mz_compute_client/as_of_selection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Support for selecting as-ofs of compute dataflows during system initialization.
//!
//! The functionality implemented here is invoked by the coordinator during its bootstrap process.
//! Ideally, it would be part of the controller and transparent to the coordinator, but that's
//! difficult to reconcile with the current controller API. For now, we still make the coordinator
//! worry about as-of selection but keep the implementation in a compute crate because it really is
//! a compute implementation concern.
//!
//! The as-of selection process takes a list of `DataflowDescription`s, determines compatible
//! as-ofs for the compute collections they export, and augments the `DataflowDescription`s with
//! these as-ofs.
//!
//! For each compute collection, the as-of selection process keeps an `AsOfBounds` instance that
//! tracks a lower and an upper bound for the as-of the collection may get assigned. Throughout the
//! process, a collection's `AsOfBounds` get repeatedly refined, by increasing the lower bound and
//! decreasing the upper bound. The final upper bound is then used for the collection as-of. Using
//! the upper bound maximizes the chances of compute reconciliation being effective, and minimizes
//! the amount of historical data that must be read from the dataflow sources.
//!
//! Refinement of `AsOfBounds` is performed by applying `Constraint`s to collections. A
//! `Constraint` specifies which bound should be refined to which frontier. A `Constraint` may be
//! "hard" or "soft", which determines how failure to apply it is handled. Failing to apply a hard
//! constraint is treated as an error, failing to apply a soft constraint is not. If a constraint
//! fails to apply, the respective `AsOfBounds` are refined as much as possible (to a single
//! frontier) and marked as "sealed". Subsequent constraint applications against the sealed bounds
//! are no-ops. This is done to avoid log noise from repeated constraint application failures.
//!
//! Note that failing to apply a hard constraint does not abort the as-of selection process for the
//! affected collection. Instead the failure is handled gracefully by logging an error and
//! assigning the collection a best-effort as-of. This is done, rather than panicking or returning
//! an error and letting the coordinator panic, to ensure the availability of the system. Ideally,
//! we would instead mark the affected dataflow as failed/poisoned, but such a mechanism doesn't
//! currently exist.
//!
//! The as-of selection process applies constraints in order of importance, because once a
//! constraint application fails, the respective `AsOfBounds` are sealed and later applications
//! won't have any effect. This means hard constraints must be applied before soft constraints, and
//! more desirable soft constraints should be applied before less desirable ones.
//!
//! # `AsOfBounds` Invariants
//!
//! Correctness requires two invariants of `AsOfBounds` of dependent collections:
//!
//! (1) The lower bound of a collection is >= the lower bound of each of its inputs.
//! (2) The upper bound of a collection is >= the upper bound of each of its inputs.
//!
//! Each step of the as-of selection process needs to ensure that these invariants are upheld once
//! it completes. The expectation is that each step (a) performs local changes to either the
//! `lower` _or_ the `upper` bounds of some collections and (b) invokes the appropriate
//! `propagate_bounds_*` method to restore the invariant broken by (a).
//!
//! For steps that behave as described in (a), we can prove that (b) will always succeed in
//! applying the bounds propagation constraints:
//!
//! | Let `A` and `B` be any pair of collections where `A` is an input of `B`.
//! | Before (a), both invariants are upheld, i.e. `A.lower <= B.lower` and `A.upper <= B.upper`.
//! |
//! | Case 1: (a) increases `A.lower` and/or `B.lower` to `A.lower'` and `B.lower'`
//! | Invariant (1) might be broken, need to prove that it can be restored.
//! | Case 1.a: `A.lower' <= B.lower'`
//! | Invariant (1) is still upheld without propagation.
//! | Case 1.b: `A.lower' > B.lower'`
//! | A collection's lower bound can only be increased up to its upper bound.
//! | Therefore, and from invariant (2): `A.lower' <= A.upper <= B.upper`
//! | Therefore, propagation can set `B.lower' = A.lower'`, restoring invariant (1).
//! | Case 2: (a) decreases `A.upper` and/or `B.upper`
//! | Invariant (2) might be broken, need to prove that it can be restored.
//! | The proof is equivalent to Case 1.
use std::cell::RefCell;
use std::collections::BTreeMap;
use std::fmt;
use std::rc::Rc;
use mz_compute_types::dataflows::DataflowDescription;
use mz_compute_types::plan::Plan;
use mz_ore::collections::CollectionExt;
use mz_ore::soft_panic_or_log;
use mz_repr::{GlobalId, TimestampManipulation};
use mz_storage_client::storage_collections::StorageCollections;
use mz_storage_types::read_holds::ReadHold;
use mz_storage_types::read_policy::ReadPolicy;
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tracing::{info, warn};
/// Runs as-of selection for the given dataflows.
