1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Tries to convert a reduce around a join to a join of reduces.
//! Also absorbs Map operators into Reduce operators.
//!
//! In a traditional DB, this transformation has a potential benefit of reducing
//! the size of the join. In our streaming system built on top of Timely
//! Dataflow and Differential Dataflow, there are two other potential benefits:
//! 1) Reducing data skew in the arrangements constructed for a join.
//! 2) The join can potentially reuse the final arrangement constructed for the
//! reduce and not have to construct its own arrangement.
//! 3) Reducing the frequency with which we have to recalculate the result of a join.
//!
//! Suppose there are two inputs R and S being joined. According to
//! [Galindo-Legaria and Joshi (2001)](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.563.8492&rep=rep1&type=pdf),
//! a full reduction pushdown to R can be done if and only if:
//! 1) Columns from R involved in join constraints are a subset of the group by keys.
//! 2) The key of S is a subset of the group by keys.
//! 3) The columns involved in the aggregation all belong to R.
//!
//! In our current implementation:
//! * We abide by condition 1 to the letter.
//! * We work around condition 2 by rewriting the reduce around a join of R to
//! S with an equivalent relational expression involving a join of R to
//! ```ignore
//! select <columns involved in join constraints>, count(true)
//! from S
//! group by <columns involved in join constraints>
//! ```
//! * TODO: We work around condition 3 in some cases by noting that `sum(R.a * S.a)`
//! is equivalent to `sum(R.a) * sum(S.a)`.
//!
//! Full documentation with examples can be found
//! [here](https://docs.google.com/document/d/1xrBJGGDkkiGBKRSNYR2W-nKba96ZOdC2mVbLqMLjJY0/edit)
//!
//! The current implementation is chosen so that reduction pushdown kicks in
//! only in the subset of cases mostly likely to help users. In the future, we
//! may allow the user to toggle the aggressiveness of reduction pushdown. A
//! more aggressive reduction pushdown implementation may, for example, try to
//! work around condition 1 by pushing down an inner reduce through the join
//! while retaining the original outer reduce.
use std::collections::{BTreeMap, BTreeSet};
use std::iter::FromIterator;
use mz_expr::visit::Visit;
use mz_expr::{AggregateExpr, JoinInputMapper, MirRelationExpr, MirScalarExpr};
use crate::TransformCtx;
/// Pushes Reduce operators toward sources.
#[derive(Debug)]
pub struct ReductionPushdown;
impl crate::Transform for ReductionPushdown {
fn name(&self) -> &'static str {
"ReductionPushdown"
}
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "reduction_pushdown")
)]
fn actually_perform_transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
// `try_visit_mut_pre` is used here because after pushing down a reduction,
// we want to see if we can push the same reduction further down.
let result = relation.try_visit_mut_pre(&mut |e| self.action(e));
mz_repr::explain::trace_plan(&*relation);
result
}
}
impl ReductionPushdown {
/// Pushes Reduce operators toward sources.
///
/// A join can be thought of as a multigraph where vertices are inputs and
/// edges are join constraints. After removing constraints containing a
/// GroupBy, the reduce will be pushed down to all connected components. If
/// there is only one connected component, this method is a no-op.
pub fn action(&self, relation: &mut MirRelationExpr) -> Result<(), crate::TransformError> {
if let MirRelationExpr::Reduce {
input,
group_key,
aggregates,
monotonic,
expected_group_size,
} = relation
{
// Map expressions can be absorbed into the Reduce at no cost.
if let MirRelationExpr::Map {
input: inner,
scalars,
} = &mut **input
{
let arity = inner.arity();
// Normalize the scalars to not be self-referential.
let mut scalars = scalars.clone();
for index in 0..scalars.len() {
let (lower, upper) = scalars.split_at_mut(index);
upper[0].visit_mut_post(&mut |e| {
if let mz_expr::MirScalarExpr::Column(c) = e {
if *c >= arity {
*e = lower[*c - arity].clone();
}
}
})?;
}
for key in group_key.iter_mut() {
key.visit_mut_post(&mut |e| {
if let mz_expr::MirScalarExpr::Column(c) = e {
if *c >= arity {
*e = scalars[*c - arity].clone();
}
}
})?;
}
for agg in aggregates.iter_mut() {
agg.expr.visit_mut_post(&mut |e| {
if let mz_expr::MirScalarExpr::Column(c) = e {
if *c >= arity {
*e = scalars[*c - arity].clone();
}
}
})?;
}
**input = inner.take_dangerous()
}
if let MirRelationExpr::Join {
inputs,
equivalences,
implementation: _,
} = &mut **input
{
if let Some(new_relation_expr) = try_push_reduce_through_join(
inputs,
equivalences,
group_key,
aggregates,
*monotonic,
*expected_group_size,
) {
*relation = new_relation_expr;
}
}
}
Ok(())
}
}
fn try_push_reduce_through_join(
inputs: &Vec<MirRelationExpr>,
equivalences: &Vec<Vec<MirScalarExpr>>,
group_key: &Vec<MirScalarExpr>,
aggregates: &Vec<AggregateExpr>,
monotonic: bool,
expected_group_size: Option<u64>,
) -> Option<MirRelationExpr> {
// Variable name details:
// The goal is to turn `old` (`Reduce { Join { <inputs> }}`) into
// `new`, which looks like:
// ```
// Project {
// Join {
// Reduce { <component> }, ... , Reduce { <component> }
// }
// }
// ```
//
// `<component>` is either `Join {<subset of inputs>}` or
// `<element of inputs>`.
