cfg_expr/expr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
pub mod lexer;
mod parser;
use smallvec::SmallVec;
use std::ops::Range;
/// A predicate function, used to combine 1 or more predicates
/// into a single value
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
pub enum Func {
/// `not()` with a configuration predicate. It is true if its predicate
/// is false and false if its predicate is true.
Not,
/// `all()` with a comma separated list of configuration predicates. It
/// is false if at least one predicate is false. If there are no predicates,
/// it is true.
///
/// The associated `usize` is the number of predicates inside the `all()`.
All(usize),
/// `any()` with a comma separated list of configuration predicates. It
/// is true if at least one predicate is true. If there are no predicates,
/// it is false.
///
/// The associated `usize` is the number of predicates inside the `any()`.
Any(usize),
}
use crate::targets as targ;
/// All predicates that pertains to a target, except for `target_feature`
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TargetPredicate {
/// [target_abi](https://github.com/rust-lang/rust/issues/80970)
Abi(targ::Abi),
/// [target_arch](https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch)
Arch(targ::Arch),
/// [target_endian](https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian)
Endian(targ::Endian),
/// [target_env](https://doc.rust-lang.org/reference/conditional-compilation.html#target_env)
Env(targ::Env),
/// [target_family](https://doc.rust-lang.org/reference/conditional-compilation.html#target_family)
/// This also applies to the bare [`unix` and `windows`](https://doc.rust-lang.org/reference/conditional-compilation.html#unix-and-windows)
/// predicates.
Family(targ::Family),
/// [target_has_atomic](https://doc.rust-lang.org/reference/conditional-compilation.html#target_has_atomic).
HasAtomic(targ::HasAtomic),
/// [target_os](https://doc.rust-lang.org/reference/conditional-compilation.html#target_os)
Os(targ::Os),
/// [panic](https://doc.rust-lang.org/reference/conditional-compilation.html#panic)
Panic(targ::Panic),
/// [target_pointer_width](https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width)
PointerWidth(u8),
/// [target_vendor](https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor)
Vendor(targ::Vendor),
}
pub trait TargetMatcher {
fn matches(&self, tp: &TargetPredicate) -> bool;
}
impl TargetMatcher for targ::TargetInfo {
fn matches(&self, tp: &TargetPredicate) -> bool {
use TargetPredicate::{
Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
};
match tp {
// The ABI is allowed to be an empty string
Abi(abi) => match &self.abi {
Some(a) => abi == a,
None => abi.0.is_empty(),
},
Arch(a) => a == &self.arch,
Endian(end) => *end == self.endian,
// The environment is allowed to be an empty string
Env(env) => match &self.env {
Some(e) => env == e,
None => env.0.is_empty(),
},
Family(fam) => self.families.contains(fam),
HasAtomic(has_atomic) => self.has_atomics.contains(*has_atomic),
Os(os) => match &self.os {
Some(self_os) => os == self_os,
// os = "none" means it should be matched against None. Note that this is different
// from "env" above.
None => os.as_str() == "none",
},
PointerWidth(w) => *w == self.pointer_width,
Vendor(ven) => match &self.vendor {
Some(v) => ven == v,
None => ven == &targ::Vendor::unknown,
},
Panic(panic) => &self.panic == panic,
}
}
}
#[cfg(feature = "targets")]
impl TargetMatcher for target_lexicon::Triple {
#[allow(clippy::cognitive_complexity)]
#[allow(clippy::match_same_arms)]
fn matches(&self, tp: &TargetPredicate) -> bool {
use target_lexicon::*;
use TargetPredicate::{
Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
};
match tp {
Abi(_) => {
// `target_abi` is unstable. Assume false for this.