///
/// Assigns the selected as-of to the provided dataflow descriptions and returns a set of
/// `ReadHold`s that must not be dropped nor downgraded until the dataflows have been installed
/// with the compute controller.
pub fn run<T: TimestampManipulation>(
dataflows: &mut [DataflowDescription<Plan<T>, (), T>],
read_policies: &BTreeMap<GlobalId, ReadPolicy<T>>,
storage_collections: &dyn StorageCollections<Timestamp = T>,
current_time: T,
) -> BTreeMap<GlobalId, ReadHold<T>> {
// Get read holds for the storage inputs of the dataflows.
// This ensures that storage frontiers don't advance past the selected as-ofs.
let mut storage_read_holds = BTreeMap::new();
for dataflow in &*dataflows {
for id in dataflow.source_imports.keys() {
if !storage_read_holds.contains_key(id) {
let read_hold = storage_collections
.acquire_read_holds(vec![*id])
.expect("storage collection exists")
.into_element();
storage_read_holds.insert(*id, read_hold);
}
}
}
let mut ctx = Context::new(dataflows, storage_collections, read_policies, current_time);
// Dataflows that sink into a storage collection that has advanced to the empty frontier don't
// need to be installed at all. So we can apply an optimization where we prune them here and
// assign them an empty as-of at the end.
ctx.prune_sealed_persist_sinks();
// Apply hard constraints from upstream and downstream storage collections.
ctx.apply_upstream_storage_constraints(&storage_read_holds);
ctx.apply_downstream_storage_constraints();
// At this point all collections have as-of bounds that reflect what is required for
// correctness. The current state isn't very usable though. In particular, most of the upper
// bounds are likely to be the empty frontier, so if we'd select as-ofs on this basis, the
// resulting dataflows would never hydrate. Instead we'll apply a number of soft constraints to
// end up in a better place.
// Constrain collection as-ofs to times that are currently available in the inputs. This
// ensures that dataflows can immediately start hydrating. It also ensures that dataflows don't
// get an empty as-of, except when they exclusively depend on constant collections.
ctx.apply_warmup_constraints();
// Constrain as-ofs of indexes according to their read policies.
ctx.apply_index_read_policy_constraints();
// Constrain as-ofs of indexes to the current time. This ensures that indexes are immediately
// readable.
ctx.apply_index_current_time_constraints();
// Apply the derived as-of bounds to the dataflows.
for dataflow in dataflows {
// `AsOfBounds` are shared between the exports of a dataflow, so looking at just the first
// export is sufficient.
let first_export = dataflow.export_ids().next();
let as_of = first_export.map_or(Antichain::new(), |id| ctx.best_as_of(id));
dataflow.as_of = Some(as_of);
}
storage_read_holds
}
/// Bounds for possible as-of values of a dataflow.
#[derive(Debug)]
struct AsOfBounds<T> {
lower: Antichain<T>,
upper: Antichain<T>,
/// Whether these bounds can still change.
sealed: bool,
}
impl<T: Clone> AsOfBounds<T> {
/// Creates an `AsOfBounds` that only allows the given `frontier`.
fn single(frontier: Antichain<T>) -> Self {
Self {
lower: frontier.clone(),
upper: frontier,
sealed: false,
}
}
/// Get the bound of the given type.
fn get(&self, type_: BoundType) -> &Antichain<T> {
match type_ {
BoundType::Lower => &self.lower,
BoundType::Upper => &self.upper,
}
}
}
impl<T: Timestamp> Default for AsOfBounds<T> {
fn default() -> Self {
Self {
lower: Antichain::from_elem(T::minimum()),
upper: Antichain::new(),
sealed: false,
}
}
}
impl<T: fmt::Debug> fmt::Display for AsOfBounds<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"[{:?} .. {:?}]",
self.lower.elements(),
self.upper.elements()
)
}
}
/// Types of bounds.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum BoundType {
Lower,
Upper,
}
impl fmt::Display for BoundType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Lower => f.write_str("lower"),
Self::Upper => f.write_str("upper"),
}
}
}
/// Types of constraints.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum ConstraintType {
/// Hard constraints are applied to enforce correctness properties, and failing to apply them is
/// an error.
Hard,
/// Soft constraints are applied to improve performance or UX, and failing to apply them is
/// undesirable but not an error.
Soft,
}
/// A constraint that can be applied to the `AsOfBounds` of a collection.
#[derive(Debug)]
struct Constraint<'a, T> {
type_: ConstraintType,
/// Which bound this constraint applies to.
bound_type: BoundType,
/// The frontier by which the bound should be constrained.
frontier: &'a Antichain<T>,
/// A short description of the reason for applying this constraint.
///
/// Used only for logging.
reason: &'a str,
}
impl<T: Timestamp> Constraint<'_, T> {
/// Applies this constraint to the given bounds.
///
/// Returns a bool indicating whether the given bounds were changed as a result.
///
/// Applying a constraint can fail, if the constraint frontier is incompatible with the
/// existing bounds. In this case, the constraint still gets partially applied by moving one of
/// the bounds up/down to the other, depending on the `bound_type`.
