mz_compute_client/
as_of_selection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Support for selecting as-ofs of compute dataflows during system initialization.
//!
//! The functionality implemented here is invoked by the coordinator during its bootstrap process.
//! Ideally, it would be part of the controller and transparent to the coordinator, but that's
//! difficult to reconcile with the current controller API. For now, we still make the coordinator
//! worry about as-of selection but keep the implementation in a compute crate because it really is
//! a compute implementation concern.
//!
//! The as-of selection process takes a list of `DataflowDescription`s, determines compatible
//! as-ofs for the compute collections they export, and augments the `DataflowDescription`s with
//! these as-ofs.
//!
//! For each compute collection, the as-of selection process keeps an `AsOfBounds` instance that
//! tracks a lower and an upper bound for the as-of the collection may get assigned. Throughout the
//! process, a collection's `AsOfBounds` get repeatedly refined, by increasing the lower bound and
//! decreasing the upper bound. The final upper bound is then used for the collection as-of. Using
//! the upper bound maximizes the chances of compute reconciliation being effective, and minimizes
//! the amount of historical data that must be read from the dataflow sources.
//!
//! Refinement of `AsOfBounds` is performed by applying `Constraint`s to collections. A
//! `Constraint` specifies which bound should be refined to which frontier. A `Constraint` may be
//! "hard" or "soft", which determines how failure to apply it is handled. Failing to apply a hard
//! constraint is treated as an error, failing to apply a soft constraint is not. If a constraint
//! fails to apply, the respective `AsOfBounds` are refined as much as possible (to a single
//! frontier) and marked as "sealed". Subsequent constraint applications against the sealed bounds
//! are no-ops. This is done to avoid log noise from repeated constraint application failures.
//!
//! Note that failing to apply a hard constraint does not abort the as-of selection process for the
//! affected collection. Instead the failure is handled gracefully by logging an error and
//! assigning the collection a best-effort as-of. This is done, rather than panicking or returning
//! an error and letting the coordinator panic, to ensure the availability of the system. Ideally,
//! we would instead mark the affected dataflow as failed/poisoned, but such a mechanism doesn't
//! currently exist.
//!
//! The as-of selection process applies constraints in order of importance, because once a
//! constraint application fails, the respective `AsOfBounds` are sealed and later applications
//! won't have any effect. This means hard constraints must be applied before soft constraints, and
//! more desirable soft constraints should be applied before less desirable ones.
//!
//! # `AsOfBounds` Invariants
//!
//! Correctness requires two invariants of `AsOfBounds` of dependent collections:
//!
//!  (1) The lower bound of a collection is >= the lower bound of each of its inputs.
//!  (2) The upper bound of a collection is >= the upper bound of each of its inputs.
//!
//! Each step of the as-of selection process needs to ensure that these invariants are upheld once
//! it completes. The expectation is that each step (a) performs local changes to either the
//! `lower` _or_ the `upper` bounds of some collections and (b) invokes the appropriate
//! `propagate_bounds_*` method to restore the invariant broken by (a).
//!
//! For steps that behave as described in (a), we can prove that (b) will always succeed in
//! applying the bounds propagation constraints:
//!
//! | Let `A` and `B` be any pair of collections where `A` is an input of `B`.
//! | Before (a), both invariants are upheld, i.e. `A.lower <= B.lower` and `A.upper <= B.upper`.
//! |
//! | Case 1: (a) increases `A.lower` and/or `B.lower` to `A.lower'` and `B.lower'`
//! |     Invariant (1) might be broken, need to prove that it can be restored.
//! |     Case 1.a: `A.lower' <= B.lower'`
//! |         Invariant (1) is still upheld without propagation.
//! |     Case 1.b: `A.lower' > B.lower'`
//! |         A collection's lower bound can only be increased up to its upper bound.
//! |         Therefore, and from invariant (2): `A.lower' <= A.upper <= B.upper`
//! |         Therefore, propagation can set `B.lower' = A.lower'`, restoring invariant (1).
//! | Case 2: (a) decreases `A.upper` and/or `B.upper`
//! |     Invariant (2) might be broken, need to prove that it can be restored.
//! |     The proof is equivalent to Case 1.

use std::cell::RefCell;
use std::collections::BTreeMap;
use std::fmt;
use std::rc::Rc;

use mz_compute_types::dataflows::DataflowDescription;
use mz_compute_types::plan::Plan;
use mz_ore::collections::CollectionExt;
use mz_ore::soft_panic_or_log;
use mz_repr::{GlobalId, TimestampManipulation};
use mz_storage_client::storage_collections::StorageCollections;
use mz_storage_types::read_holds::ReadHold;
use mz_storage_types::read_policy::ReadPolicy;
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tracing::{info, warn};

