type ColValSpine<K, V, T, R> = Spine<
    Rc<OrdValBatch<TStack<((K,V),T,R)>>>,
    ColumnatedMergeBatcher<K,V,T,R>,
    RcBuilder<OrdValBuilder<TStack<((K,V),T,R)>>>,
>;

/// A trace implementation using a spine of ordered lists.
pub type OrdKeySpine<K, T, R> = Spine<
    Rc<OrdKeyBatch<Vector<((K,()),T,R)>>>,
    MergeBatcher<K,(),T,R>,
    RcBuilder<OrdKeyBuilder<Vector<((K,()),T,R)>>>,
>;
// /// A trace implementation for empty values using a spine of ordered lists.
// pub type OrdKeySpine<K, T, R> = Spine<Rc<OrdKeyBatch<Vector<((K,()),T,R)>>>>;

/// A trace implementation backed by columnar storage.
pub type ColKeySpine<K, T, R> = Spine<
    Rc<OrdKeyBatch<TStack<((K,()),T,R)>>>,
    ColumnatedMergeBatcher<K,(),T,R>,
    RcBuilder<OrdKeyBuilder<TStack<((K,()),T,R)>>>,
>;

/// A trace implementation backed by columnar storage.
pub type PreferredSpine<K, V, T, R> = Spine<
    Rc<OrdValBatch<Preferred<K,V,T,R>>>,
    ColumnatedMergeBatcher<<K as ToOwned>::Owned,<V as ToOwned>::Owned,T,R>,
    RcBuilder<OrdValBuilder<Preferred<K,V,T,R>>>,
>;


// /// A trace implementation backed by columnar storage.
// pub type ColKeySpine<K, T, R> = Spine<Rc<OrdKeyBatch<TStack<((K,()),T,R)>>>>;

mod val_batch {

    use std::marker::PhantomData;
    use abomonation_derive::Abomonation;
    use timely::progress::{Antichain, frontier::AntichainRef};

    use crate::trace::{Batch, BatchReader, Builder, Cursor, Description, Merger};
    use crate::trace::implementations::BatchContainer;
    use crate::trace::cursor::MyTrait;

    use super::{Layout, Update};

    /// An immutable collection of update tuples, from a contiguous interval of logical times.
    #[derive(Abomonation, Debug)]
    pub struct OrdValStorage<L: Layout> {
        /// An ordered list of keys, corresponding to entries in `keys_offs`.
        pub keys: L::KeyContainer,
        /// Offsets used to provide indexes from keys to values.
        ///
        /// The length of this list is one longer than `keys`, so that we can avoid bounds logic.
        pub keys_offs: L::OffsetContainer,
        /// Concatenated ordered lists of values, bracketed by offsets in `keys_offs`.
        pub vals: L::ValContainer,
        /// Offsets used to provide indexes from values to updates.
        ///
        /// This list has a special representation that any empty range indicates the singleton
        /// element just before the range, as if the start were decremented by one. The empty
        /// range is otherwise an invalid representation, and we borrow it to compactly encode
        /// single common update values (e.g. in a snapshot, the minimal time and a diff of one).
        ///
        /// The length of this list is one longer than `vals`, so that we can avoid bounds logic.
        pub vals_offs: L::OffsetContainer,
        /// Concatenated ordered lists of updates, bracketed by offsets in `vals_offs`.
        pub updates: L::UpdContainer,
    }

    impl<L: Layout> OrdValStorage<L> {
        /// Lower and upper bounds in `self.vals` corresponding to the key at `index`.
        fn values_for_key(&self, index: usize) -> (usize, usize) {
            (self.keys_offs.index(index).into_owned(), self.keys_offs.index(index+1).into_owned())
        }
        /// Lower and upper bounds in `self.updates` corresponding to the value at `index`.
        fn updates_for_value(&self, index: usize) -> (usize, usize) {
            let mut lower = self.vals_offs.index(index).into_owned();
            let upper = self.vals_offs.index(index+1).into_owned();
            // We use equal lower and upper to encode "singleton update; just before here".
            // It should only apply when there is a prior element, so `lower` should be greater than zero.
            if lower == upper {
                assert!(lower > 0);
                lower -= 1;
            }
            (lower, upper)
        }
    }

    /// An immutable collection of update tuples, from a contiguous interval of logical times.
    ///
    /// The `L` parameter captures how the updates should be laid out, and `C` determines which
    /// merge batcher to select.
    #[derive(Abomonation)]
    pub struct OrdValBatch<L: Layout> {
        /// The updates themselves.
        pub storage: OrdValStorage<L>,
        /// Description of the update times this layer represents.
        pub description: Description<<L::Target as Update>::Time>,
        /// The number of updates reflected in the batch.
        ///
        /// We track this separately from `storage` because due to the singleton optimization,
        /// we may have many more updates than `storage.updates.len()`. It should equal that 
        /// length, plus the number of singleton optimizations employed.
        pub updates: usize,
    }

    impl<L: Layout> BatchReader for OrdValBatch<L> {
        type Key<'a> = <L::KeyContainer as BatchContainer>::ReadItem<'a>;
        type KeyOwned = <L::Target as Update>::Key;
        type Val<'a> = <L::ValContainer as BatchContainer>::ReadItem<'a>;
        type ValOwned = <L::Target as Update>::Val;
        type Time = <L::Target as Update>::Time;
        type Diff = <L::Target as Update>::Diff;

        type Cursor = OrdValCursor<L>;
        fn cursor(&self) -> Self::Cursor { 
            OrdValCursor {
                key_cursor: 0,
                val_cursor: 0,
                phantom: std::marker::PhantomData,
            }
        }
        fn len(&self) -> usize { 
            // Normally this would be `self.updates.len()`, but we have a clever compact encoding.
            // Perhaps we should count such exceptions to the side, to provide a correct accounting.
            self.updates
        }
        fn description(&self) -> &Description<<L::Target as Update>::Time> { &self.description }
    }

    impl<L: Layout> Batch for OrdValBatch<L> {
        type Merger = OrdValMerger<L>;

        fn begin_merge(&self, other: &Self, compaction_frontier: AntichainRef<<L::Target as Update>::Time>) -> Self::Merger {
            OrdValMerger::new(self, other, compaction_frontier)
        }
    }