false
}
Arch(arch) => {
if arch == &targ::Arch::x86 {
matches!(self.architecture, Architecture::X86_32(_))
} else if arch == &targ::Arch::wasm32 {
self.architecture == Architecture::Wasm32
|| self.architecture == Architecture::Asmjs
} else if arch == &targ::Arch::arm {
matches!(self.architecture, Architecture::Arm(_))
} else if arch == &targ::Arch::bpf {
self.architecture == Architecture::Bpfeb
|| self.architecture == Architecture::Bpfel
} else if arch == &targ::Arch::x86_64 {
self.architecture == Architecture::X86_64
|| self.architecture == Architecture::X86_64h
} else if arch == &targ::Arch::mips32r6 {
matches!(
self.architecture,
Architecture::Mips32(
Mips32Architecture::Mipsisa32r6 | Mips32Architecture::Mipsisa32r6el
)
)
} else if arch == &targ::Arch::mips64r6 {
matches!(
self.architecture,
Architecture::Mips64(
Mips64Architecture::Mipsisa64r6 | Mips64Architecture::Mipsisa64r6el
)
)
} else {
match arch.0.parse::<Architecture>() {
Ok(a) => match (self.architecture, a) {
(Architecture::Aarch64(_), Architecture::Aarch64(_))
| (Architecture::Mips32(_), Architecture::Mips32(_))
| (Architecture::Mips64(_), Architecture::Mips64(_))
| (Architecture::Powerpc64le, Architecture::Powerpc64)
| (Architecture::Riscv32(_), Architecture::Riscv32(_))
| (Architecture::Riscv64(_), Architecture::Riscv64(_))
| (Architecture::Sparcv9, Architecture::Sparc64) => true,
(a, b) => a == b,
},
Err(_) => false,
}
}
}
Endian(end) => match self.architecture.endianness() {
Ok(endian) => matches!(
(end, endian),
(crate::targets::Endian::little, Endianness::Little)
| (crate::targets::Endian::big, Endianness::Big)
),
Err(_) => false,
},
Env(env) => {
// The environment is implied by some operating systems
match self.operating_system {
OperatingSystem::Redox => env == &targ::Env::relibc,
OperatingSystem::VxWorks => env == &targ::Env::gnu,
OperatingSystem::Freebsd => match self.architecture {
Architecture::Arm(ArmArchitecture::Armv6 | ArmArchitecture::Armv7) => {
env == &targ::Env::gnueabihf
}
_ => env.0.is_empty(),
},
OperatingSystem::Netbsd => match self.architecture {
Architecture::Arm(ArmArchitecture::Armv6 | ArmArchitecture::Armv7) => {
env == &targ::Env::eabihf
}
_ => env.0.is_empty(),
},
OperatingSystem::None_
| OperatingSystem::Cloudabi
| OperatingSystem::Hermit
| OperatingSystem::Ios => match self.environment {
Environment::LinuxKernel => env == &targ::Env::gnu,
_ => env.0.is_empty(),
},
_ => {
if env.0.is_empty() {
matches!(
self.environment,
Environment::Unknown
| Environment::Android
| Environment::Softfloat
| Environment::Androideabi
| Environment::Eabi
| Environment::Eabihf
| Environment::Sim
)
} else {
match env.0.parse::<Environment>() {
Ok(e) => {
// Rustc shortens multiple "gnu*" environments to just "gnu"
if env == &targ::Env::gnu {
match self.environment {
Environment::Gnu
| Environment::Gnuabi64
| Environment::Gnueabi
| Environment::Gnuspe
| Environment::Gnux32
| Environment::GnuIlp32
| Environment::Gnueabihf
| Environment::GnuLlvm => true,
// Rust 1.49.0 changed all android targets to have the
// gnu environment
Environment::Android | Environment::Androideabi
if self.operating_system
== OperatingSystem::Linux =>
{
true
}
Environment::Kernel => {
self.operating_system == OperatingSystem::Linux
}
_ => false,
}
} else if env == &targ::Env::musl {
matches!(
self.environment,
Environment::Musl
| Environment::Musleabi
| Environment::Musleabihf
| Environment::Muslabi64
)