/// Runs as-of selection for the given dataflows.
///
/// Assigns the selected as-of to the provided dataflow descriptions and returns a set of
/// `ReadHold`s that must not be dropped nor downgraded until the dataflows have been installed
/// with the compute controller.
pub fn run<T: TimestampManipulation>(
    dataflows: &mut [DataflowDescription<Plan<T>, (), T>],
    read_policies: &BTreeMap<GlobalId, ReadPolicy<T>>,
    storage_collections: &dyn StorageCollections<Timestamp = T>,
    current_time: T,
) -> BTreeMap<GlobalId, ReadHold<T>> {
    // Get read holds for the storage inputs of the dataflows.
    // This ensures that storage frontiers don't advance past the selected as-ofs.
    let mut storage_read_holds = BTreeMap::new();
    for dataflow in &*dataflows {
        for id in dataflow.source_imports.keys() {
            if !storage_read_holds.contains_key(id) {
                let read_hold = storage_collections
                    .acquire_read_holds(vec![*id])
                    .expect("storage collection exists")
                    .into_element();
                storage_read_holds.insert(*id, read_hold);
            }
        }
    }

    let mut ctx = Context::new(dataflows, storage_collections, read_policies, current_time);

    // Dataflows that sink into a storage collection that has advanced to the empty frontier don't
    // need to be installed at all. So we can apply an optimization where we prune them here and
    // assign them an empty as-of at the end.
    ctx.prune_sealed_persist_sinks();

    // Apply hard constraints from upstream and downstream storage collections.
    ctx.apply_upstream_storage_constraints(&storage_read_holds);
    ctx.apply_downstream_storage_constraints();

    // At this point all collections have as-of bounds that reflect what is required for
    // correctness. The current state isn't very usable though. In particular, most of the upper
    // bounds are likely to be the empty frontier, so if we'd select as-ofs on this basis, the
    // resulting dataflows would never hydrate. Instead we'll apply a number of soft constraints to
    // end up in a better place.

    // Constrain collection as-ofs to times that are currently available in the inputs. This
    // ensures that dataflows can immediately start hydrating. It also ensures that dataflows don't
    // get an empty as-of, except when they exclusively depend on constant collections.
    ctx.apply_warmup_constraints();

    // Constrain as-ofs of indexes according to their read policies.
    ctx.apply_index_read_policy_constraints();

    // Constrain as-ofs of indexes to the current time. This ensures that indexes are immediately
    // readable.
    ctx.apply_index_current_time_constraints();

    // Apply the derived as-of bounds to the dataflows.
    for dataflow in dataflows {
        // `AsOfBounds` are shared between the exports of a dataflow, so looking at just the first
        // export is sufficient.
        let first_export = dataflow.export_ids().next();
        let as_of = first_export.map_or(Antichain::new(), |id| ctx.best_as_of(id));
        dataflow.as_of = Some(as_of);
    }

    storage_read_holds
}

/// Bounds for possible as-of values of a dataflow.
#[derive(Debug)]
struct AsOfBounds<T> {
    lower: Antichain<T>,
    upper: Antichain<T>,
    /// Whether these bounds can still change.
    sealed: bool,
}

impl<T: Clone> AsOfBounds<T> {
    /// Creates an `AsOfBounds` that only allows the given `frontier`.
    fn single(frontier: Antichain<T>) -> Self {
        Self {
            lower: frontier.clone(),
            upper: frontier,
            sealed: false,
        }
    }

    /// Get the bound of the given type.
    fn get(&self, type_: BoundType) -> &Antichain<T> {
        match type_ {
            BoundType::Lower => &self.lower,
            BoundType::Upper => &self.upper,
        }
    }
}

impl<T: Timestamp> Default for AsOfBounds<T> {
    fn default() -> Self {
        Self {
            lower: Antichain::from_elem(T::minimum()),
            upper: Antichain::new(),
            sealed: false,
        }
    }
}

impl<T: fmt::Debug> fmt::Display for AsOfBounds<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "[{:?} .. {:?}]",
            self.lower.elements(),
            self.upper.elements()
        )
    }
}

/// Types of bounds.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum BoundType {
    Lower,
    Upper,
}

impl fmt::Display for BoundType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Lower => f.write_str("lower"),
            Self::Upper => f.write_str("upper"),
        }
    }
}

/// Types of constraints.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum ConstraintType {
    /// Hard constraints are applied to enforce correctness properties, and failing to apply them is
    /// an error.
    Hard,
    /// Soft constraints are applied to improve performance or UX, and failing to apply them is
    /// undesirable but not an error.
    Soft,
}

/// A constraint that can be applied to the `AsOfBounds` of a collection.
#[derive(Debug)]
struct Constraint<'a, T> {
    type_: ConstraintType,
    /// Which bound this constraint applies to.
    bound_type: BoundType,
    /// The frontier by which the bound should be constrained.
    frontier: &'a Antichain<T>,
    /// A short description of the reason for applying this constraint.
    ///
    /// Used only for logging.
    reason: &'a str,
}

impl<T: Timestamp> Constraint<'_, T> {
    /// Applies this constraint to the given bounds.
    ///
    /// Returns a bool indicating whether the given bounds were changed as a result.
    ///
    /// Applying a constraint can fail, if the constraint frontier is incompatible with the
    /// existing bounds. In this case, the constraint still gets partially applied by moving one of
    /// the bounds up/down to the other, depending on the `bound_type`.
    ///
    /// Applying a constraint to sealed bounds is a no-op.
    fn apply(&self, bounds: &mut AsOfBounds<T>) -> Result<bool, bool> {
        if bounds.sealed {
            return Ok(false);
        }

