lexical_parse_integer/
algorithm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
//! Radix-generic, optimized, string-to-integer conversion routines.
//!
//! These routines are highly optimized: they use various optimizations
//! to read multiple digits at-a-time with less multiplication instructions,
//! as well as other optimizations to avoid unnecessary compile-time branching.
//!
//! See [Algorithm.md](/docs/Algorithm.md) for a more detailed description of
//! the algorithm choice here. See [Benchmarks.md](/docs/Benchmarks.md) for
//! recent benchmark data.
//!
//! These allow implementations of partial and complete parsers
//! using a single code-path via macros.
//!
//! This looks relatively, complex, but it's quite simple. Almost all
//! of these branches are resolved at compile-time, so the resulting
//! code is quite small while handling all of the internal complexity.
//!
//! 1. Helpers to process ok and error results for both complete and partial
//!    parsers. They have different APIs, and mixing the APIs leads to
//!    substantial performance hits.
//! 2. Overflow checking on invalid digits for partial parsers, while just
//!    returning invalid digits for complete parsers.
//! 3. A format-aware sign parser.
//! 4. Digit parsing algorithms which explicitly wrap on overflow, for no
//!    additional overhead. This has major performance wins for **most**
//!    real-world integers, so most valid input will be substantially faster.
//! 5. An algorithm to detect if overflow occurred. This is comprehensive, and
//!    short-circuits for common cases.
//! 6. A parsing algorithm for unsigned integers, always producing positive
//!    values. This avoids any unnecessary branching.
//! 7. Multi-digit optimizations for larger sizes.

#![doc(hidden)]

use lexical_util::digit::char_to_digit_const;
use lexical_util::error::Error;
use lexical_util::format::NumberFormat;
use lexical_util::iterator::{AsBytes, Bytes, DigitsIter, Iter};
use lexical_util::num::{as_cast, Integer};
use lexical_util::result::Result;

use crate::Options;

// HELPERS

/// Check if we should do multi-digit optimizations
const fn can_try_parse_multidigits<'a, Iter: DigitsIter<'a>, const FORMAT: u128>(_: &Iter) -> bool {
    let format = NumberFormat::<FORMAT> {};
    Iter::IS_CONTIGUOUS && (cfg!(not(feature = "power-of-two")) || format.mantissa_radix() <= 10)
}

// Get if digits are required for the format.
#[cfg_attr(not(feature = "format"), allow(unused_macros))]
macro_rules! required_digits {
    () => {
        NumberFormat::<FORMAT>::REQUIRED_INTEGER_DIGITS
            || NumberFormat::<FORMAT>::REQUIRED_MANTISSA_DIGITS
    };
}

/// Return an value for a complete parser.
macro_rules! into_ok_complete {
    ($value:expr, $index:expr, $count:expr) => {{
        #[cfg(not(feature = "format"))]
        return Ok(as_cast($value));

        #[cfg(feature = "format")]
        if required_digits!() && $count == 0 {
            into_error!(Empty, $index);
        } else {
            return Ok(as_cast($value));
        }
    }};
}

/// Return an value and index for a partial parser.
macro_rules! into_ok_partial {
    ($value:expr, $index:expr, $count:expr) => {{
        #[cfg(not(feature = "format"))]
        return Ok((as_cast($value), $index));

        #[cfg(feature = "format")]
        if required_digits!() && $count == 0 {
            into_error!(Empty, $index);
        } else {
            return Ok((as_cast($value), $index));
        }
    }};
}

/// Return an error for a complete parser upon an invalid digit.
macro_rules! invalid_digit_complete {
    ($value:expr, $index:expr, $count:expr) => {
        // Don't do any overflow checking here: we don't need it.
        into_error!(InvalidDigit, $index - 1)
    };
}

/// Return a value for a partial parser upon an invalid digit.
/// This checks for numeric overflow, and returns the appropriate error.
macro_rules! invalid_digit_partial {
    ($value:expr, $index:expr, $count:expr) => {
        // NOTE: The value is already positive/negative
        into_ok_partial!($value, $index - 1, $count)
    };
}

/// Return an error, returning the index and the error.
macro_rules! into_error {
    ($code:ident, $index:expr) => {{
        return Err(Error::$code($index));
    }};
}

