miniz_oxide/inflate/
core.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
//! Streaming decompression functionality.

use super::*;
use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER};

use ::core::convert::TryInto;
use ::core::{cmp, slice};

use self::output_buffer::OutputBuffer;

pub const TINFL_LZ_DICT_SIZE: usize = 32_768;

/// A struct containing huffman code lengths and the huffman code tree used by the decompressor.
struct HuffmanTable {
    /// Length of the code at each index.
    pub code_size: [u8; MAX_HUFF_SYMBOLS_0],
    /// Fast lookup table for shorter huffman codes.
    ///
    /// See `HuffmanTable::fast_lookup`.
    pub look_up: [i16; FAST_LOOKUP_SIZE as usize],
    /// Full huffman tree.
    ///
    /// Positive values are edge nodes/symbols, negative values are
    /// parent nodes/references to other nodes.
    pub tree: [i16; MAX_HUFF_TREE_SIZE],
}

impl HuffmanTable {
    const fn new() -> HuffmanTable {
        HuffmanTable {
            code_size: [0; MAX_HUFF_SYMBOLS_0],
            look_up: [0; FAST_LOOKUP_SIZE as usize],
            tree: [0; MAX_HUFF_TREE_SIZE],
        }
    }

    /// Look for a symbol in the fast lookup table.
    /// The symbol is stored in the lower 9 bits, the length in the next 6.
    /// If the returned value is negative, the code wasn't found in the
    /// fast lookup table and the full tree has to be traversed to find the code.
    #[inline]
    fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 {
        self.look_up[(bit_buf & BitBuffer::from(FAST_LOOKUP_SIZE - 1)) as usize]
    }

    /// Get the symbol and the code length from the huffman tree.
    #[inline]
    fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u32) -> (i32, u32) {
        let mut symbol = fast_symbol;
        // We step through the tree until we encounter a positive value, which indicates a
        // symbol.
        loop {
            // symbol here indicates the position of the left (0) node, if the next bit is 1
            // we add 1 to the lookup position to get the right node.
            symbol = i32::from(self.tree[(!symbol + ((bit_buf >> code_len) & 1) as i32) as usize]);
            code_len += 1;
            if symbol >= 0 {
                break;
            }
        }
        (symbol, code_len)
    }

    #[inline]
    /// Look up a symbol and code length from the bits in the provided bit buffer.
    ///
    /// Returns Some(symbol, length) on success,
    /// None if the length is 0.
    ///
    /// It's possible we could avoid checking for 0 if we can guarantee a sane table.
    /// TODO: Check if a smaller type for code_len helps performance.
    fn lookup(&self, bit_buf: BitBuffer) -> Option<(i32, u32)> {
        let symbol = self.fast_lookup(bit_buf).into();
        if symbol >= 0 {
            if (symbol >> 9) as u32 != 0 {
                Some((symbol, (symbol >> 9) as u32))
            } else {
                // Zero-length code.
                None
            }
        } else {
            // We didn't get a symbol from the fast lookup table, so check the tree instead.
            Some(self.tree_lookup(symbol, bit_buf, FAST_LOOKUP_BITS.into()))
        }
    }
}

/// The number of huffman tables used.
const MAX_HUFF_TABLES: usize = 3;
/// The length of the first (literal/length) huffman table.
const MAX_HUFF_SYMBOLS_0: usize = 288;
/// The length of the second (distance) huffman table.
const MAX_HUFF_SYMBOLS_1: usize = 32;
/// The length of the last (huffman code length) huffman table.
const _MAX_HUFF_SYMBOLS_2: usize = 19;
/// The maximum length of a code that can be looked up in the fast lookup table.
const FAST_LOOKUP_BITS: u8 = 10;
/// The size of the fast lookup table.
const FAST_LOOKUP_SIZE: u32 = 1 << FAST_LOOKUP_BITS;
const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2;
const LITLEN_TABLE: usize = 0;
const DIST_TABLE: usize = 1;
const HUFFLEN_TABLE: usize = 2;