        match self.bound_type {
            BoundType::Lower => {
                if PartialOrder::less_than(&bounds.upper, self.frontier) {
                    bounds.sealed = true;
                    if PartialOrder::less_than(&bounds.lower, &bounds.upper) {
                        bounds.lower.clone_from(&bounds.upper);
                        Err(true)
                    } else {
                        Err(false)
                    }
                } else if PartialOrder::less_equal(self.frontier, &bounds.lower) {
                    Ok(false)
                } else {
                    bounds.lower.clone_from(self.frontier);
                    Ok(true)
                }
            }
            BoundType::Upper => {
                if PartialOrder::less_than(self.frontier, &bounds.lower) {
                    bounds.sealed = true;
                    if PartialOrder::less_than(&bounds.lower, &bounds.upper) {
                        bounds.upper.clone_from(&bounds.lower);
                        Err(true)
                    } else {
                        Err(false)
                    }
                } else if PartialOrder::less_equal(&bounds.upper, self.frontier) {
                    Ok(false)
                } else {
                    bounds.upper.clone_from(self.frontier);
                    Ok(true)
                }
            }
        }
    }
}

/// State tracked for a compute collection during as-of selection.
struct Collection<'a, T> {
    storage_inputs: Vec<GlobalId>,
    compute_inputs: Vec<GlobalId>,
    read_policy: Option<&'a ReadPolicy<T>>,
    /// The currently known as-of bounds.
    ///
    /// Shared between collections exported by the same dataflow.
    bounds: Rc<RefCell<AsOfBounds<T>>>,
    /// Whether this collection is an index.
    is_index: bool,
}

/// The as-of selection context.
struct Context<'a, T> {
    collections: BTreeMap<GlobalId, Collection<'a, T>>,
    storage_collections: &'a dyn StorageCollections<Timestamp = T>,
    current_time: T,
}

impl<'a, T: TimestampManipulation> Context<'a, T> {
    /// Initializes an as-of selection context for the given `dataflows`.
    fn new(
        dataflows: &[DataflowDescription<Plan<T>, (), T>],
        storage_collections: &'a dyn StorageCollections<Timestamp = T>,
        read_policies: &'a BTreeMap<GlobalId, ReadPolicy<T>>,
        current_time: T,
    ) -> Self {
        // Construct initial collection state for each dataflow export. Dataflows might have their
        // as-ofs already fixed, which we need to take into account when constructing `AsOfBounds`.
        let mut collections = BTreeMap::new();
        for dataflow in dataflows {
            let storage_inputs: Vec<_> = dataflow.source_imports.keys().copied().collect();
            let compute_inputs: Vec<_> = dataflow.index_imports.keys().copied().collect();

            let bounds = match dataflow.as_of.clone() {
                Some(frontier) => AsOfBounds::single(frontier),
                None => AsOfBounds::default(),
            };
            let bounds = Rc::new(RefCell::new(bounds));

            for id in dataflow.export_ids() {
                let collection = Collection {
                    storage_inputs: storage_inputs.clone(),
                    compute_inputs: compute_inputs.clone(),
                    read_policy: read_policies.get(&id),
                    bounds: Rc::clone(&bounds),
                    is_index: dataflow.index_exports.contains_key(&id),
                };
                collections.insert(id, collection);
            }
        }

        Self {
            collections,
            storage_collections,
            current_time,
        }
    }

    /// Returns the state of the identified collection.
    ///
    /// # Panics
    ///
    /// Panics if the identified collection doesn't exist.
    fn expect_collection(&self, id: GlobalId) -> &Collection<T> {
        self.collections
            .get(&id)
            .unwrap_or_else(|| panic!("collection missing: {id}"))
    }

    /// Applies the given as-of constraint to the identified collection.
    ///
    /// Returns whether the collection's as-of bounds where changed as a result.
    fn apply_constraint(&self, id: GlobalId, constraint: Constraint<T>) -> bool {
        let collection = self.expect_collection(id);
        let mut bounds = collection.bounds.borrow_mut();
        match constraint.apply(&mut bounds) {
            Ok(changed) => {
                if changed {
                    info!(%id, %bounds, reason = %constraint.reason, "applied as-of constraint");
                }
                changed
            }
            Err(changed) => {
                match constraint.type_ {
                    ConstraintType::Hard => {
                        soft_panic_or_log!(
                            "failed to apply hard as-of constraint \
                             (id={id}, bounds={bounds}, constraint={constraint:?})"
                        );
                    }
                    ConstraintType::Soft => {
                        warn!(%id, %bounds, ?constraint, "failed to apply soft as-of constraint");
                    }
                }
                changed
            }
        }
    }

    /// Apply as-of constraints imposed by the frontiers of upstream storage collections.
    ///
    /// A collection's as-of _must_ be >= the read frontier of each of its (transitive) storage
    /// inputs.
    ///
    /// Failing to apply this constraint to a collection is an error. The affected dataflow will
    /// not be able to hydrate successfully.
    fn apply_upstream_storage_constraints(
        &self,
        storage_read_holds: &BTreeMap<GlobalId, ReadHold<T>>,
    ) {
        // Apply direct constraints from storage inputs.
        for (id, collection) in &self.collections {
            for input_id in &collection.storage_inputs {
                let read_hold = &storage_read_holds[input_id];
                let constraint = Constraint {
                    type_: ConstraintType::Hard,
                    bound_type: BoundType::Lower,
                    frontier: read_hold.since(),
                    reason: &format!("storage input {input_id} read frontier"),
                };
                self.apply_constraint(*id, constraint);
            }
        }