/// Handle an invalid digit if the format feature is enabled.
///
/// This is because we can have special, non-digit characters near
/// the start or internally. If `$is_end` is set to false, there **MUST**
/// be elements in the underlying slice after the current iterator.
#[cfg(feature = "format")]
macro_rules! fmt_invalid_digit {
    (
        $value:ident, $iter:ident, $c:expr, $start_index:ident, $invalid_digit:ident, $is_end:expr
    ) => {{
        // NOTE: If we have non-contiguous iterators, we could have a skip character
        // here at the boundary. This does not affect safety but it does affect
        // correctness.
        debug_assert!($iter.is_contiguous() || $is_end);

        let base_suffix = NumberFormat::<FORMAT>::BASE_SUFFIX;
        let uncased_base_suffix = NumberFormat::<FORMAT>::CASE_SENSITIVE_BASE_SUFFIX;
        // Need to check for a base suffix, if so, return a valid value.
        // We can't have a base suffix at the first value (need at least
        // 1 digit).
        if base_suffix != 0 && $iter.cursor() - $start_index > 1 {
            let is_suffix = if uncased_base_suffix {
                $c == base_suffix
            } else {
                $c.eq_ignore_ascii_case(&base_suffix)
            };
            // NOTE: If we're using the `take_n` optimization where it can't
            // be the end, then the iterator cannot be done. So, in that case,
            // we need to end. `take_n` also can never be used for non-
            // contiguous iterators.
            if is_suffix && $is_end && $iter.is_buffer_empty() {
                // Break out of the loop, we've finished parsing.
                break;
            } else if !$iter.is_buffer_empty() {
                // Haven't finished parsing, so we're going to call
                // `invalid_digit!`. Need to ensure we include the
                // base suffix in that.

                // SAFETY: safe since the iterator is not empty, as checked
                // in `$iter.is_buffer_empty()`. Adding in the check hopefully
                // will be elided since it's a known constant.
                unsafe { $iter.step_unchecked() };
            }
        }
        // Might have handled our base-prefix here.
        $invalid_digit!($value, $iter.cursor(), $iter.current_count())
    }};
}

/// Just return an invalid digit
#[cfg(not(feature = "format"))]
macro_rules! fmt_invalid_digit {
    (
        $value:ident, $iter:ident, $c:expr, $start_index:ident, $invalid_digit:ident, $is_end:expr
    ) => {{
        $invalid_digit!($value, $iter.cursor(), $iter.current_count());
    }};
}

/// Parse the sign from the leading digits.
///
/// This routine does the following:
///
/// 1. Parses the sign digit.
/// 2. Handles if positive signs before integers are not allowed.
/// 3. Handles negative signs if the type is unsigned.
/// 4. Handles if the sign is required, but missing.
/// 5. Handles if the iterator is empty, before or after parsing the sign.
/// 6. Handles if the iterator has invalid, leading zeros.
///
/// Returns if the value is negative, or any values detected when
/// validating the input.
#[macro_export]
macro_rules! parse_sign {
    (
        $byte:ident,
        $is_signed:expr,
        $no_positive:expr,
        $required:expr,
        $invalid_positive:ident,
        $missing:ident
    ) => {
        // NOTE: `read_if` optimizes poorly since we then match after
        match $byte.integer_iter().first() {
            Some(&b'+') if !$no_positive => {
                // SAFETY: We have at least 1 item left since we peaked a value
                unsafe { $byte.step_unchecked() };
                Ok(false)
            },
            Some(&b'+') if $no_positive => Err(Error::$invalid_positive($byte.cursor())),
            Some(&b'-') if $is_signed => {
                // SAFETY: We have at least 1 item left since we peaked a value
                unsafe { $byte.step_unchecked() };
                Ok(true)
            },
            Some(_) if $required => Err(Error::$missing($byte.cursor())),
            _ if $required => Err(Error::$missing($byte.cursor())),
            _ => Ok(false),
        }
    };
}