///
/// Applying a constraint to sealed bounds is a no-op.
fn apply(&self, bounds: &mut AsOfBounds<T>) -> Result<bool, bool> {
if bounds.sealed {
return Ok(false);
}
match self.bound_type {
BoundType::Lower => {
if PartialOrder::less_than(&bounds.upper, self.frontier) {
bounds.sealed = true;
if PartialOrder::less_than(&bounds.lower, &bounds.upper) {
bounds.lower.clone_from(&bounds.upper);
Err(true)
} else {
Err(false)
}
} else if PartialOrder::less_equal(self.frontier, &bounds.lower) {
Ok(false)
} else {
bounds.lower.clone_from(self.frontier);
Ok(true)
}
}
BoundType::Upper => {
if PartialOrder::less_than(self.frontier, &bounds.lower) {
bounds.sealed = true;
if PartialOrder::less_than(&bounds.lower, &bounds.upper) {
bounds.upper.clone_from(&bounds.lower);
Err(true)
} else {
Err(false)
}
} else if PartialOrder::less_equal(&bounds.upper, self.frontier) {
Ok(false)
} else {
bounds.upper.clone_from(self.frontier);
Ok(true)
}
}
}
}
}
/// State tracked for a compute collection during as-of selection.
struct Collection<'a, T> {
storage_inputs: Vec<GlobalId>,
compute_inputs: Vec<GlobalId>,
read_policy: Option<&'a ReadPolicy<T>>,
/// The currently known as-of bounds.
///
/// Shared between collections exported by the same dataflow.
bounds: Rc<RefCell<AsOfBounds<T>>>,
/// Whether this collection is an index.
is_index: bool,
}
/// The as-of selection context.
struct Context<'a, T> {
collections: BTreeMap<GlobalId, Collection<'a, T>>,
storage_collections: &'a dyn StorageCollections<Timestamp = T>,
current_time: T,
}
impl<'a, T: TimestampManipulation> Context<'a, T> {
/// Initializes an as-of selection context for the given `dataflows`.
fn new(
dataflows: &[DataflowDescription<Plan<T>, (), T>],
storage_collections: &'a dyn StorageCollections<Timestamp = T>,
read_policies: &'a BTreeMap<GlobalId, ReadPolicy<T>>,
current_time: T,
) -> Self {
// Construct initial collection state for each dataflow export. Dataflows might have their
// as-ofs already fixed, which we need to take into account when constructing `AsOfBounds`.
let mut collections = BTreeMap::new();
for dataflow in dataflows {
let storage_inputs: Vec<_> = dataflow.source_imports.keys().copied().collect();
let compute_inputs: Vec<_> = dataflow.index_imports.keys().copied().collect();
let bounds = match dataflow.as_of.clone() {
Some(frontier) => AsOfBounds::single(frontier),
None => AsOfBounds::default(),
};
let bounds = Rc::new(RefCell::new(bounds));
for id in dataflow.export_ids() {
let collection = Collection {
storage_inputs: storage_inputs.clone(),
compute_inputs: compute_inputs.clone(),
read_policy: read_policies.get(&id),
bounds: Rc::clone(&bounds),
is_index: dataflow.index_exports.contains_key(&id),
};
collections.insert(id, collection);
}
}
Self {
collections,
storage_collections,
current_time,
}
}
/// Returns the state of the identified collection.
///
/// # Panics
///
/// Panics if the identified collection doesn't exist.
fn expect_collection(&self, id: GlobalId) -> &Collection<T> {
self.collections
.get(&id)
.unwrap_or_else(|| panic!("collection missing: {id}"))
}
/// Applies the given as-of constraint to the identified collection.
///
/// Returns whether the collection's as-of bounds where changed as a result.
fn apply_constraint(&self, id: GlobalId, constraint: Constraint<T>) -> bool {
let collection = self.expect_collection(id);
let mut bounds = collection.bounds.borrow_mut();
match constraint.apply(&mut bounds) {
Ok(changed) => {
if changed {
info!(%id, %bounds, reason = %constraint.reason, "applied as-of constraint");
}
changed
}
Err(changed) => {
match constraint.type_ {
ConstraintType::Hard => {
soft_panic_or_log!(
"failed to apply hard as-of constraint \
(id={id}, bounds={bounds}, constraint={constraint:?})"
);
}
ConstraintType::Soft => {
warn!(%id, %bounds, ?constraint, "failed to apply soft as-of constraint");
}
}
changed
}
}
}
/// Apply as-of constraints imposed by the frontiers of upstream storage collections.
///
/// A collection's as-of _must_ be >= the read frontier of each of its (transitive) storage
/// inputs.
