lz4_flex/
fastcpy_unsafe.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
//! # FastCpy
//!
//! The Rust Compiler calls `memcpy` for slices of unknown length.
//! This crate provides a faster implementation of `memcpy` for slices up to 32bytes (64bytes with `avx`).
//! If you know most of you copy operations are not too big you can use `fastcpy` to speed up your program.
//!
//! `fastcpy` is designed to contain not too much assembly, so the overhead is low.
//!
//! As fall back the standard `memcpy` is called
//!
//! ## Double Copy Trick
//! `fastcpy` employs a double copy trick to copy slices of length 4-32bytes (64bytes with `avx`).
//! E.g. Slice of length 6 can be copied with two uncoditional copy operations.
//!
//! /// [1, 2, 3, 4, 5, 6]
//! /// [1, 2, 3, 4]
//! ///       [3, 4, 5, 6]
//!

#[inline]
pub fn slice_copy(src: *const u8, dst: *mut u8, num_bytes: usize) {
    if num_bytes < 4 {
        short_copy(src, dst, num_bytes);
        return;
    }

    if num_bytes < 8 {
        double_copy_trick::<4>(src, dst, num_bytes);
        return;
    }

    if num_bytes <= 16 {
        double_copy_trick::<8>(src, dst, num_bytes);
        return;
    }

    //if num_bytes <= 32 {
    //double_copy_trick::<16>(src, dst, num_bytes);
    //return;
    //}

    // /// The code will use the vmovdqu instruction to copy 32 bytes at a time.
    //#[cfg(target_feature = "avx")]
    //{
    //if num_bytes <= 64 {
    //double_copy_trick::<32>(src, dst, num_bytes);
    //return;
    //}
    //}

    // For larger sizes we use the default, which calls memcpy
    // memcpy does some virtual memory tricks to copy large chunks of memory.
    //
    // The theory should be that the checks above don't cost much relative to the copy call for
    // larger copies.
    // The bounds checks in `copy_from_slice` are elided.

    //unsafe { core::ptr::copy_nonoverlapping(src, dst, num_bytes) }
    wild_copy_from_src::<16>(src, dst, num_bytes)
}

// Inline never because otherwise we get a call to memcpy -.-
#[inline]
fn wild_copy_from_src<const SIZE: usize>(
    mut source: *const u8,
    mut dst: *mut u8,
    num_bytes: usize,
) {
    // Note: if the compiler auto-vectorizes this it'll hurt performance!
    // It's not the case for 16 bytes stepsize, but for 8 bytes.
    let l_last = unsafe { source.add(num_bytes - SIZE) };
    let r_last = unsafe { dst.add(num_bytes - SIZE) };
    let num_bytes = (num_bytes / SIZE) * SIZE;

    unsafe {
        let dst_ptr_end = dst.add(num_bytes);
        loop {
            core::ptr::copy_nonoverlapping(source, dst, SIZE);
            source = source.add(SIZE);
            dst = dst.add(SIZE);
            if dst >= dst_ptr_end {
                break;
            }
        }
    }

    unsafe {
        core::ptr::copy_nonoverlapping(l_last, r_last, SIZE);
    }
}

#[inline]
fn short_copy(src: *const u8, dst: *mut u8, len: usize) {
    unsafe {
        *dst = *src;
    }
    if len >= 2 {
        double_copy_trick::<2>(src, dst, len);
    }
}

#[inline(always)]
/// [1, 2, 3, 4, 5, 6]
/// [1, 2, 3, 4]
///       [3, 4, 5, 6]
fn double_copy_trick<const SIZE: usize>(src: *const u8, dst: *mut u8, len: usize) {
    let l_end = unsafe { src.add(len - SIZE) };
    let r_end = unsafe { dst.add(len - SIZE) };

    unsafe {
        core::ptr::copy_nonoverlapping(src, dst, SIZE);
        core::ptr::copy_nonoverlapping(l_end, r_end, SIZE);
    }
}

#[cfg(test)]
mod tests {
    use super::slice_copy;
    use proptest::prelude::*;
    proptest! {
        #[test]
        fn test_fast_short_slice_copy(left: Vec<u8>) {
            if left.is_empty() {
                return Ok(());
            }
            let mut right = vec![0u8; left.len()];
            slice_copy(left.as_ptr(), right.as_mut_ptr(), left.len());
            prop_assert_eq!(&left, &right);
        }
    }

    #[test]
    fn test_fast_short_slice_copy_edge_cases() {
        for len in 1..(512 * 2) {
            let left = (0..len).map(|i| i as u8).collect::<Vec<_>>();
            let mut right = vec![0u8; len];
            slice_copy(left.as_ptr(), right.as_mut_ptr(), left.len());
            assert_eq!(left, right);
        }
    }

    #[test]
    fn test_fail2() {
        let left = vec![
            0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
            24, 25, 26, 27, 28, 29, 30, 31, 32,
        ];
        let mut right = vec![0u8; left.len()];
        slice_copy(left.as_ptr(), right.as_mut_ptr(), left.len());
        assert_eq!(left, right);
    }

    #[test]
    fn test_fail() {
        let left = vec![
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        ];
        let mut right = vec![0u8; left.len()];
        slice_copy(left.as_ptr(), right.as_mut_ptr(), left.len());
        assert_eq!(left, right);
    }
}