/// Parse the sign from the leading digits.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn parse_sign<T: Integer, const FORMAT: u128>(byte: &mut Bytes<'_, FORMAT>) -> Result<bool> {
    let format = NumberFormat::<FORMAT> {};
    parse_sign!(
        byte,
        T::IS_SIGNED,
        format.no_positive_mantissa_sign(),
        format.required_mantissa_sign(),
        InvalidPositiveSign,
        MissingSign
    )
}

// FOUR DIGITS

/// Determine if 4 bytes, read raw from bytes, are 4 digits for the radix.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn is_4digits<const FORMAT: u128>(v: u32) -> bool {
    let radix = NumberFormat::<{ FORMAT }>::MANTISSA_RADIX;
    debug_assert!(radix <= 10);

    // We want to have a wrapping add and sub such that only values from the
    // range `[0x30, 0x39]` (or narrower for custom radixes) will not
    // overflow into the high bit. This means that the value needs to overflow
    // into into `0x80` if the digit is 1 above, or `0x46` for the value `0x39`.
    // Likewise, we only valid for `[0x30, 0x38]` for radix 8, so we need
    // `0x47`.
    let add = 0x46 + 10 - radix;
    let add = add + (add << 8) + (add << 16) + (add << 24);
    // This aims to underflow if anything is below the min digit: if we have any
    // values under `0x30`, then this underflows and wraps into the high bit.
    let sub = 0x3030_3030;
    let a = v.wrapping_add(add);
    let b = v.wrapping_sub(sub);

    (a | b) & 0x8080_8080 == 0
}

/// Parse 4 bytes read from bytes into 4 digits.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn parse_4digits<const FORMAT: u128>(mut v: u32) -> u32 {
    let radix = NumberFormat::<{ FORMAT }>::MANTISSA_RADIX;
    debug_assert!(radix <= 10);

    // Normalize our digits to the range `[0, 9]`.
    v -= 0x3030_3030;
    // Scale digits in `0 <= Nn <= 99`.
    v = (v * radix) + (v >> 8);
    // Scale digits in `0 <= Nnnn <= 9999`.
    v = ((v & 0x0000007f) * radix * radix) + ((v >> 16) & 0x0000007f);

    v
}

/// Use a fast-path optimization, where we attempt to parse 4 digits at a time.
/// This reduces the number of multiplications necessary to 2, instead of 4.
///
/// This approach is described in full here:
/// <https://johnnylee-sde.github.io/Fast-numeric-string-to-int/>
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn try_parse_4digits<'a, T, Iter, const FORMAT: u128>(iter: &mut Iter) -> Option<T>
where
    T: Integer,
    Iter: DigitsIter<'a>,
{
    // Can't do fast optimizations with radixes larger than 10, since
    // we no longer have a contiguous ASCII block. Likewise, cannot
    // use non-contiguous iterators.
    debug_assert!(NumberFormat::<{ FORMAT }>::MANTISSA_RADIX <= 10);
    debug_assert!(Iter::IS_CONTIGUOUS);

    // Read our digits, validate the input, and check from there.
    let bytes = u32::from_le(iter.peek_u32()?);
    if is_4digits::<FORMAT>(bytes) {
        // SAFETY: safe since we have at least 4 bytes in the buffer.
        unsafe { iter.step_by_unchecked(4) };
        Some(T::as_cast(parse_4digits::<FORMAT>(bytes)))
    } else {
        None
    }
}

// EIGHT DIGITS

/// Determine if 8 bytes, read raw from bytes, are 8 digits for the radix.
/// See `is_4digits` for the algorithm description.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn is_8digits<const FORMAT: u128>(v: u64) -> bool {
    let radix = NumberFormat::<{ FORMAT }>::MANTISSA_RADIX;
    debug_assert!(radix <= 10);

    let add = 0x46 + 10 - radix;
    let add = add + (add << 8) + (add << 16) + (add << 24);
    let add = (add as u64) | ((add as u64) << 32);
    // This aims to underflow if anything is below the min digit: if we have any
    // values under `0x30`, then this underflows and wraps into the high bit.
    let sub = 0x3030_3030_3030_3030;
    let a = v.wrapping_add(add);
    let b = v.wrapping_sub(sub);