///
/// Failing to apply this constraint to a collection is an error. The affected dataflow will
/// not be able to hydrate successfully.
fn apply_upstream_storage_constraints(
&self,
storage_read_holds: &BTreeMap<GlobalId, ReadHold<T>>,
) {
// Apply direct constraints from storage inputs.
for (id, collection) in &self.collections {
for input_id in &collection.storage_inputs {
let read_hold = &storage_read_holds[input_id];
let constraint = Constraint {
type_: ConstraintType::Hard,
bound_type: BoundType::Lower,
frontier: read_hold.since(),
reason: &format!("storage input {input_id} read frontier"),
};
self.apply_constraint(*id, constraint);
}
}
// Propagate constraints downstream, restoring `AsOfBounds` invariant (1).
self.propagate_bounds_downstream(BoundType::Lower);
}
/// Apply as-of constraints imposed by the frontiers of downstream storage collections.
///
/// A collection's as-of _must_ be < the write frontier of the storage collection it exports to
/// (if any) if it is non-empty, and <= the storage collection's read frontier otherwise.
///
/// Rationale:
///
/// * A collection's as-of must be <= the write frontier of its dependent storage collection,
/// because we need to pick up computing the contents of storage collections where we left
/// off previously, to avoid skipped times observable in the durable output.
/// * Some dataflows feeding into storage collections (specifically: continual tasks) need to
/// be able to observe input changes at times they write to the output. If we selected the
/// as-of to be equal to the write frontier of the output storage collection, we wouldn't be
/// able to produce the correct output at that frontier. Thus the selected as-of must be
/// strictly less than the write frontier.
/// * As an exception to the above, if the output storage collection is empty (i.e. its write
/// frontier is <= its read frontier), we need to allow the as-of to be equal to the read
/// frontier. This is correct in the sense that it mirrors the timestamp selection behavior
/// of the sequencer when it created the collection. Chances are that the sequencer chose the
/// initial as-of (and therefore the initial read frontier of the storage collection) as the
/// smallest possible time that can still be read from the collection inputs, so forcing the
/// upper bound any lower than that read frontier would produce a hard constraint violation.
///
/// Failing to apply this constraint to a collection is an error. The storage collection it
/// exports to may have times visible to readers skipped in its output, violating correctness.
fn apply_downstream_storage_constraints(&self) {
// Apply direct constraints from storage exports.
for id in self.collections.keys() {
let Ok(frontiers) = self.storage_collections.collection_frontiers(*id) else {
continue;
};
let collection_empty =
PartialOrder::less_equal(&frontiers.write_frontier, &frontiers.read_capabilities);
let upper = if collection_empty {
frontiers.read_capabilities
} else {
Antichain::from_iter(
frontiers
.write_frontier
.iter()
.map(|t| t.step_back().unwrap_or(T::minimum())),
)
};
let constraint = Constraint {
type_: ConstraintType::Hard,
bound_type: BoundType::Upper,
frontier: &upper,
reason: &format!("storage export {id} write frontier"),
};
self.apply_constraint(*id, constraint);
}
// Propagate constraints upstream, restoring `AsOfBounds` invariant (2).
self.propagate_bounds_upstream(BoundType::Upper);
}
/// Apply as-of constraints to ensure collections can hydrate immediately.
///
/// A collection's as-of _should_ be < the write frontier of each of its (transitive) storage
/// inputs.
///
/// Failing to apply this constraint is not an error. The affected dataflow will not be able to
/// hydrate immediately, but it will be able to hydrate once its inputs have sufficiently
/// advanced.
fn apply_warmup_constraints(&self) {
// Apply direct constraints from storage inputs.
for (id, collection) in &self.collections {
for input_id in &collection.storage_inputs {
let frontiers = self
.storage_collections
.collection_frontiers(*input_id)
.expect("storage collection exists");
let upper = step_back_frontier(&frontiers.write_frontier);
let constraint = Constraint {
type_: ConstraintType::Soft,
bound_type: BoundType::Upper,
frontier: &upper,
reason: &format!("storage input {input_id} warmup frontier"),
};
self.apply_constraint(*id, constraint);
}
}
// Propagate constraints downstream. This transparently restores any violations of
// `AsOfBounds` invariant (2) that might be introduced by the propagation.
self.propagate_bounds_downstream(BoundType::Upper);
}
/// Apply as-of constraints to ensure indexes contain historical data as requested by their
/// associated read policies.
///
/// An index's as-of _should_ be <= the frontier determined by its read policy applied to its
/// write frontier.
///
/// Failing to apply this constraint is not an error. The affected index will not contain
/// historical times for its entire compaction window initially, but will do so once sufficient
/// time has passed.
fn apply_index_read_policy_constraints(&self) {
// For the write frontier of an index, we'll use the least write frontier of its
// (transitive) storage inputs. This is an upper bound for the write frontier the index
// could have had before the restart. For indexes without storage inputs we use the current
// time.