/// Flags to [`decompress()`] to control how inflation works.
///
/// These define bits for a bitmask argument.
pub mod inflate_flags {
    /// Should we try to parse a zlib header?
    ///
    /// If unset, [`decompress()`] will expect an RFC1951 deflate stream.  If set, it will expect an
    /// RFC1950 zlib wrapper around the deflate stream.
    pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1;

    /// There will be more input that hasn't been given to the decompressor yet.
    ///
    /// This is useful when you want to decompress what you have so far,
    /// even if you know there is probably more input that hasn't gotten here yet (_e.g._, over a
    /// network connection).  When [`decompress()`][super::decompress] reaches the end of the input
    /// without finding the end of the compressed stream, it will return
    /// [`TINFLStatus::NeedsMoreInput`][super::TINFLStatus::NeedsMoreInput] if this is set,
    /// indicating that you should get more data before calling again.  If not set, it will return
    /// [`TINFLStatus::FailedCannotMakeProgress`][super::TINFLStatus::FailedCannotMakeProgress]
    /// suggesting the stream is corrupt, since you claimed it was all there.
    pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2;

    /// The output buffer should not wrap around.
    pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4;

    /// Calculate the adler32 checksum of the output data even if we're not inflating a zlib stream.
    ///
    /// If [`TINFL_FLAG_IGNORE_ADLER32`] is specified, it will override this.
    ///
    /// NOTE: Enabling/disabling this between calls to decompress will result in an incorect
    /// checksum.
    pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8;

    /// Ignore adler32 checksum even if we are inflating a zlib stream.
    ///
    /// Overrides [`TINFL_FLAG_COMPUTE_ADLER32`] if both are enabled.
    ///
    /// NOTE: This flag does not exist in miniz as it does not support this and is a
    /// custom addition for miniz_oxide.
    ///
    /// NOTE: Should not be changed from enabled to disabled after decompression has started,
    /// this will result in checksum failure (outside the unlikely event where the checksum happens
    /// to match anyway).
    pub const TINFL_FLAG_IGNORE_ADLER32: u32 = 64;
}

use self::inflate_flags::*;

const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4];

#[cfg(target_pointer_width = "64")]
type BitBuffer = u64;

#[cfg(not(target_pointer_width = "64"))]
type BitBuffer = u32;

/// Main decompression struct.
///
pub struct DecompressorOxide {
    /// Current state of the decompressor.
    state: core::State,
    /// Number of bits in the bit buffer.
    num_bits: u32,
    /// Zlib CMF
    z_header0: u32,
    /// Zlib FLG
    z_header1: u32,
    /// Adler32 checksum from the zlib header.
    z_adler32: u32,
    /// 1 if the current block is the last block, 0 otherwise.
    finish: u32,
    /// The type of the current block.
    block_type: u32,
    /// 1 if the adler32 value should be checked.
    check_adler32: u32,
    /// Last match distance.
    dist: u32,
    /// Variable used for match length, symbols, and a number of other things.
    counter: u32,
    /// Number of extra bits for the last length or distance code.
    num_extra: u32,
    /// Number of entries in each huffman table.
    table_sizes: [u32; MAX_HUFF_TABLES],
    /// Buffer of input data.
    bit_buf: BitBuffer,
    /// Huffman tables.
    tables: [HuffmanTable; MAX_HUFF_TABLES],
    /// Raw block header.
    raw_header: [u8; 4],
    /// Huffman length codes.
    len_codes: [u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137],
}

impl DecompressorOxide {
    /// Create a new tinfl_decompressor with all fields set to 0.
    pub fn new() -> DecompressorOxide {
        DecompressorOxide::default()
    }

    /// Set the current state to `Start`.
    #[inline]
    pub fn init(&mut self) {
        // The rest of the data is reset or overwritten when used.
        self.state = core::State::Start;
    }