    (a | b) & 0x8080_8080_8080_8080 == 0
}

/// Parse 8 bytes read from bytes into 8 digits.
/// Credit for this goes to @aqrit, which further optimizes the
/// optimization described by Johnny Lee above.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn parse_8digits<const FORMAT: u128>(mut v: u64) -> u64 {
    let radix = NumberFormat::<{ FORMAT }>::MANTISSA_RADIX as u64;
    debug_assert!(radix <= 10);

    // Create our masks. Assume the optimizer will do this at compile time.
    // It seems like an optimizing compiler **will** do this, so we
    // should be safe.
    let radix2 = radix * radix;
    let radix4 = radix2 * radix2;
    let radix6 = radix2 * radix4;
    let mask = 0x0000_00FF_0000_00FFu64;
    let mul1 = radix2 + (radix6 << 32);
    let mul2 = 1 + (radix4 << 32);

    // Normalize our digits to the base.
    v -= 0x3030_3030_3030_3030;
    // Scale digits in `0 <= Nn <= 99`.
    v = (v * radix) + (v >> 8);
    let v1 = (v & mask).wrapping_mul(mul1);
    let v2 = ((v >> 16) & mask).wrapping_mul(mul2);

    ((v1.wrapping_add(v2) >> 32) as u32) as u64
}

/// Use a fast-path optimization, where we attempt to parse 8 digits at a time.
/// This reduces the number of multiplications necessary to 3, instead of 8.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn try_parse_8digits<'a, T, Iter, const FORMAT: u128>(iter: &mut Iter) -> Option<T>
where
    T: Integer,
    Iter: DigitsIter<'a>,
{
    // Can't do fast optimizations with radixes larger than 10, since
    // we no longer have a contiguous ASCII block. Likewise, cannot
    // use non-contiguous iterators.
    debug_assert!(NumberFormat::<{ FORMAT }>::MANTISSA_RADIX <= 10);
    debug_assert!(Iter::IS_CONTIGUOUS);

    // Read our digits, validate the input, and check from there.
    let bytes = u64::from_le(iter.peek_u64()?);
    if is_8digits::<FORMAT>(bytes) {
        // SAFETY: safe since we have at least 8 bytes in the buffer.
        unsafe { iter.step_by_unchecked(8) };
        Some(T::as_cast(parse_8digits::<FORMAT>(bytes)))
    } else {
        None
    }
}

// ONE DIGIT

/// Run a loop where the integer cannot possibly overflow.
///
/// If the length of the str is short compared to the range of the type
/// we are parsing into, then we can be certain that an overflow will not occur.
/// This bound is when `radix.pow(digits.len()) - 1 <= T::MAX` but the condition
/// above is a faster (conservative) approximation of this.
///
/// Consider radix 16 as it has the highest information density per digit and
/// will thus overflow the earliest: `u8::MAX` is `ff` - any str of length 2 is
/// guaranteed to not overflow. `i8::MAX` is `7f` - only a str of length 1 is
/// guaranteed to not overflow.
///
/// This is based off of [core/num](core).
///
/// * `value` - The current parsed value.
/// * `iter` - An iterator over all bytes in the input.
/// * `add_op` - The unchecked add/sub op.
/// * `start_index` - The offset where parsing started.
/// * `invalid_digit` - Behavior when an invalid digit is found.
/// * `is_end` - If iter corresponds to the full input.
///
/// core: <https://doc.rust-lang.org/1.81.0/src/core/num/mod.rs.html#1480>
macro_rules! parse_1digit_unchecked {
    (
        $value:ident,
        $iter:ident,
        $add_op:ident,
        $start_index:ident,
        $invalid_digit:ident,
        $is_end:expr
    ) => {{
        // This is a slower parsing algorithm, going 1 digit at a time, but doing it in
        // an unchecked loop.
        let radix = NumberFormat::<FORMAT>::MANTISSA_RADIX;
        while let Some(&c) = $iter.next() {
            let digit = match char_to_digit_const(c, radix) {
                Some(v) => v,
                None => fmt_invalid_digit!($value, $iter, c, $start_index, $invalid_digit, $is_end),
            };
            // multiply first since compilers are good at optimizing things out and will do
            // a fused mul/add We must do this after getting the digit for
            // partial parsers
            $value = $value.wrapping_mul(as_cast(radix)).$add_op(as_cast(digit));
        }
    }};
}