    /// State for an in-progress merge.
    pub struct OrdValMerger<L: Layout> {
        /// Key position to merge next in the first batch.
        key_cursor1: usize,
        /// Key position to merge next in the second batch.
        key_cursor2: usize,
        /// result that we are currently assembling.
        result: OrdValStorage<L>,
        /// description
        description: Description<<L::Target as Update>::Time>,

        /// Local stash of updates, to use for consolidation.
        ///
        /// We could emulate a `ChangeBatch` here, with related compaction smarts.
        /// A `ChangeBatch` itself needs an `i64` diff type, which we have not.
        update_stash: Vec<(<L::Target as Update>::Time, <L::Target as Update>::Diff)>,
        /// Counts the number of singleton-optimized entries, that we may correctly count the updates.
        singletons: usize,
    }

    impl<L: Layout> Merger<OrdValBatch<L>> for OrdValMerger<L>
    where
        OrdValBatch<L>: Batch<Time=<L::Target as Update>::Time>
    {
        fn new(batch1: &OrdValBatch<L>, batch2: &OrdValBatch<L>, compaction_frontier: AntichainRef<<L::Target as Update>::Time>) -> Self {

            assert!(batch1.upper() == batch2.lower());
            use crate::lattice::Lattice;
            let mut since = batch1.description().since().join(batch2.description().since());
            since = since.join(&compaction_frontier.to_owned());

            let description = Description::new(batch1.lower().clone(), batch2.upper().clone(), since);

            let batch1 = &batch1.storage;
            let batch2 = &batch2.storage;

            let mut storage = OrdValStorage {
                keys: L::KeyContainer::merge_capacity(&batch1.keys, &batch2.keys),
                keys_offs: L::OffsetContainer::with_capacity(batch1.keys_offs.len() + batch2.keys_offs.len()),
                vals: L::ValContainer::merge_capacity(&batch1.vals, &batch2.vals),
                vals_offs: L::OffsetContainer::with_capacity(batch1.vals_offs.len() + batch2.vals_offs.len()),
                updates: L::UpdContainer::merge_capacity(&batch1.updates, &batch2.updates),
            };

            // Mark explicit types because type inference fails to resolve it.
            let keys_offs: &mut L::OffsetContainer = &mut storage.keys_offs;
            keys_offs.push(0);
            let vals_offs: &mut L::OffsetContainer = &mut storage.vals_offs;
            vals_offs.push(0);

            OrdValMerger {
                key_cursor1: 0,
                key_cursor2: 0,
                result: storage,
                description,
                update_stash: Vec::new(),
                singletons: 0,
            }
        }
        fn done(self) -> OrdValBatch<L> {
            OrdValBatch {
                updates: self.result.updates.len() + self.singletons,
                storage: self.result,
                description: self.description,
            }
        }
        fn work(&mut self, source1: &OrdValBatch<L>, source2: &OrdValBatch<L>, fuel: &mut isize) {

            // An (incomplete) indication of the amount of work we've done so far.
            let starting_updates = self.result.updates.len();
            let mut effort = 0isize;

            // While both mergees are still active, perform single-key merges.
            while self.key_cursor1 < source1.storage.keys.len() && self.key_cursor2 < source2.storage.keys.len() && effort < *fuel {
                self.merge_key(&source1.storage, &source2.storage);
                // An (incomplete) accounting of the work we've done.
                effort = (self.result.updates.len() - starting_updates) as isize;
            }

            // Merging is complete, and only copying remains. 
            // Key-by-key copying allows effort interruption, and compaction.
            while self.key_cursor1 < source1.storage.keys.len() && effort < *fuel {
                self.copy_key(&source1.storage, self.key_cursor1);
                self.key_cursor1 += 1;
                effort = (self.result.updates.len() - starting_updates) as isize;
            }
            while self.key_cursor2 < source2.storage.keys.len() && effort < *fuel {
                self.copy_key(&source2.storage, self.key_cursor2);
                self.key_cursor2 += 1;
                effort = (self.result.updates.len() - starting_updates) as isize;
            }

            *fuel -= effort;
        }
    }

    // Helper methods in support of merging batches.
    impl<L: Layout> OrdValMerger<L> {
        /// Copy the next key in `source`.
        ///
        /// The method extracts the key in `source` at `cursor`, and merges it in to `self`.
        /// If the result does not wholly cancel, they key will be present in `self` with the
        /// compacted values and updates.
        ///
        /// The caller should be certain to update the cursor, as this method does not do this.
        fn copy_key(&mut self, source: &OrdValStorage<L>, cursor: usize) {
            // Capture the initial number of values to determine if the merge was ultimately non-empty.
            let init_vals = self.result.vals.len();
            let (mut lower, upper) = source.values_for_key(cursor);
            while lower < upper {
                self.stash_updates_for_val(source, lower);
                if let Some(off) = self.consolidate_updates() {
                    self.result.vals_offs.push(off);
                    self.result.vals.copy(source.vals.index(lower));
                }
                lower += 1;
            }            