    /// Returns the adler32 checksum of the currently decompressed data.
    /// Note: Will return Some(1) if decompressing zlib but ignoring adler32.
    #[inline]
    pub fn adler32(&self) -> Option<u32> {
        if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 {
            Some(self.check_adler32)
        } else {
            None
        }
    }

    /// Returns the adler32 that was read from the zlib header if it exists.
    #[inline]
    pub fn adler32_header(&self) -> Option<u32> {
        if self.state != State::Start && self.state != State::BadZlibHeader && self.z_header0 != 0 {
            Some(self.z_adler32)
        } else {
            None
        }
    }
}

impl Default for DecompressorOxide {
    /// Create a new tinfl_decompressor with all fields set to 0.
    #[inline(always)]
    fn default() -> Self {
        DecompressorOxide {
            state: core::State::Start,
            num_bits: 0,
            z_header0: 0,
            z_header1: 0,
            z_adler32: 0,
            finish: 0,
            block_type: 0,
            check_adler32: 0,
            dist: 0,
            counter: 0,
            num_extra: 0,
            table_sizes: [0; MAX_HUFF_TABLES],
            bit_buf: 0,
            // TODO:(oyvindln) Check that copies here are optimized out in release mode.
            tables: [
                HuffmanTable::new(),
                HuffmanTable::new(),
                HuffmanTable::new(),
            ],
            raw_header: [0; 4],
            len_codes: [0; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137],
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum State {
    Start = 0,
    ReadZlibCmf,
    ReadZlibFlg,
    ReadBlockHeader,
    BlockTypeNoCompression,
    RawHeader,
    RawMemcpy1,
    RawMemcpy2,
    ReadTableSizes,
    ReadHufflenTableCodeSize,
    ReadLitlenDistTablesCodeSize,
    ReadExtraBitsCodeSize,
    DecodeLitlen,
    WriteSymbol,
    ReadExtraBitsLitlen,
    DecodeDistance,
    ReadExtraBitsDistance,
    RawReadFirstByte,
    RawStoreFirstByte,
    WriteLenBytesToEnd,
    BlockDone,
    HuffDecodeOuterLoop1,
    HuffDecodeOuterLoop2,
    ReadAdler32,

    DoneForever,

    // Failure states.
    BlockTypeUnexpected,
    BadCodeSizeSum,
    BadTotalSymbols,
    BadZlibHeader,
    DistanceOutOfBounds,
    BadRawLength,
    BadCodeSizeDistPrevLookup,
    InvalidLitlen,
    InvalidDist,
    InvalidCodeLen,
}

impl State {
    fn is_failure(self) -> bool {
        match self {
            BlockTypeUnexpected => true,
            BadCodeSizeSum => true,
            BadTotalSymbols => true,
            BadZlibHeader => true,
            DistanceOutOfBounds => true,
            BadRawLength => true,
            BadCodeSizeDistPrevLookup => true,
            InvalidLitlen => true,
            InvalidDist => true,
            _ => false,
        }
    }

    #[inline]
    fn begin(&mut self, new_state: State) {
        *self = new_state;
    }
}

use self::State::*;

// Not sure why miniz uses 32-bit values for these, maybe alignment/cache again?
// # Optimization
// We add a extra value at the end and make the tables 32 elements long
// so we can use a mask to avoid bounds checks.
// The invalid values are set to something high enough to avoid underflowing
// the match length.
/// Base length for each length code.
///
/// The base is used together with the value of the extra bits to decode the actual
/// length/distance values in a match.
#[rustfmt::skip]
const LENGTH_BASE: [u16; 32] = [
    3,  4,  5,  6,  7,  8,  9,  10,  11,  13,  15,  17,  19,  23,  27,  31,
    35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512
];

/// Number of extra bits for each length code.
#[rustfmt::skip]
const LENGTH_EXTRA: [u8; 32] = [
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
    3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0
];