/// Run a loop where the integer could overflow.
///
/// This is a standard, unoptimized algorithm. This is based off of
/// [core/num](core)
///
/// * `value` - The current parsed value.
/// * `iter` - An iterator over all bytes in the input.
/// * `add_op` - The checked add/sub op.
/// * `start_index` - The offset where parsing started.
/// * `invalid_digit` - Behavior when an invalid digit is found.
/// * `overflow` - If the error is overflow or underflow.
///
/// core: <https://doc.rust-lang.org/1.81.0/src/core/num/mod.rs.html#1505>
macro_rules! parse_1digit_checked {
    (
        $value:ident,
        $iter:ident,
        $add_op:ident,
        $start_index:ident,
        $invalid_digit:ident,
        $overflow:ident
    ) => {{
        // This is a slower parsing algorithm, going 1 digit at a time, but doing it in
        // an unchecked loop.
        let radix = NumberFormat::<FORMAT>::MANTISSA_RADIX;
        while let Some(&c) = $iter.next() {
            let digit = match char_to_digit_const(c, radix) {
                Some(v) => v,
                None => fmt_invalid_digit!($value, $iter, c, $start_index, $invalid_digit, true),
            };
            // multiply first since compilers are good at optimizing things out and will do
            // a fused mul/add
            $value =
                match $value.checked_mul(as_cast(radix)).and_then(|x| x.$add_op(as_cast(digit))) {
                    Some(value) => value,
                    None => into_error!($overflow, $iter.cursor() - 1),
                }
        }
    }};
}

// OVERALL DIGITS
// --------------

/// Run an unchecked loop where digits are processed incrementally.
///
/// If the type size is small or there's not many digits, skip multi-digit
/// optimizations. Otherwise, if the type size is large and we're not manually
/// skipping manual optimizations, then we do this here.
///
/// * `value` - The current parsed value.
/// * `iter` - An iterator over all bytes in the input.
/// * `add_op` - The unchecked add/sub op.
/// * `start_index` - The offset where parsing started.
/// * `invalid_digit` - Behavior when an invalid digit is found.
/// * `no_multi_digit` - If to disable multi-digit optimizations.
/// * `is_end` - If iter corresponds to the full input.
macro_rules! parse_digits_unchecked {
    (
        $value:ident,
        $iter:ident,
        $add_op:ident,
        $start_index:ident,
        $invalid_digit:ident,
        $no_multi_digit:expr,
        $is_end:expr
    ) => {{
        let can_multi = can_try_parse_multidigits::<_, FORMAT>(&$iter);
        let use_multi = can_multi && !$no_multi_digit;

        // these cannot overflow. also, we use at most 3 for a 128-bit float and 1 for a
        // 64-bit float NOTE: Miri will complain about this if we use radices >=
        // 16 but since they won't go into `try_parse_8digits!` or
        // `try_parse_4digits` it will be optimized out and the overflow won't
        // matter.
        let format = NumberFormat::<FORMAT> {};
        if use_multi && T::BITS >= 64 && $iter.buffer_length() >= 8 {
            // Try our fast, 8-digit at a time optimizations.
            let radix8 = T::from_u32(format.radix8());
            while let Some(value) = try_parse_8digits::<T, _, FORMAT>(&mut $iter) {
                $value = $value.wrapping_mul(radix8).$add_op(value);
            }
        } else if use_multi && T::BITS == 32 && $iter.buffer_length() >= 4 {
            // Try our fast, 8-digit at a time optimizations.
            let radix4 = T::from_u32(format.radix4());
            while let Some(value) = try_parse_4digits::<T, _, FORMAT>(&mut $iter) {
                $value = $value.wrapping_mul(radix4).$add_op(value);
            }
        }
        parse_1digit_unchecked!($value, $iter, $add_op, $start_index, $invalid_digit, $is_end)
    }};
}