            // If we have pushed any values, copy the key as well.
            if self.result.vals.len() > init_vals {
                self.result.keys.copy(source.keys.index(cursor));
                self.result.keys_offs.push(self.result.vals.len());
            }           
        }
        /// Merge the next key in each of `source1` and `source2` into `self`, updating the appropriate cursors.
        ///
        /// This method only merges a single key. It applies all compaction necessary, and may result in no output
        /// if the updates cancel either directly or after compaction.
        fn merge_key(&mut self, source1: &OrdValStorage<L>, source2: &OrdValStorage<L>) {
            use ::std::cmp::Ordering;
            match source1.keys.index(self.key_cursor1).cmp(&source2.keys.index(self.key_cursor2)) {
                Ordering::Less => { 
                    self.copy_key(source1, self.key_cursor1);
                    self.key_cursor1 += 1;
                },
                Ordering::Equal => {
                    // Keys are equal; must merge all values from both sources for this one key.
                    let (lower1, upper1) = source1.values_for_key(self.key_cursor1);
                    let (lower2, upper2) = source2.values_for_key(self.key_cursor2);
                    if let Some(off) = self.merge_vals((source1, lower1, upper1), (source2, lower2, upper2)) {
                        self.result.keys.copy(source1.keys.index(self.key_cursor1));
                        self.result.keys_offs.push(off);
                    }
                    // Increment cursors in either case; the keys are merged.
                    self.key_cursor1 += 1;
                    self.key_cursor2 += 1;
                },
                Ordering::Greater => {
                    self.copy_key(source2, self.key_cursor2);
                    self.key_cursor2 += 1;
                },
            }
        }
        /// Merge two ranges of values into `self`.
        ///
        /// If the compacted result contains values with non-empty updates, the function returns
        /// an offset that should be recorded to indicate the upper extent of the result values.
        fn merge_vals(
            &mut self, 
            (source1, mut lower1, upper1): (&OrdValStorage<L>, usize, usize), 
            (source2, mut lower2, upper2): (&OrdValStorage<L>, usize, usize),
        ) -> Option<usize> {
            // Capture the initial number of values to determine if the merge was ultimately non-empty.
            let init_vals = self.result.vals.len();
            while lower1 < upper1 && lower2 < upper2 {
                // We compare values, and fold in updates for the lowest values;
                // if they are non-empty post-consolidation, we write the value.
                // We could multi-way merge and it wouldn't be very complicated.
                use ::std::cmp::Ordering;
                match source1.vals.index(lower1).cmp(&source2.vals.index(lower2)) {
                    Ordering::Less => { 
                        // Extend stash by updates, with logical compaction applied.
                        self.stash_updates_for_val(source1, lower1);
                        if let Some(off) = self.consolidate_updates() {
                            self.result.vals_offs.push(off);
                            self.result.vals.copy(source1.vals.index(lower1));
                        }
                        lower1 += 1;
                    },
                    Ordering::Equal => {
                        self.stash_updates_for_val(source1, lower1);
                        self.stash_updates_for_val(source2, lower2);
                        if let Some(off) = self.consolidate_updates() {
                            self.result.vals_offs.push(off);
                            self.result.vals.copy(source1.vals.index(lower1));
                        }
                        lower1 += 1;
                        lower2 += 1;
                    },
                    Ordering::Greater => { 
                        // Extend stash by updates, with logical compaction applied.
                        self.stash_updates_for_val(source2, lower2);
                        if let Some(off) = self.consolidate_updates() {
                            self.result.vals_offs.push(off);
                            self.result.vals.copy(source2.vals.index(lower2));
                        }
                        lower2 += 1;
                    },
                }
            }
            // Merging is complete, but we may have remaining elements to push.
            while lower1 < upper1 {
                self.stash_updates_for_val(source1, lower1);
                if let Some(off) = self.consolidate_updates() {
                    self.result.vals_offs.push(off);
                    self.result.vals.copy(source1.vals.index(lower1));
                }
                lower1 += 1;
            }
            while lower2 < upper2 {
                self.stash_updates_for_val(source2, lower2);
                if let Some(off) = self.consolidate_updates() {
                    self.result.vals_offs.push(off);
                    self.result.vals.copy(source2.vals.index(lower2));
                }
                lower2 += 1;
            }

            // Values being pushed indicate non-emptiness.
            if self.result.vals.len() > init_vals {
                Some(self.result.vals.len())
            } else {
                None
            }
        }

        /// Transfer updates for an indexed value in `source` into `self`, with compaction applied.
        fn stash_updates_for_val(&mut self, source: &OrdValStorage<L>, index: usize) {
            let (lower, upper) = source.updates_for_value(index);
            for i in lower .. upper {
                // NB: Here is where we would need to look back if `lower == upper`.
                let (time, diff) = &source.updates.index(i).into_owned();
                use crate::lattice::Lattice;
                let mut new_time = time.clone();
                new_time.advance_by(self.description.since().borrow());
                self.update_stash.push((new_time, diff.clone()));
            }
        }