        // Propagate constraints downstream, restoring `AsOfBounds` invariant (1).
        self.propagate_bounds_downstream(BoundType::Lower);
    }

    /// Apply as-of constraints imposed by the frontiers of downstream storage collections.
    ///
    /// A collection's as-of _must_ be < the write frontier of the storage collection it exports to
    /// (if any) if it is non-empty, and <= the storage collection's read frontier otherwise.
    ///
    /// Rationale:
    ///
    /// * A collection's as-of must be <= the write frontier of its dependent storage collection,
    ///   because we need to pick up computing the contents of storage collections where we left
    ///   off previously, to avoid skipped times observable in the durable output.
    /// * Some dataflows feeding into storage collections (specifically: continual tasks) need to
    ///   be able to observe input changes at times they write to the output. If we selected the
    ///   as-of to be equal to the write frontier of the output storage collection, we wouldn't be
    ///   able to produce the correct output at that frontier. Thus the selected as-of must be
    ///   strictly less than the write frontier.
    /// * As an exception to the above, if the output storage collection is empty (i.e. its write
    ///   frontier is <= its read frontier), we need to allow the as-of to be equal to the read
    ///   frontier. This is correct in the sense that it mirrors the timestamp selection behavior
    ///   of the sequencer when it created the collection. Chances are that the sequencer chose the
    ///   initial as-of (and therefore the initial read frontier of the storage collection) as the
    ///   smallest possible time that can still be read from the collection inputs, so forcing the
    ///   upper bound any lower than that read frontier would produce a hard constraint violation.
    ///
    /// Failing to apply this constraint to a collection is an error. The storage collection it
    /// exports to may have times visible to readers skipped in its output, violating correctness.
    fn apply_downstream_storage_constraints(&self) {
        // Apply direct constraints from storage exports.
        for id in self.collections.keys() {
            let Ok(frontiers) = self.storage_collections.collection_frontiers(*id) else {
                continue;
            };

            let collection_empty =
                PartialOrder::less_equal(&frontiers.write_frontier, &frontiers.read_capabilities);
            let upper = if collection_empty {
                frontiers.read_capabilities
            } else {
                Antichain::from_iter(
                    frontiers
                        .write_frontier
                        .iter()
                        .map(|t| t.step_back().unwrap_or(T::minimum())),
                )
            };

            let constraint = Constraint {
                type_: ConstraintType::Hard,
                bound_type: BoundType::Upper,
                frontier: &upper,
                reason: &format!("storage export {id} write frontier"),
            };
            self.apply_constraint(*id, constraint);
        }

        // Propagate constraints upstream, restoring `AsOfBounds` invariant (2).
        self.propagate_bounds_upstream(BoundType::Upper);
    }

    /// Apply as-of constraints to ensure collections can hydrate immediately.
    ///
    /// A collection's as-of _should_ be < the write frontier of each of its (transitive) storage
    /// inputs.
    ///
    /// Failing to apply this constraint is not an error. The affected dataflow will not be able to
    /// hydrate immediately, but it will be able to hydrate once its inputs have sufficiently
    /// advanced.
    fn apply_warmup_constraints(&self) {
        // Apply direct constraints from storage inputs.
        for (id, collection) in &self.collections {
            for input_id in &collection.storage_inputs {
                let frontiers = self
                    .storage_collections
                    .collection_frontiers(*input_id)
                    .expect("storage collection exists");
                let upper = step_back_frontier(&frontiers.write_frontier);
                let constraint = Constraint {
                    type_: ConstraintType::Soft,
                    bound_type: BoundType::Upper,
                    frontier: &upper,
                    reason: &format!("storage input {input_id} warmup frontier"),
                };
                self.apply_constraint(*id, constraint);
            }
        }

        // Propagate constraints downstream. This transparently restores any violations of
        // `AsOfBounds` invariant (2) that might be introduced by the propagation.
        self.propagate_bounds_downstream(BoundType::Upper);
    }

    /// Apply as-of constraints to ensure indexes contain historical data as requested by their
    /// associated read policies.
    ///
    /// An index's as-of _should_ be <= the frontier determined by its read policy applied to its
    /// write frontier.
    ///
    /// Failing to apply this constraint is not an error. The affected index will not contain
    /// historical times for its entire compaction window initially, but will do so once sufficient
    /// time has passed.
    fn apply_index_read_policy_constraints(&self) {
        // For the write frontier of an index, we'll use the least write frontier of its
        // (transitive) storage inputs. This is an upper bound for the write frontier the index
        // could have had before the restart. For indexes without storage inputs we use the current
        // time.