/// Base length for each distance code.
#[rustfmt::skip]
const DIST_BASE: [u16; 32] = [
    1,    2,    3,    4,    5,    7,      9,      13,     17,     25,    33,
    49,   65,   97,   129,  193,  257,    385,    513,    769,    1025,  1537,
    2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577, 32_768, 32_768
];

/// Number of extra bits for each distance code.
#[rustfmt::skip]
const DIST_EXTRA: [u8; 32] = [
    0, 0, 0, 0, 1, 1, 2,  2,  3,  3,  4,  4,  5,  5,  6,  6,
    7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13
];

/// The mask used when indexing the base/extra arrays.
const BASE_EXTRA_MASK: usize = 32 - 1;

/// Sets the value of all the elements of the slice to `val`.
#[inline]
fn memset<T: Copy>(slice: &mut [T], val: T) {
    for x in slice {
        *x = val
    }
}

/// Read an le u16 value from the slice iterator.
///
/// # Panics
/// Panics if there are less than two bytes left.
#[inline]
fn read_u16_le(iter: &mut slice::Iter<u8>) -> u16 {
    let ret = {
        let two_bytes = iter.as_ref()[..2].try_into().unwrap();
        u16::from_le_bytes(two_bytes)
    };
    iter.nth(1);
    ret
}

/// Read an le u32 value from the slice iterator.
///
/// # Panics
/// Panics if there are less than four bytes left.
#[inline(always)]
#[cfg(target_pointer_width = "64")]
fn read_u32_le(iter: &mut slice::Iter<u8>) -> u32 {
    let ret = {
        let four_bytes: [u8; 4] = iter.as_ref()[..4].try_into().unwrap();
        u32::from_le_bytes(four_bytes)
    };
    iter.nth(3);
    ret
}

/// Ensure that there is data in the bit buffer.
///
/// On 64-bit platform, we use a 64-bit value so this will
/// result in there being at least 32 bits in the bit buffer.
/// This function assumes that there is at least 4 bytes left in the input buffer.
#[inline(always)]
#[cfg(target_pointer_width = "64")]
fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>) {
    // Read four bytes into the buffer at once.
    if l.num_bits < 30 {
        l.bit_buf |= BitBuffer::from(read_u32_le(in_iter)) << l.num_bits;
        l.num_bits += 32;
    }
}

/// Same as previous, but for non-64-bit platforms.
/// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer.
#[inline(always)]
#[cfg(not(target_pointer_width = "64"))]
fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>) {
    // If the buffer is 32-bit wide, read 2 bytes instead.
    if l.num_bits < 15 {
        l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits;
        l.num_bits += 16;
    }
}

/// Check that the zlib header is correct and that there is enough space in the buffer
/// for the window size specified in the header.
///
/// See https://tools.ietf.org/html/rfc1950
#[inline]
fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action {
    let mut failed =
    // cmf + flg should be divisible by 31.
        (((cmf * 256) + flg) % 31 != 0) ||
    // If this flag is set, a dictionary was used for this zlib compressed data.
    // This is currently not supported by miniz or miniz-oxide
        ((flg & 0b0010_0000) != 0) ||
    // Compression method. Only 8(DEFLATE) is defined by the standard.
        ((cmf & 15) != 8);

    let window_size = 1 << ((cmf >> 4) + 8);
    if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 {
        // Bail if the buffer is wrapping and the window size is larger than the buffer.
        failed |= (mask + 1) < window_size;
    }

    // Zlib doesn't allow window sizes above 32 * 1024.
    failed |= window_size > 32_768;

    if failed {
        Action::Jump(BadZlibHeader)
    } else {
        Action::Jump(ReadBlockHeader)
    }
}