        /// Consolidates `self.updates_stash` and produces the offset to record, if any.
        fn consolidate_updates(&mut self) -> Option<usize> {
            use crate::consolidation;
            consolidation::consolidate(&mut self.update_stash);
            if !self.update_stash.is_empty() {
                // If there is a single element, equal to a just-prior recorded update,
                // we push nothing and report an unincremented offset to encode this case.
                if self.update_stash.len() == 1 && self.result.updates.last().map(|ud| self.update_stash.last().unwrap().equals(ud)).unwrap_or(false) {
                        // Just clear out update_stash, as we won't drain it here.
                    self.update_stash.clear();
                    self.singletons += 1;
                }
                else {
                    // Conventional; move `update_stash` into `updates`.
                    for item in self.update_stash.drain(..) {
                        self.result.updates.push(item);
                    }
                }
                Some(self.result.updates.len())
            } else {
                None
            }
        }
    }

    /// A cursor for navigating a single layer.
    pub struct OrdValCursor<L: Layout> {
        /// Absolute position of the current key.
        key_cursor: usize,
        /// Absolute position of the current value.
        val_cursor: usize,
        /// Phantom marker for Rust happiness.
        phantom: PhantomData<L>,
    }

    impl<L: Layout> Cursor for OrdValCursor<L> {

        type Key<'a> = <L::KeyContainer as BatchContainer>::ReadItem<'a>;
        type KeyOwned = <L::Target as Update>::Key;
        type Val<'a> = <L::ValContainer as BatchContainer>::ReadItem<'a>;
        type ValOwned = <L::Target as Update>::Val;
        type Time = <L::Target as Update>::Time;
        type Diff = <L::Target as Update>::Diff;

        type Storage = OrdValBatch<L>;

        fn key<'a>(&self, storage: &'a OrdValBatch<L>) -> Self::Key<'a> { storage.storage.keys.index(self.key_cursor) }
        fn val<'a>(&self, storage: &'a OrdValBatch<L>) -> Self::Val<'a> { storage.storage.vals.index(self.val_cursor) }
        fn map_times<L2: FnMut(&Self::Time, &Self::Diff)>(&mut self, storage: &OrdValBatch<L>, mut logic: L2) {
            let (lower, upper) = storage.storage.updates_for_value(self.val_cursor);
            for index in lower .. upper {
                let (time, diff) = &storage.storage.updates.index(index);
                logic(time, diff);
            }
        }
        fn key_valid(&self, storage: &OrdValBatch<L>) -> bool { self.key_cursor < storage.storage.keys.len() }
        fn val_valid(&self, storage: &OrdValBatch<L>) -> bool { self.val_cursor < storage.storage.values_for_key(self.key_cursor).1 }
        fn step_key(&mut self, storage: &OrdValBatch<L>){
            self.key_cursor += 1;
            if self.key_valid(storage) {
                self.rewind_vals(storage);
            }
            else {
                self.key_cursor = storage.storage.keys.len();
            }
        }
        fn seek_key(&mut self, storage: &OrdValBatch<L>, key: Self::Key<'_>) {
            self.key_cursor += storage.storage.keys.advance(self.key_cursor, storage.storage.keys.len(), |x| x.lt(&key));
            if self.key_valid(storage) {
                self.rewind_vals(storage);
            }
        }
        fn step_val(&mut self, storage: &OrdValBatch<L>) {
            self.val_cursor += 1; 
            if !self.val_valid(storage) {
                self.val_cursor = storage.storage.values_for_key(self.key_cursor).1;
            }
        }
        fn seek_val(&mut self, storage: &OrdValBatch<L>, val: Self::Val<'_>) {
            self.val_cursor += storage.storage.vals.advance(self.val_cursor, storage.storage.values_for_key(self.key_cursor).1, |x| x.lt(&val));
        }
        fn rewind_keys(&mut self, storage: &OrdValBatch<L>) {
            self.key_cursor = 0;
            if self.key_valid(storage) {
                self.rewind_vals(storage)
            }
        }
        fn rewind_vals(&mut self, storage: &OrdValBatch<L>) {
            self.val_cursor = storage.storage.values_for_key(self.key_cursor).0;
        }
    }

    /// A builder for creating layers from unsorted update tuples.
    pub struct OrdValBuilder<L: Layout> {
        result: OrdValStorage<L>,
        singleton: Option<(<L::Target as Update>::Time, <L::Target as Update>::Diff)>,
        /// Counts the number of singleton optimizations we performed.
        ///
        /// This number allows us to correctly gauge the total number of updates reflected in a batch,
        /// even though `updates.len()` may be much shorter than this amount.
        singletons: usize,
    }

    impl<L: Layout> OrdValBuilder<L> {
        /// Pushes a single update, which may set `self.singleton` rather than push.
        ///
        /// This operation is meant to be equivalent to `self.results.updates.push((time, diff))`.
        /// However, for "clever" reasons it does not do this. Instead, it looks for opportunities
        /// to encode a singleton update with an "absert" update: repeating the most recent offset.
        /// This otherwise invalid state encodes "look back one element".
        ///
        /// When `self.singleton` is `Some`, it means that we have seen one update and it matched the
        /// previously pushed update exactly. In that case, we do not push the update into `updates`.
        /// The update tuple is retained in `self.singleton` in case we see another update and need
        /// to recover the singleton to push it into `updates` to join the second update.
        fn push_update(&mut self, time: <L::Target as Update>::Time, diff: <L::Target as Update>::Diff) {
            // If a just-pushed update exactly equals `(time, diff)` we can avoid pushing it.
            if self.result.updates.last().map(|(t, d)| t == &time && d == &diff) == Some(true) {
                assert!(self.singleton.is_none());
                self.singleton = Some((time, diff));
            }
            else {
                // If we have pushed a single element, we need to copy it out to meet this one.
                if let Some(time_diff) = self.singleton.take() {
                    self.result.updates.push(time_diff);
                }
                self.result.updates.push((time, diff));
            }
        }
    }

