tokio/runtime/task/
list.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//! This module has containers for storing the tasks spawned on a scheduler. The
//! `OwnedTasks` container is thread-safe but can only store tasks that
//! implement Send. The `LocalOwnedTasks` container is not thread safe, but can
//! store non-Send tasks.
//!
//! The collections can be closed to prevent adding new tasks during shutdown of
//! the scheduler with the collection.

use crate::future::Future;
use crate::loom::cell::UnsafeCell;
use crate::runtime::task::{JoinHandle, LocalNotified, Notified, Schedule, Task};
use crate::util::linked_list::{Link, LinkedList};
use crate::util::sharded_list;

use crate::loom::sync::atomic::{AtomicBool, Ordering};
use std::marker::PhantomData;
use std::num::NonZeroU64;

// The id from the module below is used to verify whether a given task is stored
// in this OwnedTasks, or some other task. The counter starts at one so we can
// use `None` for tasks not owned by any list.
//
// The safety checks in this file can technically be violated if the counter is
// overflown, but the checks are not supposed to ever fail unless there is a
// bug in Tokio, so we accept that certain bugs would not be caught if the two
// mixed up runtimes happen to have the same id.

cfg_has_atomic_u64! {
    use std::sync::atomic::AtomicU64;

    static NEXT_OWNED_TASKS_ID: AtomicU64 = AtomicU64::new(1);

    fn get_next_id() -> NonZeroU64 {
        loop {
            let id = NEXT_OWNED_TASKS_ID.fetch_add(1, Ordering::Relaxed);
            if let Some(id) = NonZeroU64::new(id) {
                return id;
            }
        }
    }
}

cfg_not_has_atomic_u64! {
    use std::sync::atomic::AtomicU32;

    static NEXT_OWNED_TASKS_ID: AtomicU32 = AtomicU32::new(1);

    fn get_next_id() -> NonZeroU64 {
        loop {
            let id = NEXT_OWNED_TASKS_ID.fetch_add(1, Ordering::Relaxed);
            if let Some(id) = NonZeroU64::new(u64::from(id)) {
                return id;
            }
        }
    }
}

pub(crate) struct OwnedTasks<S: 'static> {
    list: List<S>,
    pub(crate) id: NonZeroU64,
    closed: AtomicBool,
}

type List<S> = sharded_list::ShardedList<Task<S>, <Task<S> as Link>::Target>;

pub(crate) struct LocalOwnedTasks<S: 'static> {
    inner: UnsafeCell<OwnedTasksInner<S>>,
    pub(crate) id: NonZeroU64,
    _not_send_or_sync: PhantomData<*const ()>,
}

struct OwnedTasksInner<S: 'static> {
    list: LinkedList<Task<S>, <Task<S> as Link>::Target>,
    closed: bool,
}

impl<S: 'static> OwnedTasks<S> {
    pub(crate) fn new(num_cores: usize) -> Self {
        let shard_size = Self::gen_shared_list_size(num_cores);
        Self {
            list: List::new(shard_size),
            closed: AtomicBool::new(false),
            id: get_next_id(),
        }
    }

    /// Binds the provided task to this `OwnedTasks` instance. This fails if the
    /// `OwnedTasks` has been closed.
    pub(crate) fn bind<T>(
        &self,
        task: T,
        scheduler: S,
        id: super::Id,
    ) -> (JoinHandle<T::Output>, Option<Notified<S>>)
    where
        S: Schedule,
        T: Future + Send + 'static,
        T::Output: Send + 'static,
    {
        let (task, notified, join) = super::new_task(task, scheduler, id);
        let notified = unsafe { self.bind_inner(task, notified) };
        (join, notified)
    }

    /// The part of `bind` that's the same for every type of future.
    unsafe fn bind_inner(&self, task: Task<S>, notified: Notified<S>) -> Option<Notified<S>>
    where
        S: Schedule,
    {
        unsafe {
            // safety: We just created the task, so we have exclusive access
            // to the field.
            task.header().set_owner_id(self.id);
        }

        let shard = self.list.lock_shard(&task);
        // Check the closed flag in the lock for ensuring all that tasks
        // will shut down after the OwnedTasks has been closed.
        if self.closed.load(Ordering::Acquire) {
            drop(shard);
            task.shutdown();
            return None;
        }
        shard.push(task);
        Some(notified)
    }

    /// Asserts that the given task is owned by this `OwnedTasks` and convert it to
    /// a `LocalNotified`, giving the thread permission to poll this task.
    #[inline]
    pub(crate) fn assert_owner(&self, task: Notified<S>) -> LocalNotified<S> {
        debug_assert_eq!(task.header().get_owner_id(), Some(self.id));
        // safety: All tasks bound to this OwnedTasks are Send, so it is safe
        // to poll it on this thread no matter what thread we are on.
        LocalNotified {
            task: task.0,
            _not_send: PhantomData,
        }
    }

    /// Shuts down all tasks in the collection. This call also closes the
    /// collection, preventing new items from being added.
    ///
    /// The parameter start determines which shard this method will start at.
    /// Using different values for each worker thread reduces contention.
    pub(crate) fn close_and_shutdown_all(&self, start: usize)
    where
        S: Schedule,
    {
        self.closed.store(true, Ordering::Release);
        for i in start..self.get_shard_size() + start {
            loop {
                let task = self.list.pop_back(i);
                match task {
                    Some(task) => {
                        task.shutdown();
                    }
                    None => break,
                }
            }
        }
    }