        // Collect write frontiers from storage inputs.
        let mut write_frontiers = BTreeMap::new();
        for (id, collection) in &self.collections {
            let storage_frontiers = self
                .storage_collections
                .collections_frontiers(collection.storage_inputs.clone())
                .expect("storage collections exist");

            let mut write_frontier = Antichain::new();
            for frontiers in storage_frontiers {
                write_frontier.extend(frontiers.write_frontier);
            }

            write_frontiers.insert(*id, write_frontier);
        }

        // Propagate write frontiers through compute inputs.
        fixpoint(|changed| {
            for (id, collection) in &self.collections {
                let write_frontier = write_frontiers.get_mut(id).expect("inserted above");
                for input_id in &collection.compute_inputs {
                    let input_collection = self.expect_collection(*input_id);
                    let bounds = input_collection.bounds.borrow();
                    *changed |= write_frontier.extend(bounds.upper.iter().cloned());
                }
            }
        });

        // Apply the read policy constraint to indexes.
        for (id, collection) in &self.collections {
            if let (true, Some(read_policy)) = (collection.is_index, &collection.read_policy) {
                let mut write_frontier = write_frontiers.remove(id).expect("inserted above");
                if write_frontier.is_empty() {
                    write_frontier = Antichain::from_elem(self.current_time.clone());
                }
                let upper = read_policy.frontier(write_frontier.borrow());
                let constraint = Constraint {
                    type_: ConstraintType::Soft,
                    bound_type: BoundType::Upper,
                    frontier: &upper,
                    reason: &format!(
                        "read policy applied to write frontier {:?}",
                        write_frontier.elements()
                    ),
                };
                self.apply_constraint(*id, constraint);
            }
        }

        // Restore `AsOfBounds` invariant (2).
        self.propagate_bounds_upstream(BoundType::Upper);
    }

    /// Apply as-of constraints to ensure indexes are immediately readable.
    ///
    /// An index's as-of _should_ be <= the current time.
    ///
    /// Failing to apply this constraint is not an error. The affected index will not be readable
    /// immediately, but will be readable once sufficient time has passed.
    fn apply_index_current_time_constraints(&self) {
        // Apply the current time constraint to indexes.
        let upper = Antichain::from_elem(self.current_time.clone());
        for (id, collection) in &self.collections {
            if collection.is_index {
                let constraint = Constraint {
                    type_: ConstraintType::Soft,
                    bound_type: BoundType::Upper,
                    frontier: &upper,
                    reason: "index current time",
                };
                self.apply_constraint(*id, constraint);
            }
        }

        // Restore `AsOfBounds` invariant (2).
        self.propagate_bounds_upstream(BoundType::Upper);
    }

    /// Propagate as-of bounds through the dependency graph, in downstream direction.
    fn propagate_bounds_downstream(&self, bound_type: BoundType) {
        // Propagating `lower` bounds downstream restores `AsOfBounds` invariant (1) and must
        // therefore always succeed.
        let constraint_type = match bound_type {
            BoundType::Lower => ConstraintType::Hard,
            BoundType::Upper => ConstraintType::Soft,
        };

        // We don't want to rely on a correspondence between `GlobalId` order and dependency order,
        // so we use a fixpoint loop here.
        fixpoint(|changed| {
            self.propagate_bounds_downstream_inner(bound_type, constraint_type, changed);

            // Propagating `upper` bounds downstream might break `AsOfBounds` invariant (2), so we
            // need to restore it.
            if bound_type == BoundType::Upper {
                self.propagate_bounds_upstream_inner(
                    BoundType::Upper,
                    ConstraintType::Hard,
                    changed,
                );
            }
        });
    }

    fn propagate_bounds_downstream_inner(
        &self,
        bound_type: BoundType,
        constraint_type: ConstraintType,
        changed: &mut bool,
    ) {
        for (id, collection) in &self.collections {
            for input_id in &collection.compute_inputs {
                let input_collection = self.expect_collection(*input_id);
                let bounds = input_collection.bounds.borrow();
                let constraint = Constraint {
                    type_: constraint_type,
                    bound_type,
                    frontier: bounds.get(bound_type),
                    reason: &format!("upstream {input_id} {bound_type} as-of bound"),
                };
                *changed |= self.apply_constraint(*id, constraint);
            }
        }
    }

    /// Propagate as-of bounds through the dependency graph, in upstream direction.
    fn propagate_bounds_upstream(&self, bound_type: BoundType) {
        // Propagating `upper` bounds upstream restores `AsOfBounds` invariant (2) and must
        // therefore always succeed.
        let constraint_type = match bound_type {
            BoundType::Lower => ConstraintType::Soft,
            BoundType::Upper => ConstraintType::Hard,
        };

        // We don't want to rely on a correspondence between `GlobalId` order and dependency order,
        // so we use a fixpoint loop here.
        fixpoint(|changed| {
            self.propagate_bounds_upstream_inner(bound_type, constraint_type, changed);

            // Propagating `lower` bounds upstream might break `AsOfBounds` invariant (1), so we
            // need to restore it.
            if bound_type == BoundType::Lower {
                self.propagate_bounds_downstream_inner(
                    BoundType::Lower,
                    ConstraintType::Hard,
                    changed,
                );
            }
        });
    }

    fn propagate_bounds_upstream_inner(
        &self,
        bound_type: BoundType,
        constraint_type: ConstraintType,
        changed: &mut bool,
    ) {
        for (id, collection) in self.collections.iter().rev() {
            let bounds = collection.bounds.borrow();
            for input_id in &collection.compute_inputs {
                let constraint = Constraint {
                    type_: constraint_type,
                    bound_type,
                    frontier: bounds.get(bound_type),
                    reason: &format!("downstream {id} {bound_type} as-of bound"),
                };
                *changed |= self.apply_constraint(*input_id, constraint);
            }
        }
    }