} else if env == &targ::Env::uclibc {
matches!(
self.environment,
Environment::Uclibc
| Environment::Uclibceabi
| Environment::Uclibceabihf
)
} else if env == &targ::Env::newlib {
matches!(
self.operating_system,
OperatingSystem::Horizon | OperatingSystem::Espidf
)
} else {
self.environment == e
}
}
Err(_) => false,
}
}
}
}
}
Family(fam) => {
use OperatingSystem::{
Aix, AmdHsa, Bitrig, Cloudabi, Cuda, Darwin, Dragonfly, Emscripten, Espidf,
Freebsd, Fuchsia, Haiku, Hermit, Horizon, Illumos, Ios, L4re, Linux, MacOSX,
Nebulet, Netbsd, None_, Openbsd, Redox, Solaris, Tvos, Uefi, Unknown, VxWorks,
Wasi, Watchos, Windows,
};
match self.operating_system {
AmdHsa | Bitrig | Cloudabi | Cuda | Hermit | Nebulet | None_ | Uefi => false,
Aix
| Darwin
| Dragonfly
| Espidf
| Freebsd
| Fuchsia
| Haiku
| Illumos
| Ios
| L4re
| MacOSX { .. }
| Horizon
| Netbsd
| Openbsd
| Redox
| Solaris
| Tvos
| VxWorks
| Watchos => fam == &crate::targets::Family::unix,
Emscripten => {
match self.architecture {
// asmjs, wasm32 and wasm64 are part of both the wasm and unix families
Architecture::Asmjs | Architecture::Wasm32 => {
fam == &crate::targets::Family::wasm
|| fam == &crate::targets::Family::unix
}
_ => false,
}
}
Unknown => {
// asmjs, wasm32 and wasm64 are part of the wasm family.
match self.architecture {
Architecture::Asmjs | Architecture::Wasm32 | Architecture::Wasm64 => {
fam == &crate::targets::Family::wasm
}
_ => false,
}
}
Linux => {
// The 'kernel' environment is treated specially as not-unix
if self.environment != Environment::Kernel {
fam == &crate::targets::Family::unix
} else {
false
}
}
Wasi => fam == &crate::targets::Family::wasm,
Windows => fam == &crate::targets::Family::windows,
// I really dislike non-exhaustive :(
_ => false,
}
}
HasAtomic(_) => {
// atomic support depends on both the architecture and the OS. Assume false for
// this.
false
}
Os(os) => match os.0.parse::<OperatingSystem>() {
Ok(o) => match self.environment {
Environment::HermitKernel => os == &targ::Os::hermit,
_ => self.operating_system == o,
},
Err(_) => {
// Handle special case for darwin/macos, where the triple is
// "darwin", but rustc identifies the OS as "macos"
if os == &targ::Os::macos && self.operating_system == OperatingSystem::Darwin {
true
} else {
// For android, the os is still linux, but the environment is android
os == &targ::Os::android
&& self.operating_system == OperatingSystem::Linux
&& (self.environment == Environment::Android
|| self.environment == Environment::Androideabi)
}
}
},
Panic(_) => {
// panic support depends on the OS. Assume false for this.
false
}
Vendor(ven) => match ven.0.parse::<target_lexicon::Vendor>() {
Ok(v) => {
if self.vendor == v {
true
} else if let target_lexicon::Vendor::Custom(custom) = &self.vendor {
custom.as_str() == "esp" && v == target_lexicon::Vendor::Espressif
} else {
false
}
}
Err(_) => false,
},
PointerWidth(pw) => {
// The gnux32 environment is a special case, where it has an
// x86_64 architecture, but a 32-bit pointer width
if !matches!(
self.environment,
Environment::Gnux32 | Environment::GnuIlp32
) {
*pw == match self.pointer_width() {
Ok(pw) => pw.bits(),
Err(_) => return false,
}
} else {
*pw == 32
}
}
}
}
}
impl TargetPredicate {
/// Returns true of the predicate matches the specified target
///
/// Note that when matching against a [`target_lexicon::Triple`], the
/// `has_target_atomic` and `panic` predicates will _always_ return `false`.