// Collect write frontiers from storage inputs.
let mut write_frontiers = BTreeMap::new();
for (id, collection) in &self.collections {
let storage_frontiers = self
.storage_collections
.collections_frontiers(collection.storage_inputs.clone())
.expect("storage collections exist");
let mut write_frontier = Antichain::new();
for frontiers in storage_frontiers {
write_frontier.extend(frontiers.write_frontier);
}
write_frontiers.insert(*id, write_frontier);
}
// Propagate write frontiers through compute inputs.
fixpoint(|changed| {
for (id, collection) in &self.collections {
let write_frontier = write_frontiers.get_mut(id).expect("inserted above");
for input_id in &collection.compute_inputs {
let input_collection = self.expect_collection(*input_id);
let bounds = input_collection.bounds.borrow();
*changed |= write_frontier.extend(bounds.upper.iter().cloned());
}
}
});
// Apply the read policy constraint to indexes.
for (id, collection) in &self.collections {
if let (true, Some(read_policy)) = (collection.is_index, &collection.read_policy) {
let mut write_frontier = write_frontiers.remove(id).expect("inserted above");
if write_frontier.is_empty() {
write_frontier = Antichain::from_elem(self.current_time.clone());
}
let upper = read_policy.frontier(write_frontier.borrow());
let constraint = Constraint {
type_: ConstraintType::Soft,
bound_type: BoundType::Upper,
frontier: &upper,
reason: &format!(
"read policy applied to write frontier {:?}",
write_frontier.elements()
),
};
self.apply_constraint(*id, constraint);
}
}
// Restore `AsOfBounds` invariant (2).
self.propagate_bounds_upstream(BoundType::Upper);
}
/// Apply as-of constraints to ensure indexes are immediately readable.
///
/// An index's as-of _should_ be <= the current time.
///
/// Failing to apply this constraint is not an error. The affected index will not be readable
/// immediately, but will be readable once sufficient time has passed.
fn apply_index_current_time_constraints(&self) {
// Apply the current time constraint to indexes.
let upper = Antichain::from_elem(self.current_time.clone());
for (id, collection) in &self.collections {
if collection.is_index {
let constraint = Constraint {
type_: ConstraintType::Soft,
bound_type: BoundType::Upper,
frontier: &upper,
reason: "index current time",
};
self.apply_constraint(*id, constraint);
}
}
// Restore `AsOfBounds` invariant (2).
self.propagate_bounds_upstream(BoundType::Upper);
}
/// Propagate as-of bounds through the dependency graph, in downstream direction.
fn propagate_bounds_downstream(&self, bound_type: BoundType) {
// Propagating `lower` bounds downstream restores `AsOfBounds` invariant (1) and must
// therefore always succeed.
let constraint_type = match bound_type {
BoundType::Lower => ConstraintType::Hard,
BoundType::Upper => ConstraintType::Soft,
};
// We don't want to rely on a correspondence between `GlobalId` order and dependency order,
// so we use a fixpoint loop here.
fixpoint(|changed| {
self.propagate_bounds_downstream_inner(bound_type, constraint_type, changed);
// Propagating `upper` bounds downstream might break `AsOfBounds` invariant (2), so we
// need to restore it.
if bound_type == BoundType::Upper {
self.propagate_bounds_upstream_inner(
BoundType::Upper,
ConstraintType::Hard,
changed,
);
}
});
}
fn propagate_bounds_downstream_inner(
&self,
bound_type: BoundType,
constraint_type: ConstraintType,
changed: &mut bool,
) {
for (id, collection) in &self.collections {
for input_id in &collection.compute_inputs {
let input_collection = self.expect_collection(*input_id);
let bounds = input_collection.bounds.borrow();
let constraint = Constraint {
type_: constraint_type,
bound_type,
frontier: bounds.get(bound_type),
reason: &format!("upstream {input_id} {bound_type} as-of bound"),
};
*changed |= self.apply_constraint(*id, constraint);
}
}
}
/// Propagate as-of bounds through the dependency graph, in upstream direction.
fn propagate_bounds_upstream(&self, bound_type: BoundType) {
// Propagating `upper` bounds upstream restores `AsOfBounds` invariant (2) and must
// therefore always succeed.
let constraint_type = match bound_type {
BoundType::Lower => ConstraintType::Soft,
BoundType::Upper => ConstraintType::Hard,
};
// We don't want to rely on a correspondence between `GlobalId` order and dependency order,
// so we use a fixpoint loop here.
fixpoint(|changed| {
self.propagate_bounds_upstream_inner(bound_type, constraint_type, changed);
// Propagating `lower` bounds upstream might break `AsOfBounds` invariant (1), so we
// need to restore it.
if bound_type == BoundType::Lower {
self.propagate_bounds_downstream_inner(
BoundType::Lower,
ConstraintType::Hard,
changed,
);
}
});
}
fn propagate_bounds_upstream_inner(
&self,
bound_type: BoundType,
constraint_type: ConstraintType,
changed: &mut bool,
) {
for (id, collection) in self.collections.iter().rev() {
let bounds = collection.bounds.borrow();
for input_id in &collection.compute_inputs {
let constraint = Constraint {
type_: constraint_type,
bound_type,
frontier: bounds.get(bound_type),
reason: &format!("downstream {id} {bound_type} as-of bound"),
};
*changed |= self.apply_constraint(*input_id, constraint);
}
}
}
/// Selects the "best" as-of for the identified collection, based on its currently known
/// bounds.
