lexical_write_integer/digit_count.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
//! Get the number of digits for an integer formatted for a radix.
//!
//! This will always accurately calculate the number of digits for
//! a given radix, using optimizations for cases with a power-of-two
//! and decimal numbers.
#![cfg(not(feature = "compact"))]
#![doc(hidden)]
use lexical_util::{
assert::debug_assert_radix,
div128::u128_divrem,
num::{AsPrimitive, UnsignedInteger},
step::u64_step,
};
use crate::decimal::DecimalCount;
/// Fast integral log2.
///
/// This is fairly trivial to explain, since the log2 is related to the
/// number of bits in the value. Therefore, it has to be related to
/// `T::BITS - ctlz(x)`. For example, `log2(2) == 1`, and `log2(1) == 0`,
/// and `log2(3) == 1`. Therefore, we must take the log of an odd number,
/// and subtract one.
///
/// This algorithm is described in detail in "Computing the number of digits
/// of an integer quickly", available
/// [here](https://lemire.me/blog/2021/05/28/computing-the-number-of-digits-of-an-integer-quickly/).
#[inline(always)]
pub fn fast_log2<T: UnsignedInteger>(x: T) -> usize {
T::BITS - 1 - (x | T::ONE).leading_zeros() as usize
}
// Algorithms to calculate the number of digits from a single value.
macro_rules! digit_count {
// Highly-optimized digit count for 2^N values.
(@2 $x:expr) => {{
digit_log2($x)
}};
(@4 $x:expr) => {{
digit_log4($x)
}};
(@8 $x:expr) => {{
digit_log8($x)
}};
(@16 $x:expr) => {{
digit_log16($x)
}};
(@32 $x:expr) => {{
digit_log32($x)
}};
// Uses a naive approach to calculate the number of digits.
// This uses multi-digit optimizations when possible, and always
// accurately calculates the number of digits similar to how
// the digit generation algorithm works, just without the table
// lookups.
//
// There's no good way to do this, since float logn functions are
// lossy and the value might not be exactly represented in the type
// (that is, `>= 2^53`), in which case `log(b^x, b)`, `log(b^x + 1, b)`,
// and `log(b^x - 1, b)` would all be the same. Rust's integral [`ilog`]
// functions just use naive 1-digit at a time multiplication, so it's
// less efficient than our optimized variant.
//
// [`ilog`]: https://github.com/rust-lang/rust/blob/0e98766/library/core/src/num/uint_macros.rs#L1290-L1320
(@naive $t:ty, $radix:expr, $x:expr) => {{
// If we can do multi-digit optimizations, it's ideal,
// so we want to check if our type size max value is >=
// to the value.
let radix = $radix as u32;
let radix2 = radix * radix;
let radix4 = radix2 * radix2;
// NOTE: For radix 10, 0-9 would be 1 digit while 10-99 would be 2 digits,
// so this needs to be `>=` and not `>`.
let mut digits = 1;
let mut value = $x;
// try 4-digit optimizations
if <$t>::BITS >= 32 || radix4 < <$t>::MAX.as_u32() {
let radix4 = <$t as AsPrimitive>::from_u32(radix4);
while value >= radix4 {
digits += 4;
value /= radix4;
}
}
// try 2-digit optimizations
if <$t>::BITS >= 16 || radix2 < <$t>::MAX.as_u32() {
let radix2 = <$t as AsPrimitive>::from_u32(radix2);
while value >= radix2 {
digits += 2;
value /= radix2;
}
}
// can only do a single digit
let radix = <$t as AsPrimitive>::from_u32(radix);
while value >= radix {
digits += 1;
value /= radix;
}
digits
}};
}
/// Highly-optimized digit count for base2 values.
///
/// This is always the number of `BITS - ctlz(x | 1)`, so it's
/// `fast_log2(x) + 1`. This is because 0 has 1 digit, as does 1,
/// but 2 and 3 have 2, etc.
#[inline(always)]
fn digit_log2<T: UnsignedInteger>(x: T) -> usize {
fast_log2(x) + 1
}
/// Highly-optimized digit count for base4 values.
///
/// This is very similar to base 2, except we divide by 2
/// and adjust by 1. For example, `fast_log2(3) == 1`, so
/// `fast_log2(3) / 2 == 0`, which then gives us our result.