///
/// ```
/// use cfg_expr::{targets::*, expr::TargetPredicate as tp};
/// let win = get_builtin_target_by_triple("x86_64-pc-windows-msvc").unwrap();
///
/// assert!(
/// tp::Arch(Arch::x86_64).matches(win) &&
/// tp::Endian(Endian::little).matches(win) &&
/// tp::Env(Env::msvc).matches(win) &&
/// tp::Family(Family::windows).matches(win) &&
/// tp::Os(Os::windows).matches(win) &&
/// tp::PointerWidth(64).matches(win) &&
/// tp::Vendor(Vendor::pc).matches(win)
/// );
/// ```
pub fn matches<T>(&self, target: &T) -> bool
where
T: TargetMatcher,
{
target.matches(self)
}
}
#[derive(Clone, Debug)]
pub(crate) enum Which {
Abi,
Arch,
Endian(targ::Endian),
Env,
Family,
Os,
HasAtomic(targ::HasAtomic),
Panic,
PointerWidth(u8),
Vendor,
}
#[derive(Clone, Debug)]
pub(crate) struct InnerTarget {
which: Which,
span: Option<Range<usize>>,
}
/// A single predicate in a `cfg()` expression
#[derive(Debug, PartialEq, Eq)]
pub enum Predicate<'a> {
/// A target predicate, with the `target_` prefix
Target(TargetPredicate),
/// Whether rustc's test harness is [enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#test)
Test,
/// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions)
/// when compiling without optimizations.
DebugAssertions,
/// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro) for
/// crates of the proc_macro type.
ProcMacro,
/// A [`feature = "<name>"`](https://doc.rust-lang.org/nightly/cargo/reference/features.html)
Feature(&'a str),
/// [target_feature](https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature)
TargetFeature(&'a str),
/// A generic bare predicate key that doesn't match one of the known options, eg `cfg(bare)`
Flag(&'a str),
/// A generic key = "value" predicate that doesn't match one of the known options, eg `cfg(foo = "bar")`
KeyValue { key: &'a str, val: &'a str },
}
#[derive(Clone, Debug)]
pub(crate) enum InnerPredicate {
Target(InnerTarget),
Test,
DebugAssertions,
ProcMacro,
Feature(Range<usize>),
TargetFeature(Range<usize>),
Other {
identifier: Range<usize>,
value: Option<Range<usize>>,
},
}
impl InnerPredicate {
fn to_pred<'a>(&self, s: &'a str) -> Predicate<'a> {
use InnerPredicate as IP;
use Predicate::{
DebugAssertions, Feature, Flag, KeyValue, ProcMacro, Target, TargetFeature, Test,
};
match self {
IP::Target(it) => match &it.which {
Which::Abi => Target(TargetPredicate::Abi(targ::Abi::new(
s[it.span.clone().unwrap()].to_owned(),
))),
Which::Arch => Target(TargetPredicate::Arch(targ::Arch::new(
s[it.span.clone().unwrap()].to_owned(),
))),
Which::Os => Target(TargetPredicate::Os(targ::Os::new(
s[it.span.clone().unwrap()].to_owned(),
))),
Which::Vendor => Target(TargetPredicate::Vendor(targ::Vendor::new(
s[it.span.clone().unwrap()].to_owned(),
))),
Which::Env => Target(TargetPredicate::Env(targ::Env::new(
s[it.span.clone().unwrap()].to_owned(),
))),
Which::Family => Target(TargetPredicate::Family(targ::Family::new(
s[it.span.clone().unwrap()].to_owned(),
))),
Which::Endian(end) => Target(TargetPredicate::Endian(*end)),
Which::HasAtomic(has_atomic) => Target(TargetPredicate::HasAtomic(*has_atomic)),
Which::Panic => Target(TargetPredicate::Panic(targ::Panic::new(
s[it.span.clone().unwrap()].to_owned(),
))),
Which::PointerWidth(pw) => Target(TargetPredicate::PointerWidth(*pw)),
},
IP::Test => Test,
IP::DebugAssertions => DebugAssertions,
IP::ProcMacro => ProcMacro,