/// Run  checked loop where digits are processed with overflow checking.
///
/// If the type size is small or there's not many digits, skip multi-digit
/// optimizations. Otherwise, if the type size is large and we're not manually
/// skipping manual optimizations, then we do this here.
///
/// * `value` - The current parsed value.
/// * `iter` - An iterator over all bytes in the input.
/// * `add_op` - The checked add/sub op.
/// * `add_op_uc` - The unchecked add/sub op for small digit optimizations.
/// * `start_index` - The offset where parsing started.
/// * `invalid_digit` - Behavior when an invalid digit is found.
/// * `overflow` - If the error is overflow or underflow.
/// * `no_multi_digit` - If to disable multi-digit optimizations.
/// * `overflow_digits` - The number of digits before we need to consider
///   checked ops.
macro_rules! parse_digits_checked {
    (
        $value:ident,
        $iter:ident,
        $add_op:ident,
        $add_op_uc:ident,
        $start_index:ident,
        $invalid_digit:ident,
        $overflow:ident,
        $no_multi_digit:expr,
        $overflow_digits:expr
    ) => {{
        // Can use the unchecked for the `max_digits` here. If we
        // have a non-contiguous iterator, we could have a case like
        // 123__456, with no consecutive digit separators allowed. If
        // it's broken between the `_` characters, the integer will be
        // seen as valid when it isn't.
        if cfg!(not(feature = "format")) || $iter.is_contiguous() {
            if let Some(mut small) = $iter.take_n($overflow_digits) {
                let mut small_iter = small.integer_iter();
                parse_digits_unchecked!(
                    $value,
                    small_iter,
                    $add_op_uc,
                    $start_index,
                    $invalid_digit,
                    $no_multi_digit,
                    false
                );
            }
        }

        // NOTE: all our multi-digit optimizations have been done here: skip this
        parse_1digit_checked!($value, $iter, $add_op, $start_index, $invalid_digit, $overflow)
    }};
}

// ALGORITHM

/// Generic algorithm for both partial and complete parsers.
///
/// * `invalid_digit` - Behavior on finding an invalid digit.
/// * `into_ok` - Behavior when returning a valid value.
/// * `invalid_digit` - Behavior when an invalid digit is found.
/// * `no_multi_digit` - If to disable multi-digit optimizations.
/// * `is_partial` - If the parser is a partial parser.
#[rustfmt::skip]
macro_rules! algorithm {
($bytes:ident, $into_ok:ident, $invalid_digit:ident, $no_multi_digit:expr) => {{
    // WARNING:
    // --------
    // None of this code can be changed for optimization reasons.
    // Do not change it without benchmarking every change.
    //  1. You cannot use the `NoSkipIterator` in the loop,
    //      you must either return a subslice (indexing)
    //      or increment outside of the loop.
    //      Failing to do so leads to numerous more, unnecessary
    //      conditional move instructions, killing performance.
    //  2. Return a 0 or 1 shift, and indexing unchecked outside
    //      of the loop is slightly faster.
    //  3. Partial and complete parsers cannot be efficiently done
    //      together.
    //
    // If you try to refactor without carefully monitoring benchmarks or
    // assembly generation, please log the number of wasted hours: so
    //  16 hours so far.

    // With `step_by_unchecked`, this is sufficiently optimized.
    // Removes conditional paths, to, which simplifies maintenance.
    // The skip version of the iterator automatically coalesces to
    // the no-skip iterator.
    let mut byte = $bytes.bytes::<FORMAT>();
    let radix = NumberFormat::<FORMAT>::MANTISSA_RADIX;

    let is_negative = parse_sign::<T, FORMAT>(&mut byte)?;
    let mut iter = byte.integer_iter();
    if iter.is_buffer_empty() {
        // Our default format **ALWAYS** requires significant digits, however,
        // we can have cases where we don
        #[cfg(not(feature = "format"))]
        into_error!(Empty, iter.cursor());

        #[cfg(feature = "format")]
        if required_digits!() {
            into_error!(Empty, iter.cursor());
        } else {
            $into_ok!(T::ZERO, iter.cursor(), 0)
        }
    }