///
/// We simply use the upper bound here, to maximize the chances of compute reconciliation
/// succeeding. Choosing the latest possible as-of also minimizes the amount of work the
/// dataflow has to spend processing historical data from its sources.
fn best_as_of(&self, id: GlobalId) -> Antichain<T> {
if let Some(collection) = self.collections.get(&id) {
let bounds = collection.bounds.borrow();
bounds.upper.clone()
} else {
Antichain::new()
}
}
/// Removes collections that sink into sealed persist shards from the context.
///
/// The dataflows of these collections will get an empty default as-of assigned at the end of
/// the as-of selection process, ensuring that they won't get installed unnecessarily.
///
/// Note that it is valid to remove these collections from consideration because they don't
/// impose as-of constraints on other compute collections.
fn prune_sealed_persist_sinks(&mut self) {
self.collections.retain(|id, _| {
self.storage_collections
.collection_frontiers(*id)
.map_or(true, |f| !f.write_frontier.is_empty())
});
}
}
/// Runs `step` in a loop until it stops reporting changes.
fn fixpoint(mut step: impl FnMut(&mut bool)) {
loop {
let mut changed = false;
step(&mut changed);
if !changed {
break;
}
}
}
/// Step back the given frontier.
///
/// This method is saturating: If the frontier contains `T::minimum()` times, these are kept
/// unchanged.
fn step_back_frontier<T: TimestampManipulation>(frontier: &Antichain<T>) -> Antichain<T> {
frontier
.iter()
.map(|t| t.step_back().unwrap_or(T::minimum()))
.collect()
}
#[cfg(test)]
mod tests {
use std::collections::BTreeSet;
use async_trait::async_trait;
use futures::future::BoxFuture;
use mz_compute_types::dataflows::{IndexDesc, IndexImport};
use mz_compute_types::sinks::ComputeSinkConnection;
use mz_compute_types::sinks::ComputeSinkDesc;
use mz_compute_types::sinks::MaterializedViewSinkConnection;
use mz_compute_types::sources::SourceInstanceArguments;
use mz_compute_types::sources::SourceInstanceDesc;
use mz_persist_client::stats::{SnapshotPartsStats, SnapshotStats};
use mz_repr::RelationDesc;
use mz_repr::RelationType;
use mz_repr::Timestamp;
use mz_storage_client::controller::{CollectionDescription, StorageMetadata, StorageTxn};
use mz_storage_client::storage_collections::CollectionFrontiers;
use mz_storage_types::connections::inline::InlinedConnection;
use mz_storage_types::controller::{CollectionMetadata, StorageError};
use mz_storage_types::parameters::StorageParameters;
use mz_storage_types::read_holds::ReadHoldError;
use mz_storage_types::sources::SourceExportDataConfig;
use mz_storage_types::sources::{GenericSourceConnection, SourceDesc};
use mz_storage_types::time_dependence::{TimeDependence, TimeDependenceError};
use super::*;
const SEALED: u64 = 0x5ea1ed;
fn ts_to_frontier(ts: u64) -> Antichain<Timestamp> {
if ts == SEALED {
Antichain::new()
} else {
Antichain::from_elem(ts.into())
}
}
#[derive(Debug)]
struct StorageFrontiers(BTreeMap<GlobalId, (Antichain<Timestamp>, Antichain<Timestamp>)>);
#[async_trait]
impl StorageCollections for StorageFrontiers {
type Timestamp = Timestamp;
async fn initialize_state(
&self,
_txn: &mut (dyn StorageTxn<Self::Timestamp> + Send),
_init_ids: BTreeSet<GlobalId>,
_drop_ids: BTreeSet<GlobalId>,
) -> Result<(), StorageError<Self::Timestamp>> {
unimplemented!()
}
fn update_parameters(&self, _config_params: StorageParameters) {
unimplemented!()
}
fn collection_metadata(
&self,
_id: GlobalId,
) -> Result<CollectionMetadata, StorageError<Self::Timestamp>> {
unimplemented!()
}
fn active_collection_metadatas(&self) -> Vec<(GlobalId, CollectionMetadata)> {
unimplemented!()
}
fn collections_frontiers(
&self,
ids: Vec<GlobalId>,
) -> Result<Vec<CollectionFrontiers<Self::Timestamp>>, StorageError<Self::Timestamp>>
{
let mut frontiers = Vec::with_capacity(ids.len());
for id in ids {
let (read, write) = self.0.get(&id).ok_or(StorageError::IdentifierMissing(id))?;
frontiers.push(CollectionFrontiers {
id,
write_frontier: write.clone(),
implied_capability: read.clone(),
read_capabilities: read.clone(),
})
}
Ok(frontiers)
}
fn active_collection_frontiers(&self) -> Vec<CollectionFrontiers<Self::Timestamp>> {
unimplemented!()
}
fn check_exists(&self, _id: GlobalId) -> Result<(), StorageError<Self::Timestamp>> {
unimplemented!()
}
async fn snapshot_stats(
&self,
_id: GlobalId,
_as_of: Antichain<Self::Timestamp>,
) -> Result<SnapshotStats, StorageError<Self::Timestamp>> {