IP::Feature(rng) => Feature(&s[rng.clone()]),
IP::TargetFeature(rng) => TargetFeature(&s[rng.clone()]),
IP::Other { identifier, value } => match value {
Some(vs) => KeyValue {
key: &s[identifier.clone()],
val: &s[vs.clone()],
},
None => Flag(&s[identifier.clone()]),
},
}
}
}
#[derive(Clone, Debug)]
pub(crate) enum ExprNode {
Fn(Func),
Predicate(InnerPredicate),
}
/// A parsed `cfg()` expression that can evaluated
#[derive(Clone, Debug)]
pub struct Expression {
pub(crate) expr: SmallVec<[ExprNode; 5]>,
// We keep the original string around for providing the arbitrary
// strings that can make up an expression
pub(crate) original: String,
}
impl Expression {
/// An iterator over each predicate in the expression
pub fn predicates(&self) -> impl Iterator<Item = Predicate<'_>> {
self.expr.iter().filter_map(move |item| match item {
ExprNode::Predicate(pred) => {
let pred = pred.clone().to_pred(&self.original);
Some(pred)
}
ExprNode::Fn(_) => None,
})
}
/// Evaluates the expression, using the provided closure to determine the value of
/// each predicate, which are then combined into a final result depending on the
/// functions `not()`, `all()`, or `any()` in the expression.
///
/// `eval_predicate` typically returns `bool`, but may return any type that implements
/// the `Logic` trait.
///
/// ## Examples
///
/// ```
/// use cfg_expr::{targets::*, Expression, Predicate};
///
/// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
///
/// let expr = Expression::parse(r#"all(not(windows), target_env = "musl", any(target_arch = "x86", target_arch = "x86_64"))"#).unwrap();
///
/// assert!(expr.eval(|pred| {
/// match pred {
/// Predicate::Target(tp) => tp.matches(linux_musl),
/// _ => false,
/// }
/// }));
/// ```
///
/// Returning `Option<bool>`, where `None` indicates the result is unknown:
///
/// ```
/// use cfg_expr::{targets::*, Expression, Predicate};
///
/// let expr = Expression::parse(r#"any(target_feature = "sse2", target_env = "musl")"#).unwrap();
///
/// let linux_gnu = get_builtin_target_by_triple("x86_64-unknown-linux-gnu").unwrap();
/// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
///
/// fn eval(expr: &Expression, target: &TargetInfo) -> Option<bool> {
/// expr.eval(|pred| {
/// match pred {
/// Predicate::Target(tp) => Some(tp.matches(target)),
/// Predicate::TargetFeature(_) => None,
/// _ => panic!("unexpected predicate"),
/// }
/// })
/// }
///
/// // Whether the target feature is present is unknown, so the whole expression evaluates to
/// // None (unknown).
/// assert_eq!(eval(&expr, linux_gnu), None);
///
/// // Whether the target feature is present is irrelevant for musl, since the any() always
/// // evaluates to true.
/// assert_eq!(eval(&expr, linux_musl), Some(true));
/// ```
pub fn eval<EP, T>(&self, mut eval_predicate: EP) -> T
where
EP: FnMut(&Predicate<'_>) -> T,
T: Logic + std::fmt::Debug,
{
let mut result_stack = SmallVec::<[T; 8]>::new();
// We store the expression as postfix, so just evaluate each license
// requirement in the order it comes, and then combining the previous
// results according to each operator as it comes
for node in self.expr.iter() {
match node {
ExprNode::Predicate(pred) => {
let pred = pred.to_pred(&self.original);
result_stack.push(eval_predicate(&pred));
}
ExprNode::Fn(Func::All(count)) => {
// all() with a comma separated list of configuration predicates.