    /// Selects the "best" as-of for the identified collection, based on its currently known
    /// bounds.
    ///
    /// We simply use the upper bound here, to maximize the chances of compute reconciliation
    /// succeeding. Choosing the latest possible as-of also minimizes the amount of work the
    /// dataflow has to spend processing historical data from its sources.
    fn best_as_of(&self, id: GlobalId) -> Antichain<T> {
        if let Some(collection) = self.collections.get(&id) {
            let bounds = collection.bounds.borrow();
            bounds.upper.clone()
        } else {
            Antichain::new()
        }
    }

    /// Removes collections that sink into sealed persist shards from the context.
    ///
    /// The dataflows of these collections will get an empty default as-of assigned at the end of
    /// the as-of selection process, ensuring that they won't get installed unnecessarily.
    ///
    /// Note that it is valid to remove these collections from consideration because they don't
    /// impose as-of constraints on other compute collections.
    fn prune_sealed_persist_sinks(&mut self) {
        self.collections.retain(|id, _| {
            self.storage_collections
                .collection_frontiers(*id)
                .map_or(true, |f| !f.write_frontier.is_empty())
        });
    }
}

/// Runs `step` in a loop until it stops reporting changes.
fn fixpoint(mut step: impl FnMut(&mut bool)) {
    loop {
        let mut changed = false;
        step(&mut changed);
        if !changed {
            break;
        }
    }
}

/// Step back the given frontier.
///
/// This method is saturating: If the frontier contains `T::minimum()` times, these are kept
/// unchanged.
fn step_back_frontier<T: TimestampManipulation>(frontier: &Antichain<T>) -> Antichain<T> {
    frontier
        .iter()
        .map(|t| t.step_back().unwrap_or(T::minimum()))
        .collect()
}

#[cfg(test)]
mod tests {
    use std::collections::BTreeSet;

    use async_trait::async_trait;
    use futures::future::BoxFuture;
    use mz_compute_types::dataflows::{IndexDesc, IndexImport};
    use mz_compute_types::sinks::ComputeSinkConnection;
    use mz_compute_types::sinks::ComputeSinkDesc;
    use mz_compute_types::sinks::MaterializedViewSinkConnection;
    use mz_compute_types::sources::SourceInstanceArguments;
    use mz_compute_types::sources::SourceInstanceDesc;
    use mz_persist_client::stats::{SnapshotPartsStats, SnapshotStats};
    use mz_repr::RelationDesc;
    use mz_repr::RelationType;
    use mz_repr::Timestamp;
    use mz_storage_client::controller::{CollectionDescription, StorageMetadata, StorageTxn};
    use mz_storage_client::storage_collections::CollectionFrontiers;
    use mz_storage_types::connections::inline::InlinedConnection;
    use mz_storage_types::controller::{CollectionMetadata, StorageError};
    use mz_storage_types::parameters::StorageParameters;
    use mz_storage_types::read_holds::ReadHoldError;
    use mz_storage_types::sources::SourceExportDataConfig;
    use mz_storage_types::sources::{GenericSourceConnection, SourceDesc};
    use mz_storage_types::time_dependence::{TimeDependence, TimeDependenceError};

    use super::*;

    const SEALED: u64 = 0x5ea1ed;

    fn ts_to_frontier(ts: u64) -> Antichain<Timestamp> {
        if ts == SEALED {
            Antichain::new()
        } else {
            Antichain::from_elem(ts.into())
        }
    }

    #[derive(Debug)]
    struct StorageFrontiers(BTreeMap<GlobalId, (Antichain<Timestamp>, Antichain<Timestamp>)>);

    #[async_trait]
    impl StorageCollections for StorageFrontiers {
        type Timestamp = Timestamp;

        async fn initialize_state(
            &self,
            _txn: &mut (dyn StorageTxn<Self::Timestamp> + Send),
            _init_ids: BTreeSet<GlobalId>,
            _drop_ids: BTreeSet<GlobalId>,
        ) -> Result<(), StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        fn update_parameters(&self, _config_params: StorageParameters) {
            unimplemented!()
        }

        fn collection_metadata(
            &self,
            _id: GlobalId,
        ) -> Result<CollectionMetadata, StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        fn active_collection_metadatas(&self) -> Vec<(GlobalId, CollectionMetadata)> {
            unimplemented!()
        }

        fn collections_frontiers(
            &self,
            ids: Vec<GlobalId>,
        ) -> Result<Vec<CollectionFrontiers<Self::Timestamp>>, StorageError<Self::Timestamp>>
        {
            let mut frontiers = Vec::with_capacity(ids.len());
            for id in ids {
                let (read, write) = self.0.get(&id).ok_or(StorageError::IdentifierMissing(id))?;
                frontiers.push(CollectionFrontiers {
                    id,
                    write_frontier: write.clone(),
                    implied_capability: read.clone(),
                    read_capabilities: read.clone(),
                })
            }
            Ok(frontiers)
        }

