lexical_write_integer/
digit_count.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//! Get the number of digits for an integer formatted for a radix.
//!
//! This will always accurately calculate the number of digits for
//! a given radix, using optimizations for cases with a power-of-two
//! and decimal numbers.

#![cfg(not(feature = "compact"))]
#![doc(hidden)]

use lexical_util::{
    assert::debug_assert_radix,
    div128::u128_divrem,
    num::{AsPrimitive, UnsignedInteger},
    step::u64_step,
};

use crate::decimal::DecimalCount;

/// Fast integral log2.
///
/// This is fairly trivial to explain, since the log2 is related to the
/// number of bits in the value. Therefore, it has to be related to
/// `T::BITS - ctlz(x)`. For example, `log2(2) == 1`, and `log2(1) == 0`,
/// and `log2(3) == 1`. Therefore, we must take the log of an odd number,
/// and subtract one.
///
/// This algorithm is described in detail in "Computing the number of digits
/// of an integer quickly", available
/// [here](https://lemire.me/blog/2021/05/28/computing-the-number-of-digits-of-an-integer-quickly/).
#[inline(always)]
pub fn fast_log2<T: UnsignedInteger>(x: T) -> usize {
    T::BITS - 1 - (x | T::ONE).leading_zeros() as usize
}

// Algorithms to calculate the number of digits from a single value.
macro_rules! digit_count {
    // Highly-optimized digit count for 2^N values.
    (@2 $x:expr) => {{
        digit_log2($x)
    }};

    (@4 $x:expr) => {{
        digit_log4($x)
    }};

    (@8 $x:expr) => {{
        digit_log8($x)
    }};

    (@16 $x:expr) => {{
        digit_log16($x)
    }};

    (@32 $x:expr) => {{
        digit_log32($x)
    }};

    // Uses a naive approach to calculate the number of digits.
    // This uses multi-digit optimizations when possible, and always
    // accurately calculates the number of digits similar to how
    // the digit generation algorithm works, just without the table
    // lookups.
    //
    // There's no good way to do this, since float logn functions are
    // lossy and the value might not be exactly represented in the type
    // (that is, `>= 2^53`), in which case `log(b^x, b)`, `log(b^x + 1, b)`,
    // and `log(b^x - 1, b)` would all be the same. Rust's integral [`ilog`]
    // functions just use naive 1-digit at a time multiplication, so it's
    // less efficient than our optimized variant.
    //
    // [`ilog`]: https://github.com/rust-lang/rust/blob/0e98766/library/core/src/num/uint_macros.rs#L1290-L1320
    (@naive $t:ty, $radix:expr, $x:expr) => {{
        // If we can do multi-digit optimizations, it's ideal,
        // so we want to check if our type size max value is >=
        // to the value.
        let radix = $radix as u32;
        let radix2 = radix * radix;
        let radix4 = radix2 * radix2;

        // NOTE: For radix 10, 0-9 would be 1 digit while 10-99 would be 2 digits,
        // so this needs to be `>=` and not `>`.
        let mut digits = 1;
        let mut value = $x;

        // try 4-digit optimizations
        if <$t>::BITS >= 32 || radix4 < <$t>::MAX.as_u32() {
            let radix4 = <$t as AsPrimitive>::from_u32(radix4);
            while value >= radix4 {
                digits += 4;
                value /= radix4;
            }
        }

        // try 2-digit optimizations
        if <$t>::BITS >= 16 || radix2 < <$t>::MAX.as_u32() {
            let radix2 = <$t as AsPrimitive>::from_u32(radix2);
            while value >= radix2 {
                digits += 2;
                value /= radix2;
            }
        }

        // can only do a single digit
        let radix = <$t as AsPrimitive>::from_u32(radix);
        while value >= radix {
            digits += 1;
            value /= radix;
        }
        digits
    }};
}

/// Highly-optimized digit count for base2 values.
///
/// This is always the number of `BITS - ctlz(x | 1)`, so it's
/// `fast_log2(x) + 1`. This is because 0 has 1 digit, as does 1,
/// but 2 and 3 have 2, etc.
#[inline(always)]
fn digit_log2<T: UnsignedInteger>(x: T) -> usize {
    fast_log2(x) + 1
}