let mut result = T::top();
for _ in 0..*count {
let r = result_stack.pop().unwrap();
result = result.and(r);
}
result_stack.push(result);
}
ExprNode::Fn(Func::Any(count)) => {
// any() with a comma separated list of configuration predicates.
let mut result = T::bottom();
for _ in 0..*count {
let r = result_stack.pop().unwrap();
result = result.or(r);
}
result_stack.push(result);
}
ExprNode::Fn(Func::Not) => {
// not() with a configuration predicate.
// It is true if its predicate is false
// and false if its predicate is true.
let r = result_stack.pop().unwrap();
result_stack.push(r.not());
}
}
}
result_stack.pop().unwrap()
}
/// The original string which has been parsed to produce this [`Expression`].
///
/// ```
/// use cfg_expr::Expression;
///
/// assert_eq!(
/// Expression::parse("any()").unwrap().original(),
/// "any()"
/// );
/// ```
#[inline]
pub fn original(&self) -> &str {
&self.original
}
}
/// [`PartialEq`] will do a **syntactical** comparison, so will just check if both
/// expressions have been parsed from the same string, **not** if they are semantically
/// equivalent.
///
/// ```
/// use cfg_expr::Expression;
///
/// assert_eq!(
/// Expression::parse("any()").unwrap(),
/// Expression::parse("any()").unwrap()
/// );
/// assert_ne!(
/// Expression::parse("any()").unwrap(),
/// Expression::parse("unix").unwrap()
/// );
/// ```
impl PartialEq for Expression {
fn eq(&self, other: &Self) -> bool {
self.original.eq(&other.original)
}
}
/// A propositional logic used to evaluate `Expression` instances.
///
/// An `Expression` consists of some predicates and the `any`, `all` and `not` operators. An
/// implementation of `Logic` defines how the `any`, `all` and `not` operators should be evaluated.
pub trait Logic {
/// The result of an `all` operation with no operands, akin to Boolean `true`.
fn top() -> Self;
/// The result of an `any` operation with no operands, akin to Boolean `false`.
fn bottom() -> Self;
/// `AND`, which corresponds to the `all` operator.
fn and(self, other: Self) -> Self;
/// `OR`, which corresponds to the `any` operator.
fn or(self, other: Self) -> Self;
/// `NOT`, which corresponds to the `not` operator.
fn not(self) -> Self;
}
/// A boolean logic.
impl Logic for bool {
#[inline]
fn top() -> Self {
true
}
#[inline]
fn bottom() -> Self {
false
}
#[inline]
fn and(self, other: Self) -> Self {
self && other
}
#[inline]
fn or(self, other: Self) -> Self {
self || other
}
#[inline]
fn not(self) -> Self {
!self
}
}
/// A three-valued logic -- `None` stands for the value being unknown.
///
/// The truth tables for this logic are described on
/// [Wikipedia](https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics).
impl Logic for Option<bool> {
#[inline]
fn top() -> Self {
Some(true)
}
#[inline]
fn bottom() -> Self {
Some(false)
}
#[inline]
fn and(self, other: Self) -> Self {
match (self, other) {
// If either is false, the expression is false.
(Some(false), _) | (_, Some(false)) => Some(false),
// If both are true, the expression is true.
(Some(true), Some(true)) => Some(true),
// One or both are unknown -- the result is unknown.
_ => None,
}
}
#[inline]
fn or(self, other: Self) -> Self {
match (self, other) {
// If either is true, the expression is true.
(Some(true), _) | (_, Some(true)) => Some(true),
// If both are false, the expression is false.
(Some(false), Some(false)) => Some(false),
// One or both are unknown -- the result is unknown.
_ => None,
}
}
#[inline]
fn not(self) -> Self {
self.map(|v| !v)
}
}