        fn active_collection_frontiers(&self) -> Vec<CollectionFrontiers<Self::Timestamp>> {
            unimplemented!()
        }

        fn check_exists(&self, _id: GlobalId) -> Result<(), StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        async fn snapshot_stats(
            &self,
            _id: GlobalId,
            _as_of: Antichain<Self::Timestamp>,
        ) -> Result<SnapshotStats, StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        async fn snapshot_parts_stats(
            &self,
            _id: GlobalId,
            _as_of: Antichain<Self::Timestamp>,
        ) -> BoxFuture<'static, Result<SnapshotPartsStats, StorageError<Self::Timestamp>>> {
            unimplemented!()
        }

        async fn prepare_state(
            &self,
            _txn: &mut (dyn StorageTxn<Self::Timestamp> + Send),
            _ids_to_add: BTreeSet<GlobalId>,
            _ids_to_drop: BTreeSet<GlobalId>,
        ) -> Result<(), StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        async fn create_collections_for_bootstrap(
            &self,
            _storage_metadata: &StorageMetadata,
            _register_ts: Option<Self::Timestamp>,
            _collections: Vec<(GlobalId, CollectionDescription<Self::Timestamp>)>,
            _migrated_storage_collections: &BTreeSet<GlobalId>,
        ) -> Result<(), StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        async fn alter_ingestion_source_desc(
            &self,
            _ingestion_id: GlobalId,
            _source_desc: SourceDesc,
        ) -> Result<(), StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        async fn alter_ingestion_export_data_configs(
            &self,
            _source_exports: BTreeMap<GlobalId, SourceExportDataConfig>,
        ) -> Result<(), StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        async fn alter_ingestion_connections(
            &self,
            _source_connections: BTreeMap<GlobalId, GenericSourceConnection<InlinedConnection>>,
        ) -> Result<(), StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        fn alter_table_desc(
            &self,
            _table_id: GlobalId,
            _new_desc: RelationDesc,
        ) -> Result<(), StorageError<Self::Timestamp>> {
            unimplemented!()
        }

        fn drop_collections_unvalidated(
            &self,
            _storage_metadata: &StorageMetadata,
            _identifiers: Vec<GlobalId>,
        ) {
            unimplemented!()
        }

        fn set_read_policies(&self, _policies: Vec<(GlobalId, ReadPolicy<Self::Timestamp>)>) {
            unimplemented!()
        }

        fn acquire_read_holds(
            &self,
            desired_holds: Vec<GlobalId>,
        ) -> Result<Vec<ReadHold<Self::Timestamp>>, ReadHoldError> {
            let mut holds = Vec::with_capacity(desired_holds.len());
            for id in desired_holds {
                let (read, _write) = self
                    .0
                    .get(&id)
                    .ok_or(ReadHoldError::CollectionMissing(id))?;
                let (tx, _rx) = tokio::sync::mpsc::unbounded_channel();
                holds.push(ReadHold::new(id, read.clone(), tx));
            }
            Ok(holds)
        }

        fn determine_time_dependence(
            &self,
            _id: GlobalId,
        ) -> Result<Option<TimeDependence>, TimeDependenceError> {
            unimplemented!()
        }
    }

    fn dataflow(
        export_id: &str,
        input_ids: &[&str],
        storage_ids: &BTreeSet<&str>,
    ) -> DataflowDescription<Plan> {
        let source_imports = input_ids
            .iter()
            .filter(|s| storage_ids.contains(*s))
            .map(|s| {
                let id = s.parse().unwrap();
                let desc = SourceInstanceDesc {
                    arguments: SourceInstanceArguments {
                        operators: Default::default(),
                    },
                    storage_metadata: Default::default(),
                    typ: RelationType::empty(),
                };
                (id, (desc, Default::default()))
            })
            .collect();
        let index_imports = input_ids
            .iter()
            .filter(|s| !storage_ids.contains(*s))
            .map(|s| {
                let id = s.parse().unwrap();
                let import = IndexImport {
                    desc: IndexDesc {
                        on_id: GlobalId::Transient(0),
                        key: Default::default(),
                    },
                    typ: RelationType::empty(),
                    monotonic: Default::default(),
                };
                (id, import)
            })
            .collect();
        let index_exports = std::iter::once(export_id)
            .filter(|s| !storage_ids.contains(*s))
            .map(|sid| {
                let id = sid.parse().unwrap();
                let desc = IndexDesc {
                    on_id: GlobalId::Transient(0),
                    key: Default::default(),
                };
                let typ = RelationType::empty();
                (id, (desc, typ))
            })
            .collect();
        let sink_exports = std::iter::once(export_id)
            .filter(|s| storage_ids.contains(*s))
            .map(|sid| {
                let id = sid.parse().unwrap();
                let desc = ComputeSinkDesc {
                    from: GlobalId::Transient(0),
                    from_desc: RelationDesc::empty(),
                    connection: ComputeSinkConnection::MaterializedView(
                        MaterializedViewSinkConnection {
                            value_desc: RelationDesc::empty(),
                            storage_metadata: Default::default(),
                        },
                    ),
                    with_snapshot: Default::default(),
                    up_to: Default::default(),
                    non_null_assertions: Default::default(),
                    refresh_schedule: Default::default(),
                };
                (id, desc)
            })
            .collect();