/// Highly-optimized digit count for base4 values.
///
/// This is very similar to base 2, except we divide by 2
/// and adjust by 1. For example, `fast_log2(3) == 1`, so
/// `fast_log2(3) / 2 == 0`, which then gives us our result.
///
/// This works because `log2(x) / 2 == log4(x)`. Flooring is
/// the correct approach since `log2(15) == 3`, which should be
/// 2 digits (so `3 / 2 + 1`).
#[inline(always)]
fn digit_log4<T: UnsignedInteger>(x: T) -> usize {
    (fast_log2(x) / 2) + 1
}

/// Highly-optimized digit count for base8 values.
///
/// This works because `log2(x) / 3 == log8(x)`. Flooring is
/// the correct approach since `log2(63) == 5`, which should be
/// 2 digits (so `5 / 3 + 1`).
#[inline(always)]
fn digit_log8<T: UnsignedInteger>(x: T) -> usize {
    (fast_log2(x) / 3) + 1
}

/// Highly-optimized digit count for base16 values.
///
/// This works because `log2(x) / 4 == log16(x)`. Flooring is
/// the correct approach since `log2(255) == 7`, which should be
/// 2 digits (so `7 / 4 + 1`).
#[inline(always)]
fn digit_log16<T: UnsignedInteger>(x: T) -> usize {
    (fast_log2(x) / 4) + 1
}

/// Highly-optimized digit count for base32 values.
///
/// This works because `log2(x) / 5 == log32(x)`. Flooring is
/// the correct approach since `log2(1023) == 9`, which should be
/// 2 digits (so `9 / 5 + 1`).
#[inline(always)]
fn digit_log32<T: UnsignedInteger>(x: T) -> usize {
    (fast_log2(x) / 5) + 1
}

/// Quickly calculate the number of digits in a type.
///
/// This uses optimizations for powers-of-two and decimal
/// numbers, which can correctly calculate the number of
/// values without requiring logs or other expensive
/// calculations.
///
/// # Safety
///
/// Safe as long as `digit_count` returns at least the number of
/// digits that would be written by the integer. If the value is
/// too small, then the buffer might underflow, causing out-of-bounds
/// read/writes.
pub unsafe trait DigitCount: UnsignedInteger + DecimalCount {
    /// Get the number of digits in a value.
    #[inline(always)]
    fn digit_count(self, radix: u32) -> usize {
        assert!((2..=36).contains(&radix), "radix must be >= 2 and <= 36");
        match radix {
            // decimal
            10 => self.decimal_count(),
            // 2^N
            2 => digit_count!(@2 self),
            4 => digit_count!(@4 self),
            8 => digit_count!(@8 self),
            16 => digit_count!(@16 self),
            32 => digit_count!(@32 self),
            // fallback
            _ => digit_count!(@naive Self, radix, self),
        }
    }

    /// Get the number of digits in a value, always using the slow algorithm.
    ///
    /// This is exposed for testing purposes.
    #[inline(always)]
    fn slow_digit_count(self, radix: u32) -> usize {
        digit_count!(@naive Self, radix, self)
    }
}

// Implement digit counts for all types.
macro_rules! digit_impl {
    ($($t:ty)*) => ($(
        // SAFETY: Safe since it uses the default implementation.
        unsafe impl DigitCount for $t {
        }
    )*);
}

digit_impl! { u8 u16 usize u32 u64 }

// SAFETY: Safe since it specialized in terms of `div128_rem`, which
// is the same way the digits are generated.
unsafe impl DigitCount for u128 {
    /// Get the number of digits in a value.
    #[inline(always)]
    fn digit_count(self, radix: u32) -> usize {
        debug_assert_radix(radix);
        match radix {
            // decimal
            10 => self.decimal_count(),
            // 2^N
            2 => digit_count!(@2 self),
            4 => digit_count!(@4 self),
            8 => digit_count!(@8 self),
            16 => digit_count!(@16 self),
            32 => digit_count!(@32 self),
            // fallback
            _ => {
                // NOTE: This follows the same implementation as the digit count
                // generation, so this is safe.
                if self <= u64::MAX as u128 {
                    return digit_count!(@naive u64, radix, self as u64);
                }

                // Doesn't fit in 64 bits, let's try our divmod.
                let step = u64_step(radix);
                let (value, _) = u128_divrem(self, radix);
                let mut count = step;
                if value <= u64::MAX as u128 {
                    count += digit_count!(@naive u64, radix, value as u64);
                } else {
                    // Value has to be greater than 1.8e38
                    let (value, _) = u128_divrem(value, radix);
                    count += step;
                    if value != 0 {
                        count += digit_count!(@naive u64, radix, value as u64);
                    }
                }

                count
            },
        }
    }
}