unimplemented!()
}
async fn snapshot_parts_stats(
&self,
_id: GlobalId,
_as_of: Antichain<Self::Timestamp>,
) -> BoxFuture<'static, Result<SnapshotPartsStats, StorageError<Self::Timestamp>>> {
unimplemented!()
}
async fn prepare_state(
&self,
_txn: &mut (dyn StorageTxn<Self::Timestamp> + Send),
_ids_to_add: BTreeSet<GlobalId>,
_ids_to_drop: BTreeSet<GlobalId>,
) -> Result<(), StorageError<Self::Timestamp>> {
unimplemented!()
}
async fn create_collections_for_bootstrap(
&self,
_storage_metadata: &StorageMetadata,
_register_ts: Option<Self::Timestamp>,
_collections: Vec<(GlobalId, CollectionDescription<Self::Timestamp>)>,
_migrated_storage_collections: &BTreeSet<GlobalId>,
) -> Result<(), StorageError<Self::Timestamp>> {
unimplemented!()
}
async fn alter_ingestion_source_desc(
&self,
_ingestion_id: GlobalId,
_source_desc: SourceDesc,
) -> Result<(), StorageError<Self::Timestamp>> {
unimplemented!()
}
async fn alter_ingestion_export_data_configs(
&self,
_source_exports: BTreeMap<GlobalId, SourceExportDataConfig>,
) -> Result<(), StorageError<Self::Timestamp>> {
unimplemented!()
}
async fn alter_ingestion_connections(
&self,
_source_connections: BTreeMap<GlobalId, GenericSourceConnection<InlinedConnection>>,
) -> Result<(), StorageError<Self::Timestamp>> {
unimplemented!()
}
fn alter_table_desc(
&self,
_table_id: GlobalId,
_new_desc: RelationDesc,
) -> Result<(), StorageError<Self::Timestamp>> {
unimplemented!()
}
fn drop_collections_unvalidated(
&self,
_storage_metadata: &StorageMetadata,
_identifiers: Vec<GlobalId>,
) {
unimplemented!()
}
fn set_read_policies(&self, _policies: Vec<(GlobalId, ReadPolicy<Self::Timestamp>)>) {
unimplemented!()
}
fn acquire_read_holds(
&self,
desired_holds: Vec<GlobalId>,
) -> Result<Vec<ReadHold<Self::Timestamp>>, ReadHoldError> {
let mut holds = Vec::with_capacity(desired_holds.len());
for id in desired_holds {
let (read, _write) = self
.0
.get(&id)
.ok_or(ReadHoldError::CollectionMissing(id))?;
let (tx, _rx) = tokio::sync::mpsc::unbounded_channel();
holds.push(ReadHold::new(id, read.clone(), tx));
}
Ok(holds)
}
fn determine_time_dependence(
&self,
_id: GlobalId,
) -> Result<Option<TimeDependence>, TimeDependenceError> {
unimplemented!()
}
}
fn dataflow(
export_id: &str,
input_ids: &[&str],
storage_ids: &BTreeSet<&str>,
) -> DataflowDescription<Plan> {
let source_imports = input_ids
.iter()
.filter(|s| storage_ids.contains(*s))
.map(|s| {
let id = s.parse().unwrap();
let desc = SourceInstanceDesc {
arguments: SourceInstanceArguments {
operators: Default::default(),
},
storage_metadata: Default::default(),
typ: RelationType::empty(),
};
(id, (desc, Default::default()))
})
.collect();
let index_imports = input_ids
.iter()
.filter(|s| !storage_ids.contains(*s))
.map(|s| {
let id = s.parse().unwrap();
let import = IndexImport {
desc: IndexDesc {
on_id: GlobalId::Transient(0),
key: Default::default(),
},
typ: RelationType::empty(),
monotonic: Default::default(),
};
(id, import)
})
.collect();
let index_exports = std::iter::once(export_id)
.filter(|s| !storage_ids.contains(*s))
.map(|sid| {
let id = sid.parse().unwrap();
let desc = IndexDesc {
on_id: GlobalId::Transient(0),
key: Default::default(),
};
let typ = RelationType::empty();
(id, (desc, typ))
})
.collect();
let sink_exports = std::iter::once(export_id)
.filter(|s| storage_ids.contains(*s))
.map(|sid| {
let id = sid.parse().unwrap();
let desc = ComputeSinkDesc {
from: GlobalId::Transient(0),
from_desc: RelationDesc::empty(),
connection: ComputeSinkConnection::MaterializedView(
MaterializedViewSinkConnection {
value_desc: RelationDesc::empty(),
storage_metadata: Default::default(),
},
),
with_snapshot: Default::default(),
up_to: Default::default(),
non_null_assertions: Default::default(),
refresh_schedule: Default::default(),
};
(id, desc)
})
.collect();
DataflowDescription {
source_imports,
index_imports,
objects_to_build: Default::default(),
index_exports,
sink_exports,
as_of: None,
until: Default::default(),
initial_storage_as_of: Default::default(),
refresh_schedule: Default::default(),
debug_name: Default::default(),
time_dependence: None,
}
}
macro_rules! testcase {
($name:ident, {
storage: { $( $storage_id:literal: ($read:expr, $write:expr), )* },
dataflows: [ $( $export_id:literal <- $inputs:expr => $as_of:expr, )* ],
current_time: $current_time:literal,
$( read_policies: { $( $policy_id:literal: $policy:expr, )* }, )?