    impl<L: Layout> Builder for OrdValBuilder<L> {

        type Input = ((<L::Target as Update>::Key, <L::Target as Update>::Val), <L::Target as Update>::Time, <L::Target as Update>::Diff);
        type Time = <L::Target as Update>::Time;
        type Output = OrdValBatch<L>;

        fn with_capacity(keys: usize, vals: usize, upds: usize) -> Self {
            // We don't introduce zero offsets as they will be introduced by the first `push` call.
            Self { 
                result: OrdValStorage {
                    keys: L::KeyContainer::with_capacity(keys),
                    keys_offs: L::OffsetContainer::with_capacity(keys + 1),
                    vals: L::ValContainer::with_capacity(vals),
                    vals_offs: L::OffsetContainer::with_capacity(vals + 1),
                    updates: L::UpdContainer::with_capacity(upds),
                },
                singleton: None,
                singletons: 0,
            }
        }

        #[inline]
        fn push(&mut self, ((key, val), time, diff): Self::Input) {

            // Perhaps this is a continuation of an already received key.
            if self.result.keys.last().map(|k| k.equals(&key)).unwrap_or(false) {
                // Perhaps this is a continuation of an already received value.
                if self.result.vals.last().map(|v| v.equals(&val)).unwrap_or(false) {
                    self.push_update(time, diff);
                } else {
                    // New value; complete representation of prior value.
                    self.result.vals_offs.push(self.result.updates.len());
                    if self.singleton.take().is_some() { self.singletons += 1; }
                    self.push_update(time, diff);
                    self.result.vals.push(val);
                }
            } else {
                // New key; complete representation of prior key.
                self.result.vals_offs.push(self.result.updates.len());
                if self.singleton.take().is_some() { self.singletons += 1; }
                self.result.keys_offs.push(self.result.vals.len());
                self.push_update(time, diff);
                self.result.vals.push(val);
                self.result.keys.push(key);
            }
        }

        #[inline]
        fn copy(&mut self, ((key, val), time, diff): &Self::Input) {

            // Perhaps this is a continuation of an already received key.
            if self.result.keys.last().map(|k| k.equals(key)).unwrap_or(false) {
                // Perhaps this is a continuation of an already received value.
                if self.result.vals.last().map(|v| v.equals(val)).unwrap_or(false) {
                    // TODO: here we could look for repetition, and not push the update in that case.
                    // More logic (and state) would be required to correctly wrangle this.
                    self.push_update(time.clone(), diff.clone());
                } else {
                    // New value; complete representation of prior value.
                    self.result.vals_offs.push(self.result.updates.len());
                    // Remove any pending singleton, and if it was set increment our count.
                    if self.singleton.take().is_some() { self.singletons += 1; }
                    self.push_update(time.clone(), diff.clone());
                    self.result.vals.copy_push(val);
                }
            } else {
                // New key; complete representation of prior key.
                self.result.vals_offs.push(self.result.updates.len());
                // Remove any pending singleton, and if it was set increment our count.
                if self.singleton.take().is_some() { self.singletons += 1; }
                self.result.keys_offs.push(self.result.vals.len());
                self.push_update(time.clone(), diff.clone());
                self.result.vals.copy_push(val);
                self.result.keys.copy_push(key);
            }
        }

        #[inline(never)]
        fn done(mut self, lower: Antichain<Self::Time>, upper: Antichain<Self::Time>, since: Antichain<Self::Time>) -> OrdValBatch<L> {
            // Record the final offsets
            self.result.vals_offs.push(self.result.updates.len());
            // Remove any pending singleton, and if it was set increment our count.
            if self.singleton.take().is_some() { self.singletons += 1; }
            self.result.keys_offs.push(self.result.vals.len());
            OrdValBatch {
                updates: self.result.updates.len() + self.singletons,
                storage: self.result,
                description: Description::new(lower, upper, since),
            }
        }
    }

}

mod key_batch {

    use std::marker::PhantomData;
    use abomonation_derive::Abomonation;
    use timely::progress::{Antichain, frontier::AntichainRef};

    use crate::trace::{Batch, BatchReader, Builder, Cursor, Description, Merger};
    use crate::trace::implementations::BatchContainer;
    use crate::trace::cursor::MyTrait;

    use super::{Layout, Update};

    /// An immutable collection of update tuples, from a contiguous interval of logical times.
    #[derive(Abomonation, Debug)]
    pub struct OrdKeyStorage<L: Layout> {
        /// An ordered list of keys, corresponding to entries in `keys_offs`.
        pub keys: L::KeyContainer,
        /// Offsets used to provide indexes from keys to updates.
        ///
        /// This list has a special representation that any empty range indicates the singleton
        /// element just before the range, as if the start were decremented by one. The empty
        /// range is otherwise an invalid representation, and we borrow it to compactly encode
        /// single common update values (e.g. in a snapshot, the minimal time and a diff of one).
        ///
        /// The length of this list is one longer than `keys`, so that we can avoid bounds logic.
        pub keys_offs: L::OffsetContainer,
        /// Concatenated ordered lists of updates, bracketed by offsets in `vals_offs`.
        pub updates: L::UpdContainer,
    }

    impl<L: Layout> OrdKeyStorage<L> {
        /// Lower and upper bounds in `self.vals` corresponding to the key at `index`.
        fn updates_for_key(&self, index: usize) -> (usize, usize) {
            let mut lower = self.keys_offs.index(index).into_owned();
            let upper = self.keys_offs.index(index+1).into_owned();
            // We use equal lower and upper to encode "singleton update; just before here".
            // It should only apply when there is a prior element, so `lower` should be greater than zero.
            if lower == upper {
                assert!(lower > 0);
                lower -= 1;
            }
            (lower, upper)
        }
    }