let old_join_mapper =
JoinInputMapper::new_from_input_types(&inputs.iter().map(|i| i.typ()).collect::<Vec<_>>());
// 1) Partition the join constraints into constraints containing a group
// key and constraints that don't.
let (new_join_equivalences, component_equivalences): (Vec<_>, Vec<_>) = equivalences
.iter()
.cloned()
.partition(|cls| cls.iter().any(|expr| group_key.contains(expr)));
// 2) Find the connected components that remain after removing constraints
// containing the group_key. Also, track the set of constraints that
// connect the inputs in each component.
let mut components = (0..inputs.len()).map(Component::new).collect::<Vec<_>>();
for equivalence in component_equivalences {
// a) Find the inputs referenced by the constraint.
let inputs_to_connect = BTreeSet::<usize>::from_iter(
equivalence
.iter()
.flat_map(|expr| old_join_mapper.lookup_inputs(expr)),
);
// b) Extract the set of components that covers the inputs.
let (mut components_to_connect, other): (Vec<_>, Vec<_>) = components
.into_iter()
.partition(|c| c.inputs.iter().any(|i| inputs_to_connect.contains(i)));
components = other;
// c) Connect the components and push the result back into the list of
// components.
if let Some(mut connected_component) = components_to_connect.pop() {
connected_component.connect(components_to_connect, equivalence);
components.push(connected_component);
}
// d) Abort reduction pushdown if there are less than two connected components.
if components.len() < 2 {
return None;
}
}
components.sort();
// TODO: Connect components referenced by the same multi-input expression
// contained in a constraint containing a GroupBy key.
// For the example query below, there should be two components `{foo, bar}`
// and `baz`.
// ```
// select sum(foo.b) from foo, bar, baz
// where foo.a * bar.a = 24 group by foo.a * bar.a
// ```
// Maps (input idxs from old join) -> (idx of component it belongs to)
let input_component_map = BTreeMap::from_iter(
components
.iter()
.enumerate()
.flat_map(|(c_idx, c)| c.inputs.iter().map(move |i| (*i, c_idx))),
);
// 3) Construct a reduce to push to each input
let mut new_reduces = components
.into_iter()
.map(|component| ReduceBuilder::new(component, inputs, &old_join_mapper))
.collect::<Vec<_>>();
// The new projection and new join equivalences will reference columns
// produced by the new reduces, but we don't know the arities of the new
// reduces yet. Thus, they are temporarily stored as
// `(component_idx, column_idx_relative_to_new_reduce)`.
let mut new_projection = Vec::with_capacity(group_key.len());
let mut new_join_equivalences_by_component = Vec::new();
// 3a) Calculate the group key for each new reduce. We must make sure that
// the union of group keys across the new reduces can produce:
// (1) the group keys of the old reduce.
// (2) every expression in the equivalences of the new join.
for key in group_key {
// i) Find the equivalence class that the key is in.
if let Some(cls) = new_join_equivalences
.iter()
.find(|cls| cls.iter().any(|expr| expr == key))
{
// ii) Rewrite the join equivalence in terms of columns produced by
// the pushed down reduction.
let mut new_join_cls = Vec::new();
for expr in cls {
if let Some(component) =
lookup_corresponding_component(expr, &old_join_mapper, &input_component_map)
{
if key == expr {
new_projection.push((component, new_reduces[component].arity()));
}
new_join_cls.push((component, new_reduces[component].arity()));
new_reduces[component].add_group_key(expr.clone());
} else {
// Abort reduction pushdown if the expression does not
// refer to exactly one component.
return None;
}
}
new_join_equivalences_by_component.push(new_join_cls);
} else {
// If GroupBy key does not belong in an equivalence class,
// add the key to new projection + add it as a GroupBy key to
// the new component
if let Some(component) =
lookup_corresponding_component(key, &old_join_mapper, &input_component_map)
{
new_projection.push((component, new_reduces[component].arity()));
new_reduces[component].add_group_key(key.clone())
} else {
// Abort reduction pushdown if the expression does not
// refer to exactly one component.
return None;
}
}
}
// 3b) Deduce the aggregates that each reduce needs to calculate in order to
// reconstruct each aggregate in the old reduce.
for agg in aggregates {
if let Some(component) =
lookup_corresponding_component(&agg.expr, &old_join_mapper, &input_component_map)
{
if !agg.distinct {
// TODO: support non-distinct aggs.