}) => {
#[mz_ore::test]
fn $name() {
let storage_ids = [$( $storage_id, )*].into();
let storage_frontiers = StorageFrontiers(BTreeMap::from([
$(
(
$storage_id.parse().unwrap(),
(ts_to_frontier($read), ts_to_frontier($write)),
),
)*
]));
let mut dataflows = [
$(
dataflow($export_id, &$inputs, &storage_ids),
)*
];
let read_policies = BTreeMap::from([
$($( ($policy_id.parse().unwrap(), $policy), )*)?
]);
super::run(
&mut dataflows,
&read_policies,
&storage_frontiers,
$current_time.into(),
);
let actual_as_ofs: Vec<_> = dataflows
.into_iter()
.map(|d| d.as_of.unwrap())
.collect();
let expected_as_ofs = [ $( ts_to_frontier($as_of), )* ];
assert_eq!(actual_as_ofs, expected_as_ofs);
}
};
}
testcase!(upstream_storage_constraints, {
storage: {
"s1": (10, 20),
"s2": (20, 30),
},
dataflows: [
"u1" <- ["s1"] => 10,
"u2" <- ["s2"] => 20,
"u3" <- ["s1", "s2"] => 20,
"u4" <- ["u1", "u2"] => 20,
],
current_time: 0,
});
testcase!(downstream_storage_constraints, {
storage: {
"s1": (10, 20),
"u3": (10, 15),
"u4": (10, 13),
},
dataflows: [
"u1" <- ["s1"] => 19,
"u2" <- ["s1"] => 12,
"u3" <- ["u2"] => 12,
"u4" <- ["u2"] => 12,
],
current_time: 100,
});
testcase!(warmup_constraints, {
storage: {
"s1": (10, 20),
"s2": (10, 30),
"s3": (10, 40),
"s4": (10, 50),
},
dataflows: [
"u1" <- ["s1"] => 19,
"u2" <- ["s2"] => 19,
"u3" <- ["s3"] => 39,
"u4" <- ["s4"] => 39,
"u5" <- ["u1", "u2"] => 19,
"u6" <- ["u3", "u4"] => 39,
],
current_time: 100,
});
testcase!(index_read_policy_constraints, {
storage: {
"s1": (10, 20),
"u6": (10, 18),
},
dataflows: [
"u1" <- ["s1"] => 15,
"u2" <- ["s1"] => 10,
"u3" <- ["s1"] => 13,
"u4" <- ["s1"] => 10,
"u5" <- [] => 95,
"u6" <- ["s1"] => 17,
],
current_time: 100,
read_policies: {
"u1": ReadPolicy::lag_writes_by(5.into(), 1.into()),
"u2": ReadPolicy::lag_writes_by(15.into(), 1.into()),
"u3": ReadPolicy::ValidFrom(Antichain::from_elem(13.into())),
"u4": ReadPolicy::ValidFrom(Antichain::from_elem(5.into())),
"u5": ReadPolicy::lag_writes_by(5.into(), 1.into()),
"u6": ReadPolicy::ValidFrom(Antichain::from_elem(13.into())),
},
});
testcase!(index_current_time_constraints, {
storage: {
"s1": (10, 20),
"s2": (20, 30),
"u4": (10, 12),
"u5": (10, 18),
},
dataflows: [
"u1" <- ["s1"] => 15,
"u2" <- ["s2"] => 20,
"u3" <- ["s1"] => 11,
"u4" <- ["u3"] => 11,
"u5" <- ["s1"] => 17,
"u6" <- [] => 15,
],
current_time: 15,
});
testcase!(sealed_storage_sink, {
storage: {
"s1": (10, 20),
"u1": (10, SEALED),
},
dataflows: [
"u1" <- ["s1"] => SEALED,
],
current_time: 100,
});
}