    /// An immutable collection of update tuples, from a contiguous interval of logical times.
    ///
    /// The `L` parameter captures how the updates should be laid out, and `C` determines which
    /// merge batcher to select.
    #[derive(Abomonation)]
    pub struct OrdKeyBatch<L: Layout> {
        /// The updates themselves.
        pub storage: OrdKeyStorage<L>,
        /// Description of the update times this layer represents.
        pub description: Description<<L::Target as Update>::Time>,
        /// The number of updates reflected in the batch.
        ///
        /// We track this separately from `storage` because due to the singleton optimization,
        /// we may have many more updates than `storage.updates.len()`. It should equal that
        /// length, plus the number of singleton optimizations employed.
        pub updates: usize,
    }

    impl<L: Layout> BatchReader for OrdKeyBatch<L> {
        
        type Key<'a> = <L::KeyContainer as BatchContainer>::ReadItem<'a>;
        type KeyOwned = <L::Target as Update>::Key;
        type Val<'a> = &'a ();
        type ValOwned = ();
        type Time = <L::Target as Update>::Time;
        type Diff = <L::Target as Update>::Diff;

        type Cursor = OrdKeyCursor<L>;
        fn cursor(&self) -> Self::Cursor {
            OrdKeyCursor {
                key_cursor: 0,
                val_stepped: false,
                phantom: std::marker::PhantomData,
            }
        }
        fn len(&self) -> usize {
            // Normally this would be `self.updates.len()`, but we have a clever compact encoding.
            // Perhaps we should count such exceptions to the side, to provide a correct accounting.
            self.updates
        }
        fn description(&self) -> &Description<<L::Target as Update>::Time> { &self.description }
    }

    impl<L: Layout> Batch for OrdKeyBatch<L> {
        type Merger = OrdKeyMerger<L>;

        fn begin_merge(&self, other: &Self, compaction_frontier: AntichainRef<<L::Target as Update>::Time>) -> Self::Merger {
            OrdKeyMerger::new(self, other, compaction_frontier)
        }
    }

    /// State for an in-progress merge.
    pub struct OrdKeyMerger<L: Layout> {
        /// Key position to merge next in the first batch.
        key_cursor1: usize,
        /// Key position to merge next in the second batch.
        key_cursor2: usize,
        /// result that we are currently assembling.
        result: OrdKeyStorage<L>,
        /// description
        description: Description<<L::Target as Update>::Time>,

        /// Local stash of updates, to use for consolidation.
        ///
        /// We could emulate a `ChangeBatch` here, with related compaction smarts.
        /// A `ChangeBatch` itself needs an `i64` diff type, which we have not.
        update_stash: Vec<(<L::Target as Update>::Time, <L::Target as Update>::Diff)>,
        /// Counts the number of singleton-optimized entries, that we may correctly count the updates.
        singletons: usize,
    }

    impl<L: Layout> Merger<OrdKeyBatch<L>> for OrdKeyMerger<L>
    where
        OrdKeyBatch<L>: Batch<Time=<L::Target as Update>::Time>
    {
        fn new(batch1: &OrdKeyBatch<L>, batch2: &OrdKeyBatch<L>, compaction_frontier: AntichainRef<<L::Target as Update>::Time>) -> Self {

            assert!(batch1.upper() == batch2.lower());
            use crate::lattice::Lattice;
            let mut since = batch1.description().since().join(batch2.description().since());
            since = since.join(&compaction_frontier.to_owned());

            let description = Description::new(batch1.lower().clone(), batch2.upper().clone(), since);

            let batch1 = &batch1.storage;
            let batch2 = &batch2.storage;

            let mut storage = OrdKeyStorage {
                keys: L::KeyContainer::merge_capacity(&batch1.keys, &batch2.keys),
                keys_offs: L::OffsetContainer::with_capacity(batch1.keys_offs.len() + batch2.keys_offs.len()),
                updates: L::UpdContainer::merge_capacity(&batch1.updates, &batch2.updates),
            };

            let keys_offs: &mut L::OffsetContainer = &mut storage.keys_offs;
            keys_offs.push(0);

            OrdKeyMerger {
                key_cursor1: 0,
                key_cursor2: 0,
                result: storage,
                description,
                update_stash: Vec::new(),
                singletons: 0,
            }
        }
        fn done(self) -> OrdKeyBatch<L> {
            OrdKeyBatch {
                updates: self.result.updates.len() + self.singletons,
                storage: self.result,
                description: self.description,
            }
        }
        fn work(&mut self, source1: &OrdKeyBatch<L>, source2: &OrdKeyBatch<L>, fuel: &mut isize) {

            // An (incomplete) indication of the amount of work we've done so far.
            let starting_updates = self.result.updates.len();
            let mut effort = 0isize;

            // While both mergees are still active, perform single-key merges.
            while self.key_cursor1 < source1.storage.keys.len() && self.key_cursor2 < source2.storage.keys.len() && effort < *fuel {
                self.merge_key(&source1.storage, &source2.storage);
                // An (incomplete) accounting of the work we've done.
                effort = (self.result.updates.len() - starting_updates) as isize;
            }