    #[inline]
    pub(crate) fn get_shard_size(&self) -> usize {
        self.list.shard_size()
    }

    pub(crate) fn active_tasks_count(&self) -> usize {
        self.list.len()
    }

    pub(crate) fn remove(&self, task: &Task<S>) -> Option<Task<S>> {
        // If the task's owner ID is `None` then it is not part of any list and
        // doesn't need removing.
        let task_id = task.header().get_owner_id()?;

        assert_eq!(task_id, self.id);

        // safety: We just checked that the provided task is not in some other
        // linked list.
        unsafe { self.list.remove(task.header_ptr()) }
    }

    pub(crate) fn is_empty(&self) -> bool {
        self.list.is_empty()
    }

    /// Generates the size of the sharded list based on the number of worker threads.
    ///
    /// The sharded lock design can effectively alleviate
    /// lock contention performance problems caused by high concurrency.
    ///
    /// However, as the number of shards increases, the memory continuity between
    /// nodes in the intrusive linked list will diminish. Furthermore,
    /// the construction time of the sharded list will also increase with a higher number of shards.
    ///
    /// Due to the above reasons, we set a maximum value for the shared list size,
    /// denoted as `MAX_SHARED_LIST_SIZE`.
    fn gen_shared_list_size(num_cores: usize) -> usize {
        const MAX_SHARED_LIST_SIZE: usize = 1 << 16;
        usize::min(MAX_SHARED_LIST_SIZE, num_cores.next_power_of_two() * 4)
    }
}

cfg_taskdump! {
    impl<S: 'static> OwnedTasks<S> {
        /// Locks the tasks, and calls `f` on an iterator over them.
        pub(crate) fn for_each<F>(&self, f: F)
        where
            F: FnMut(&Task<S>),
        {
            self.list.for_each(f);
        }
    }
}

impl<S: 'static> LocalOwnedTasks<S> {
    pub(crate) fn new() -> Self {
        Self {
            inner: UnsafeCell::new(OwnedTasksInner {
                list: LinkedList::new(),
                closed: false,
            }),
            id: get_next_id(),
            _not_send_or_sync: PhantomData,
        }
    }

    pub(crate) fn bind<T>(
        &self,
        task: T,
        scheduler: S,
        id: super::Id,
    ) -> (JoinHandle<T::Output>, Option<Notified<S>>)
    where
        S: Schedule,
        T: Future + 'static,
        T::Output: 'static,
    {
        let (task, notified, join) = super::new_task(task, scheduler, id);

        unsafe {
            // safety: We just created the task, so we have exclusive access
            // to the field.
            task.header().set_owner_id(self.id);
        }

        if self.is_closed() {
            drop(notified);
            task.shutdown();
            (join, None)
        } else {
            self.with_inner(|inner| {
                inner.list.push_front(task);
            });
            (join, Some(notified))
        }
    }

    /// Shuts down all tasks in the collection. This call also closes the
    /// collection, preventing new items from being added.
    pub(crate) fn close_and_shutdown_all(&self)
    where
        S: Schedule,
    {
        self.with_inner(|inner| inner.closed = true);

        while let Some(task) = self.with_inner(|inner| inner.list.pop_back()) {
            task.shutdown();
        }
    }

    pub(crate) fn remove(&self, task: &Task<S>) -> Option<Task<S>> {
        // If the task's owner ID is `None` then it is not part of any list and
        // doesn't need removing.
        let task_id = task.header().get_owner_id()?;

        assert_eq!(task_id, self.id);

        self.with_inner(|inner|
            // safety: We just checked that the provided task is not in some
            // other linked list.
            unsafe { inner.list.remove(task.header_ptr()) })
    }

    /// Asserts that the given task is owned by this `LocalOwnedTasks` and convert
    /// it to a `LocalNotified`, giving the thread permission to poll this task.
    #[inline]
    pub(crate) fn assert_owner(&self, task: Notified<S>) -> LocalNotified<S> {
        assert_eq!(task.header().get_owner_id(), Some(self.id));

        // safety: The task was bound to this LocalOwnedTasks, and the
        // LocalOwnedTasks is not Send or Sync, so we are on the right thread
        // for polling this task.
        LocalNotified {
            task: task.0,
            _not_send: PhantomData,
        }
    }

    #[inline]
    fn with_inner<F, T>(&self, f: F) -> T
    where
        F: FnOnce(&mut OwnedTasksInner<S>) -> T,
    {
        // safety: This type is not Sync, so concurrent calls of this method
        // can't happen.  Furthermore, all uses of this method in this file make
        // sure that they don't call `with_inner` recursively.
        self.inner.with_mut(|ptr| unsafe { f(&mut *ptr) })
    }

    pub(crate) fn is_closed(&self) -> bool {
        self.with_inner(|inner| inner.closed)
    }

    pub(crate) fn is_empty(&self) -> bool {
        self.with_inner(|inner| inner.list.is_empty())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // This test may run in parallel with other tests, so we only test that ids
    // come in increasing order.
    #[test]
    fn test_id_not_broken() {
        let mut last_id = get_next_id();

        for _ in 0..1000 {
            let next_id = get_next_id();
            assert!(last_id < next_id);
            last_id = next_id;
        }
    }
}