// For more details, see https://github.com/MaterializeInc/database-issues/issues/2924
return None;
}
new_projection.push((component, new_reduces[component].arity()));
new_reduces[component].add_aggregate(agg.clone());
} else {
// TODO: support multi- and zero- component aggs
// For more details, see https://github.com/MaterializeInc/database-issues/issues/2924
return None;
}
}
// 4) Construct the new `MirRelationExpr`.
let new_join_mapper =
JoinInputMapper::new_from_input_arities(new_reduces.iter().map(|builder| builder.arity()));
let new_inputs = new_reduces
.into_iter()
.map(|builder| builder.construct_reduce(monotonic, expected_group_size))
.collect::<Vec<_>>();
let new_equivalences = new_join_equivalences_by_component
.into_iter()
.map(|cls| {
cls.into_iter()
.map(|(idx, col)| {
MirScalarExpr::Column(new_join_mapper.map_column_to_global(col, idx))
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
let new_projection = new_projection
.into_iter()
.map(|(idx, col)| new_join_mapper.map_column_to_global(col, idx))
.collect::<Vec<_>>();
Some(MirRelationExpr::join_scalars(new_inputs, new_equivalences).project(new_projection))
}
/// Returns None if `expr` does not belong to exactly one component.
fn lookup_corresponding_component(
expr: &MirScalarExpr,
old_join_mapper: &JoinInputMapper,
input_component_map: &BTreeMap<usize, usize>,
) -> Option<usize> {
let mut dedupped = old_join_mapper
.lookup_inputs(expr)
.map(|i| input_component_map[&i])
.collect::<BTreeSet<_>>();
if dedupped.len() == 1 {
dedupped.pop_first()
} else {
None
}
}
/// A subjoin represented as a multigraph.
#[derive(Eq, Ord, PartialEq, PartialOrd)]
struct Component {
/// Index numbers of the inputs in the subjoin.
/// Are the vertices in the multigraph.
inputs: Vec<usize>,
/// The edges in the multigraph.
constraints: Vec<Vec<MirScalarExpr>>,
}
impl Component {
/// Create a new component that contains only one input.
fn new(i: usize) -> Self {
Component {
inputs: vec![i],
constraints: Vec::new(),
}
}
/// Connect `self` with `others` using the edge `connecting_constraint`.
fn connect(&mut self, others: Vec<Component>, connecting_constraint: Vec<MirScalarExpr>) {
self.constraints.push(connecting_constraint);
for mut other in others {
self.inputs.append(&mut other.inputs);
self.constraints.append(&mut other.constraints);
}
self.inputs.sort();
self.inputs.dedup();
}
}
/// Constructs a Reduce around a component, localizing column references.
struct ReduceBuilder {
input: MirRelationExpr,
group_key: Vec<MirScalarExpr>,
aggregates: Vec<AggregateExpr>,
/// Maps (global column relative to old join) -> (local column relative to `input`)
localize_map: BTreeMap<usize, usize>,
}
impl ReduceBuilder {
fn new(
mut component: Component,
inputs: &Vec<MirRelationExpr>,
old_join_mapper: &JoinInputMapper,
) -> Self {
let localize_map = component
.inputs
.iter()
.flat_map(|i| old_join_mapper.global_columns(*i))
.enumerate()
.map(|(local, global)| (global, local))
.collect::<BTreeMap<_, _>>();
// Convert the subjoin from the `Component` representation to a
// `MirRelationExpr` representation.
let mut inputs = component
.inputs
.iter()
.map(|i| inputs[*i].clone())
.collect::<Vec<_>>();
// Constraints need to be localized to the subjoin.
for constraint in component.constraints.iter_mut() {
for expr in constraint.iter_mut() {
expr.permute_map(&localize_map)
}
}
let input = if inputs.len() == 1 {
let mut predicates = Vec::new();
for class in component.constraints {
for expr in class[1..].iter() {
predicates.push(
class[0]
.clone()
.call_binary(expr.clone(), mz_expr::BinaryFunc::Eq)
.or(class[0]
.clone()
.call_is_null()
.and(expr.clone().call_is_null())),
);
}
}
inputs.pop().unwrap().filter(predicates)
} else {
MirRelationExpr::join_scalars(inputs, component.constraints)
};
Self {
input,
group_key: Vec::new(),
aggregates: Vec::new(),
localize_map,
}
}
fn add_group_key(&mut self, mut key: MirScalarExpr) {
key.permute_map(&self.localize_map);
self.group_key.push(key);
}
fn add_aggregate(&mut self, mut agg: AggregateExpr) {
agg.expr.permute_map(&self.localize_map);
self.aggregates.push(agg);
}
fn arity(&self) -> usize {
self.group_key.len() + self.aggregates.len()
}
fn construct_reduce(
self,
monotonic: bool,
expected_group_size: Option<u64>,
) -> MirRelationExpr {
MirRelationExpr::Reduce {
input: Box::new(self.input),
group_key: self.group_key,
aggregates: self.aggregates,
monotonic,
expected_group_size,
}
}
}