            // Merging is complete, and only copying remains.
            // Key-by-key copying allows effort interruption, and compaction.
            while self.key_cursor1 < source1.storage.keys.len() && effort < *fuel {
                self.copy_key(&source1.storage, self.key_cursor1);
                self.key_cursor1 += 1;
                effort = (self.result.updates.len() - starting_updates) as isize;
            }
            while self.key_cursor2 < source2.storage.keys.len() && effort < *fuel {
                self.copy_key(&source2.storage, self.key_cursor2);
                self.key_cursor2 += 1;
                effort = (self.result.updates.len() - starting_updates) as isize;
            }

            *fuel -= effort;
        }
    }

    // Helper methods in support of merging batches.
    impl<L: Layout> OrdKeyMerger<L> {
        /// Copy the next key in `source`.
        ///
        /// The method extracts the key in `source` at `cursor`, and merges it in to `self`.
        /// If the result does not wholly cancel, they key will be present in `self` with the
        /// compacted values and updates. 
        /// 
        /// The caller should be certain to update the cursor, as this method does not do this.
        fn copy_key(&mut self, source: &OrdKeyStorage<L>, cursor: usize) {
            self.stash_updates_for_key(source, cursor);
            if let Some(off) = self.consolidate_updates() {
                self.result.keys_offs.push(off);
                self.result.keys.copy(source.keys.index(cursor));
            }
        }
        /// Merge the next key in each of `source1` and `source2` into `self`, updating the appropriate cursors.
        ///
        /// This method only merges a single key. It applies all compaction necessary, and may result in no output
        /// if the updates cancel either directly or after compaction.
        fn merge_key(&mut self, source1: &OrdKeyStorage<L>, source2: &OrdKeyStorage<L>) {
            use ::std::cmp::Ordering;
            match source1.keys.index(self.key_cursor1).cmp(&source2.keys.index(self.key_cursor2)) {
                Ordering::Less => { 
                    self.copy_key(source1, self.key_cursor1);
                    self.key_cursor1 += 1;
                },
                Ordering::Equal => {
                    // Keys are equal; must merge all updates from both sources for this one key.
                    self.stash_updates_for_key(source1, self.key_cursor1);
                    self.stash_updates_for_key(source2, self.key_cursor2);
                    if let Some(off) = self.consolidate_updates() {
                        self.result.keys_offs.push(off);
                        self.result.keys.copy(source1.keys.index(self.key_cursor1));
                    }
                    // Increment cursors in either case; the keys are merged.
                    self.key_cursor1 += 1;
                    self.key_cursor2 += 1;
                },
                Ordering::Greater => {
                    self.copy_key(source2, self.key_cursor2);
                    self.key_cursor2 += 1;
                },
            }
        }

        /// Transfer updates for an indexed value in `source` into `self`, with compaction applied.
        fn stash_updates_for_key(&mut self, source: &OrdKeyStorage<L>, index: usize) {
            let (lower, upper) = source.updates_for_key(index);
            for i in lower .. upper {
                // NB: Here is where we would need to look back if `lower == upper`.
                let (time, diff) = &source.updates.index(i);
                use crate::lattice::Lattice;
                let mut new_time = time.clone();
                new_time.advance_by(self.description.since().borrow());
                self.update_stash.push((new_time, diff.clone()));
            }
        }

        /// Consolidates `self.updates_stash` and produces the offset to record, if any.
        fn consolidate_updates(&mut self) -> Option<usize> {
            use crate::consolidation;
            consolidation::consolidate(&mut self.update_stash);
            if !self.update_stash.is_empty() {
                // If there is a single element, equal to a just-prior recorded update,
                // we push nothing and report an unincremented offset to encode this case.
                if self.update_stash.len() == 1 && self.update_stash.last() == self.result.updates.last() {
                    // Just clear out update_stash, as we won't drain it here.
                    self.update_stash.clear();
                    self.singletons += 1;
                }
                else {
                    // Conventional; move `update_stash` into `updates`.
                    for item in self.update_stash.drain(..) {
                        self.result.updates.push(item);
                    }
                }
                Some(self.result.updates.len())
            } else {
                None
            }
        }
    }

    /// A cursor for navigating a single layer.
    pub struct OrdKeyCursor<L: Layout> {
        /// Absolute position of the current key.
        key_cursor: usize,
        /// If the value has been stepped for the key, there are no more values.
        val_stepped: bool,
        /// Phantom marker for Rust happiness.
        phantom: PhantomData<L>,
    }

    impl<L: Layout> Cursor for OrdKeyCursor<L> {

        type Key<'a> = <L::KeyContainer as BatchContainer>::ReadItem<'a>;
        type KeyOwned = <L::Target as Update>::Key;
        type Val<'a> = &'a ();
        type ValOwned = ();
        type Time = <L::Target as Update>::Time;
        type Diff = <L::Target as Update>::Diff;

        type Storage = OrdKeyBatch<L>;