///
/// This works because `log2(x) / 2 == log4(x)`. Flooring is
/// the correct approach since `log2(15) == 3`, which should be
/// 2 digits (so `3 / 2 + 1`).
#[inline(always)]
fn digit_log4<T: UnsignedInteger>(x: T) -> usize {
(fast_log2(x) / 2) + 1
}
/// Highly-optimized digit count for base8 values.
///
/// This works because `log2(x) / 3 == log8(x)`. Flooring is
/// the correct approach since `log2(63) == 5`, which should be
/// 2 digits (so `5 / 3 + 1`).
#[inline(always)]
fn digit_log8<T: UnsignedInteger>(x: T) -> usize {
(fast_log2(x) / 3) + 1
}
/// Highly-optimized digit count for base16 values.
///
/// This works because `log2(x) / 4 == log16(x)`. Flooring is
/// the correct approach since `log2(255) == 7`, which should be
/// 2 digits (so `7 / 4 + 1`).
#[inline(always)]
fn digit_log16<T: UnsignedInteger>(x: T) -> usize {
(fast_log2(x) / 4) + 1
}
/// Highly-optimized digit count for base32 values.
///
/// This works because `log2(x) / 5 == log32(x)`. Flooring is
/// the correct approach since `log2(1023) == 9`, which should be
/// 2 digits (so `9 / 5 + 1`).
#[inline(always)]
fn digit_log32<T: UnsignedInteger>(x: T) -> usize {
(fast_log2(x) / 5) + 1
}
/// Quickly calculate the number of digits in a type.
///
/// This uses optimizations for powers-of-two and decimal
/// numbers, which can correctly calculate the number of
/// values without requiring logs or other expensive
/// calculations.
///
/// # Safety
///
/// Safe as long as `digit_count` returns at least the number of
/// digits that would be written by the integer. If the value is
/// too small, then the buffer might underflow, causing out-of-bounds
/// read/writes.
pub unsafe trait DigitCount: UnsignedInteger + DecimalCount {
/// Get the number of digits in a value.
#[inline(always)]
fn digit_count(self, radix: u32) -> usize {
assert!((2..=36).contains(&radix), "radix must be >= 2 and <= 36");
match radix {
// decimal
10 => self.decimal_count(),
// 2^N
2 => digit_count!(@2 self),
4 => digit_count!(@4 self),
8 => digit_count!(@8 self),
16 => digit_count!(@16 self),
32 => digit_count!(@32 self),
// fallback
_ => digit_count!(@naive Self, radix, self),
}
}
/// Get the number of digits in a value, always using the slow algorithm.
///
/// This is exposed for testing purposes.
#[inline(always)]
fn slow_digit_count(self, radix: u32) -> usize {
digit_count!(@naive Self, radix, self)
}
}
// Implement digit counts for all types.
macro_rules! digit_impl {
($($t:ty)*) => ($(
// SAFETY: Safe since it uses the default implementation.
unsafe impl DigitCount for $t {
}
)*);
}
digit_impl! { u8 u16 usize u32 u64 }
// SAFETY: Safe since it specialized in terms of `div128_rem`, which
// is the same way the digits are generated.
unsafe impl DigitCount for u128 {
/// Get the number of digits in a value.
#[inline(always)]
fn digit_count(self, radix: u32) -> usize {
debug_assert_radix(radix);
match radix {
// decimal
10 => self.decimal_count(),
// 2^N
2 => digit_count!(@2 self),
4 => digit_count!(@4 self),
8 => digit_count!(@8 self),
16 => digit_count!(@16 self),
32 => digit_count!(@32 self),
// fallback
_ => {
// NOTE: This follows the same implementation as the digit count
// generation, so this is safe.
if self <= u64::MAX as u128 {
return digit_count!(@naive u64, radix, self as u64);
}
// Doesn't fit in 64 bits, let's try our divmod.
let step = u64_step(radix);
let (value, _) = u128_divrem(self, radix);
let mut count = step;
if value <= u64::MAX as u128 {
count += digit_count!(@naive u64, radix, value as u64);
} else {
// Value has to be greater than 1.8e38
let (value, _) = u128_divrem(value, radix);
count += step;
if value != 0 {
count += digit_count!(@naive u64, radix, value as u64);
}
}
count
},
}
}
}