        DataflowDescription {
            source_imports,
            index_imports,
            objects_to_build: Default::default(),
            index_exports,
            sink_exports,
            as_of: None,
            until: Default::default(),
            initial_storage_as_of: Default::default(),
            refresh_schedule: Default::default(),
            debug_name: Default::default(),
            time_dependence: None,
        }
    }

    macro_rules! testcase {
        ($name:ident, {
            storage: { $( $storage_id:literal: ($read:expr, $write:expr), )* },
            dataflows: [ $( $export_id:literal <- $inputs:expr => $as_of:expr, )* ],
            current_time: $current_time:literal,
            $( read_policies: { $( $policy_id:literal: $policy:expr, )* }, )?
        }) => {
            #[mz_ore::test]
            fn $name() {
                let storage_ids = [$( $storage_id, )*].into();

                let storage_frontiers = StorageFrontiers(BTreeMap::from([
                    $(
                        (
                            $storage_id.parse().unwrap(),
                            (ts_to_frontier($read), ts_to_frontier($write)),
                        ),
                    )*
                ]));

                let mut dataflows = [
                    $(
                        dataflow($export_id, &$inputs, &storage_ids),
                    )*
                ];

                let read_policies = BTreeMap::from([
                    $($( ($policy_id.parse().unwrap(), $policy), )*)?
                ]);

                super::run(
                    &mut dataflows,
                    &read_policies,
                    &storage_frontiers,
                    $current_time.into(),
                );

                let actual_as_ofs: Vec<_> = dataflows
                    .into_iter()
                    .map(|d| d.as_of.unwrap())
                    .collect();
                let expected_as_ofs = [ $( ts_to_frontier($as_of), )* ];

                assert_eq!(actual_as_ofs, expected_as_ofs);
            }
        };
    }

    testcase!(upstream_storage_constraints, {
        storage: {
            "s1": (10, 20),
            "s2": (20, 30),
        },
        dataflows: [
            "u1" <- ["s1"]       => 10,
            "u2" <- ["s2"]       => 20,
            "u3" <- ["s1", "s2"] => 20,
            "u4" <- ["u1", "u2"] => 20,
        ],
        current_time: 0,
    });

    testcase!(downstream_storage_constraints, {
        storage: {
            "s1": (10, 20),
            "u3": (10, 15),
            "u4": (10, 13),
        },
        dataflows: [
            "u1" <- ["s1"] => 19,
            "u2" <- ["s1"] => 12,
            "u3" <- ["u2"] => 12,
            "u4" <- ["u2"] => 12,
        ],
        current_time: 100,
    });

    testcase!(warmup_constraints, {
        storage: {
            "s1": (10, 20),
            "s2": (10, 30),
            "s3": (10, 40),
            "s4": (10, 50),
        },
        dataflows: [
            "u1" <- ["s1"]       => 19,
            "u2" <- ["s2"]       => 19,
            "u3" <- ["s3"]       => 39,
            "u4" <- ["s4"]       => 39,
            "u5" <- ["u1", "u2"] => 19,
            "u6" <- ["u3", "u4"] => 39,
        ],
        current_time: 100,
    });

    testcase!(index_read_policy_constraints, {
        storage: {
            "s1": (10, 20),
            "u6": (10, 18),
        },
        dataflows: [
            "u1" <- ["s1"] => 15,
            "u2" <- ["s1"] => 10,
            "u3" <- ["s1"] => 13,
            "u4" <- ["s1"] => 10,
            "u5" <- []     => 95,
            "u6" <- ["s1"] => 17,
        ],
        current_time: 100,
        read_policies: {
            "u1": ReadPolicy::lag_writes_by(5.into(), 1.into()),
            "u2": ReadPolicy::lag_writes_by(15.into(), 1.into()),
            "u3": ReadPolicy::ValidFrom(Antichain::from_elem(13.into())),
            "u4": ReadPolicy::ValidFrom(Antichain::from_elem(5.into())),
            "u5": ReadPolicy::lag_writes_by(5.into(), 1.into()),
            "u6": ReadPolicy::ValidFrom(Antichain::from_elem(13.into())),
        },
    });

    testcase!(index_current_time_constraints, {
        storage: {
            "s1": (10, 20),
            "s2": (20, 30),
            "u4": (10, 12),
            "u5": (10, 18),
        },
        dataflows: [
            "u1" <- ["s1"] => 15,
            "u2" <- ["s2"] => 20,
            "u3" <- ["s1"] => 11,
            "u4" <- ["u3"] => 11,
            "u5" <- ["s1"] => 17,
            "u6" <- []     => 15,
        ],
        current_time: 15,
    });

    testcase!(sealed_storage_sink, {
        storage: {
            "s1": (10, 20),
            "u1": (10, SEALED),
        },
        dataflows: [
            "u1" <- ["s1"] => SEALED,
        ],
        current_time: 100,
    });
}