        fn key<'a>(&self, storage: &'a Self::Storage) -> Self::Key<'a> { storage.storage.keys.index(self.key_cursor) }
        fn val<'a>(&self, _storage: &'a Self::Storage) -> &'a () { &() }
        fn map_times<L2: FnMut(&Self::Time, &Self::Diff)>(&mut self, storage: &Self::Storage, mut logic: L2) {
            let (lower, upper) = storage.storage.updates_for_key(self.key_cursor);
            for index in lower .. upper {
                let (time, diff) = &storage.storage.updates.index(index);
                logic(time, diff);
            }
        }
        fn key_valid(&self, storage: &Self::Storage) -> bool { self.key_cursor < storage.storage.keys.len() }
        fn val_valid(&self, _storage: &Self::Storage) -> bool { !self.val_stepped }
        fn step_key(&mut self, storage: &Self::Storage){
            self.key_cursor += 1;
            if self.key_valid(storage) {
                self.rewind_vals(storage);
            }
            else {
                self.key_cursor = storage.storage.keys.len();
            }
        }
        fn seek_key(&mut self, storage: &Self::Storage, key: Self::Key<'_>) {
            self.key_cursor += storage.storage.keys.advance(self.key_cursor, storage.storage.keys.len(), |x| x.lt(&key));
            if self.key_valid(storage) {
                self.rewind_vals(storage);
            }
        }
        fn step_val(&mut self, _storage: &Self::Storage) {
            self.val_stepped = true;
        }
        fn seek_val(&mut self, _storage: &Self::Storage, _val: Self::Val<'_>) { }
        fn rewind_keys(&mut self, storage: &Self::Storage) {
            self.key_cursor = 0;
            if self.key_valid(storage) {
                self.rewind_vals(storage)
            }
        }
        fn rewind_vals(&mut self, _storage: &Self::Storage) {
            self.val_stepped = false;
        }
    }

    /// A builder for creating layers from unsorted update tuples.
    pub struct OrdKeyBuilder<L: Layout> {
        result: OrdKeyStorage<L>,
        singleton: Option<(<L::Target as Update>::Time, <L::Target as Update>::Diff)>,
        /// Counts the number of singleton optimizations we performed.
        ///
        /// This number allows us to correctly gauge the total number of updates reflected in a batch,
        /// even though `updates.len()` may be much shorter than this amount.
        singletons: usize,
    }

    impl<L: Layout> OrdKeyBuilder<L> {
        /// Pushes a single update, which may set `self.singleton` rather than push.
        ///
        /// This operation is meant to be equivalent to `self.results.updates.push((time, diff))`.
        /// However, for "clever" reasons it does not do this. Instead, it looks for opportunities
        /// to encode a singleton update with an "absert" update: repeating the most recent offset.
        /// This otherwise invalid state encodes "look back one element".
        ///
        /// When `self.singleton` is `Some`, it means that we have seen one update and it matched the
        /// previously pushed update exactly. In that case, we do not push the update into `updates`.
        /// The update tuple is retained in `self.singleton` in case we see another update and need
        /// to recover the singleton to push it into `updates` to join the second update.
        fn push_update(&mut self, time: <L::Target as Update>::Time, diff: <L::Target as Update>::Diff) {
            // If a just-pushed update exactly equals `(time, diff)` we can avoid pushing it.
            if self.result.updates.last().map(|(t, d)| t == &time && d == &diff) == Some(true) {
                assert!(self.singleton.is_none());
                self.singleton = Some((time, diff));
            }
            else {
                // If we have pushed a single element, we need to copy it out to meet this one.
                if let Some(time_diff) = self.singleton.take() {
                    self.result.updates.push(time_diff);
                }
                self.result.updates.push((time, diff));
            }
        }
    }

    impl<L: Layout> Builder for OrdKeyBuilder<L> {

        type Input = ((<L::Target as Update>::Key, ()), <L::Target as Update>::Time, <L::Target as Update>::Diff);
        type Time = <L::Target as Update>::Time;
        type Output = OrdKeyBatch<L>;

        fn with_capacity(keys: usize, _vals: usize, upds: usize) -> Self {
            // We don't introduce zero offsets as they will be introduced by the first `push` call.
            Self { 
                result: OrdKeyStorage {
                    keys: L::KeyContainer::with_capacity(keys),
                    keys_offs: L::OffsetContainer::with_capacity(keys + 1),
                    updates: L::UpdContainer::with_capacity(upds),
                },
                singleton: None,
                singletons: 0,
            }
        }

        #[inline]
        fn push(&mut self, ((key, ()), time, diff): Self::Input) {

            // Perhaps this is a continuation of an already received key.
            if self.result.keys.last().map(|k| k.equals(&key)).unwrap_or(false) {
                self.push_update(time, diff);
            } else {
                // New key; complete representation of prior key.
                self.result.keys_offs.push(self.result.updates.len());
                // Remove any pending singleton, and if it was set increment our count.
                if self.singleton.take().is_some() { self.singletons += 1; }
                self.push_update(time, diff);
                self.result.keys.push(key);
            }
        }

        #[inline]
        fn copy(&mut self, ((key, ()), time, diff): &Self::Input) {

            // Perhaps this is a continuation of an already received key.
            if self.result.keys.last().map(|k| k.equals(key)).unwrap_or(false) {
                self.push_update(time.clone(), diff.clone());
            } else {
                // New key; complete representation of prior key.
                self.result.keys_offs.push(self.result.updates.len());
                // Remove any pending singleton, and if it was set increment our count.
                if self.singleton.take().is_some() { self.singletons += 1; }
                self.push_update(time.clone(), diff.clone());
                self.result.keys.copy_push(key);
            }
        }

        #[inline(never)]
        fn done(mut self, lower: Antichain<Self::Time>, upper: Antichain<Self::Time>, since: Antichain<Self::Time>) -> OrdKeyBatch<L> {
            // Record the final offsets
            self.result.keys_offs.push(self.result.updates.len());
            // Remove any pending singleton, and if it was set increment our count.
            if self.singleton.take().is_some() { self.singletons += 1; }
            OrdKeyBatch {
                updates: self.result.updates.len() + self.singletons,
                storage: self.result,
                description: Description::new(lower, upper, since),
            }
        }
    }

}