    // Feature-gate a lot of format-only code here to simplify analysis with our branching
    // We only want to skip the zeros if have either require a base prefix or we don't
    // allow integer leading zeros, since the skip is expensive
    #[allow(unused_variables, unused_mut)]
    let mut start_index = iter.cursor();
    #[cfg_attr(not(feature = "format"), allow(unused_variables))]
    let format = NumberFormat::<FORMAT> {};
    #[cfg(feature = "format")]
    if format.has_base_prefix() || format.no_integer_leading_zeros() {
        // Skip any leading zeros. We want to do our check if it can't possibly overflow after.
        // For skipping digit-based formats, this approximation is a way over estimate.
        // NOTE: Skipping zeros is **EXPENSIVE* so we skip that without our format feature
        let zeros = iter.skip_zeros();
        start_index += zeros;

        // Now, check to see if we have a valid base prefix.
        let mut is_prefix = false;
        let base_prefix = format.base_prefix();
        if base_prefix != 0 && zeros == 1 {
            // Check to see if the next character is the base prefix.
            // We must have a format like `0x`, `0d`, `0o`. Note:
            if iter.read_if_value(base_prefix, format.case_sensitive_base_prefix()).is_some() {
                is_prefix = true;
                if iter.is_buffer_empty() {
                    into_error!(Empty, iter.cursor());
                } else {
                    start_index += 1;
                }
            }
        }

        // If we have a format that doesn't accept leading zeros,
        // check if the next value is invalid. It's invalid if the
        // first is 0, and the next is not a valid digit.
        if !is_prefix && format.no_integer_leading_zeros() && zeros != 0 {
            // Cannot have a base prefix and no leading zeros.
            let index = iter.cursor() - zeros;
            if zeros > 1 {
                into_error!(InvalidLeadingZeros, index);
            }
            // NOTE: Zeros has to be 0 here, so our index == 1 or 2 (depending on sign)
            match iter.peek().map(|&c| char_to_digit_const(c, format.radix())) {
                // Valid digit, we have an invalid value.
                Some(Some(_)) => into_error!(InvalidLeadingZeros, index),
                // Have a non-digit character that follows.
                Some(None) => $invalid_digit!(<T>::ZERO, iter.cursor() + 1, iter.current_count()),
                // No digits following, has to be ok
                None => $into_ok!(<T>::ZERO, index, iter.current_count()),
            };
        }
    }

    // shorter strings cannot possibly overflow so a great optimization
    let overflow_digits = T::overflow_digits(radix);
    let cannot_overflow = iter.as_slice().len() <= overflow_digits;

    //  NOTE:
    //      Don't add optimizations for 128-bit integers.
    //      128-bit multiplication is rather efficient, it's only division
    //      that's very slow. Any shortcut optimizations increasing branching,
    //      and even if parsing a 64-bit integer is marginally faster, it
    //      culminates in **way** slower performance overall for simple
    //      integers, and no improvement for large integers.
    let mut value = T::ZERO;
    if cannot_overflow && is_negative {
        parse_digits_unchecked!(value, iter, wrapping_sub, start_index, $invalid_digit, $no_multi_digit, true);
    } if cannot_overflow {
        parse_digits_unchecked!(value, iter, wrapping_add, start_index, $invalid_digit, $no_multi_digit, true);
    } else if is_negative {
        parse_digits_checked!(value, iter, checked_sub, wrapping_sub, start_index, $invalid_digit, Underflow, $no_multi_digit, overflow_digits);
    } else {
        parse_digits_checked!(value, iter, checked_add, wrapping_add, start_index, $invalid_digit, Overflow, $no_multi_digit, overflow_digits);
    }

    $into_ok!(value, iter.buffer_length(), iter.current_count())
}};
}

/// Algorithm for the complete parser.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn algorithm_complete<T, const FORMAT: u128>(bytes: &[u8], options: &Options) -> Result<T>
where
    T: Integer,
{
    algorithm!(bytes, into_ok_complete, invalid_digit_complete, options.get_no_multi_digit())
}

/// Algorithm for the partial parser.
#[cfg_attr(not(feature = "compact"), inline(always))]
pub fn algorithm_partial<T, const FORMAT: u128>(
    bytes: &[u8],
    options: &Options,
) -> Result<(T, usize)>
where
    T: Integer,
{
    algorithm!(bytes, into_ok_partial, invalid_digit_partial, options.get_no_multi_digit())
}