enum Action {
    None,
    Jump(State),
    End(TINFLStatus),
}

/// Try to decode the next huffman code, and puts it in the counter field of the decompressor
/// if successful.
///
/// # Returns
/// The specified action returned from `f` on success,
/// `Action::End` if there are not enough data left to decode a symbol.
fn decode_huffman_code<F>(
    r: &mut DecompressorOxide,
    l: &mut LocalVars,
    table: usize,
    flags: u32,
    in_iter: &mut slice::Iter<u8>,
    f: F,
) -> Action
where
    F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action,
{
    // As the huffman codes can be up to 15 bits long we need at least 15 bits
    // ready in the bit buffer to start decoding the next huffman code.
    if l.num_bits < 15 {
        // First, make sure there is enough data in the bit buffer to decode a huffman code.
        if in_iter.len() < 2 {
            // If there is less than 2 bytes left in the input buffer, we try to look up
            // the huffman code with what's available, and return if that doesn't succeed.
            // Original explanation in miniz:
            // /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes
            //  * remaining in the input buffer falls below 2. */
            // /* It reads just enough bytes from the input stream that are needed to decode
            //  * the next Huffman code (and absolutely no more). It works by trying to fully
            //  * decode a */
            // /* Huffman code by using whatever bits are currently present in the bit buffer.
            //  * If this fails, it reads another byte, and tries again until it succeeds or
            //  * until the */
            // /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */
            loop {
                let mut temp = i32::from(r.tables[table].fast_lookup(l.bit_buf));

                if temp >= 0 {
                    let code_len = (temp >> 9) as u32;
                    if (code_len != 0) && (l.num_bits >= code_len) {
                        break;
                    }
                } else if l.num_bits > FAST_LOOKUP_BITS.into() {
                    let mut code_len = u32::from(FAST_LOOKUP_BITS);
                    loop {
                        temp = i32::from(
                            r.tables[table].tree
                                [(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize],
                        );
                        code_len += 1;
                        if temp >= 0 || l.num_bits < code_len + 1 {
                            break;
                        }
                    }
                    if temp >= 0 {
                        break;
                    }
                }

                // TODO: miniz jumps straight to here after getting here again after failing to read
                // a byte.
                // Doing that lets miniz avoid re-doing the lookup that that was done in the
                // previous call.
                let mut byte = 0;
                if let a @ Action::End(_) = read_byte(in_iter, flags, |b| {
                    byte = b;
                    Action::None
                }) {
                    return a;
                };

                // Do this outside closure for now to avoid borrowing r.
                l.bit_buf |= BitBuffer::from(byte) << l.num_bits;
                l.num_bits += 8;

                if l.num_bits >= 15 {
                    break;
                }
            }
        } else {
            // There is enough data in the input buffer, so read the next two bytes
            // and add them to the bit buffer.
            // Unwrapping here is fine since we just checked that there are at least two
            // bytes left.
            l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits;
            l.num_bits += 16;
        }
    }

    // We now have at least 15 bits in the input buffer.
    let mut symbol = i32::from(r.tables[table].fast_lookup(l.bit_buf));
    let code_len;
    // If the symbol was found in the fast lookup table.
    if symbol >= 0 {
        // Get the length value from the top bits.
        // As we shift down the sign bit, converting to an unsigned value
        // shouldn't overflow.
        code_len = (symbol >> 9) as u32;
        // Mask out the length value.
        symbol &= 511;
    } else {
        let res = r.tables[table].tree_lookup(symbol, l.bit_buf, u32::from(FAST_LOOKUP_BITS));
        symbol = res.0;
        code_len = res.1 as u32;
    };

    if code_len == 0 {
        return Action::Jump(InvalidCodeLen);
    }

    l.bit_buf >>= code_len as u32;
    l.num_bits -= code_len;
    f(r, l, symbol)
}

/// Try to read one byte from `in_iter` and call `f` with the read byte as an argument,
/// returning the result.
/// If reading fails, `Action::End is returned`
#[inline]
fn read_byte<F>(in_iter: &mut slice::Iter<u8>, flags: u32, f: F) -> Action
where
    F: FnOnce(u8) -> Action,
{
    match in_iter.next() {
        None => end_of_input(flags),
        Some(&byte) => f(byte),
    }
}

// TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always))
/// Try to read `amount` number of bits from `in_iter` and call the function `f` with the bits as an
/// an argument after reading, returning the result of that function, or `Action::End` if there are
/// not enough bytes left.
#[inline]
#[allow(clippy::while_immutable_condition)]
fn read_bits<F>(
    l: &mut LocalVars,
    amount: u32,
    in_iter: &mut slice::Iter<u8>,
    flags: u32,
    f: F,
) -> Action
where
    F: FnOnce(&mut LocalVars, BitBuffer) -> Action,
{
    // Clippy gives a false positive warning here due to the closure.
    // Read enough bytes from the input iterator to cover the number of bits we want.
    while l.num_bits < amount {
        match read_byte(in_iter, flags, |byte| {
            l.bit_buf |= BitBuffer::from(byte) << l.num_bits;
            l.num_bits += 8;
            Action::None
        }) {
            Action::None => (),
            // If there are not enough bytes in the input iterator, return and signal that we need
            // more.
            action => return action,
        }
    }

    let bits = l.bit_buf & ((1 << amount) - 1);
    l.bit_buf >>= amount;
    l.num_bits -= amount;
    f(l, bits)
}

#[inline]
fn pad_to_bytes<F>(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>, flags: u32, f: F) -> Action
where
    F: FnOnce(&mut LocalVars) -> Action,
{
    let num_bits = l.num_bits & 7;
    read_bits(l, num_bits, in_iter, flags, |l, _| f(l))
}

#[inline]
fn end_of_input(flags: u32) -> Action {
    Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 {
        TINFLStatus::NeedsMoreInput
    } else {
        TINFLStatus::FailedCannotMakeProgress
    })
}

#[inline]
fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 {
    let res = cmp::min(l.num_bits >> 3, max);
    l.num_bits -= res << 3;
    res
}

fn start_static_table(r: &mut DecompressorOxide) {
    r.table_sizes[LITLEN_TABLE] = 288;
    r.table_sizes[DIST_TABLE] = 32;
    memset(&mut r.tables[LITLEN_TABLE].code_size[0..144], 8);
    memset(&mut r.tables[LITLEN_TABLE].code_size[144..256], 9);
    memset(&mut r.tables[LITLEN_TABLE].code_size[256..280], 7);
    memset(&mut r.tables[LITLEN_TABLE].code_size[280..288], 8);
    memset(&mut r.tables[DIST_TABLE].code_size[0..32], 5);
}

fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Action {
    loop {
        let table = &mut r.tables[r.block_type as usize];
        let table_size = r.table_sizes[r.block_type as usize] as usize;
        let mut total_symbols = [0u32; 16];
        let mut next_code = [0u32; 17];
        memset(&mut table.look_up[..], 0);
        memset(&mut table.tree[..], 0);

        for &code_size in &table.code_size[..table_size] {
            total_symbols[code_size as usize] += 1;
        }

        let mut used_symbols = 0;
        let mut total = 0;
        for i in 1..16 {
            used_symbols += total_symbols[i];
            total += total_symbols[i];
            total <<= 1;
            next_code[i + 1] = total;
        }

        if total != 65_536 && used_symbols > 1 {
            return Action::Jump(BadTotalSymbols);
        }

        let mut tree_next = -1;
        for symbol_index in 0..table_size {
            let mut rev_code = 0;
            let code_size = table.code_size[symbol_index];
            if code_size == 0 {
                continue;
            }

            let mut cur_code = next_code[code_size as usize];
            next_code[code_size as usize] += 1;

            for _ in 0..code_size {
                rev_code = (rev_code << 1) | (cur_code & 1);
                cur_code >>= 1;
            }

            if code_size <= FAST_LOOKUP_BITS {
                let k = (i16::from(code_size) << 9) | symbol_index as i16;
                while rev_code < FAST_LOOKUP_SIZE {
                    table.look_up[rev_code as usize] = k;
                    rev_code += 1 << code_size;
                }
                continue;
            }

            let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize];
            if tree_cur == 0 {
                table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next as i16;
                tree_cur = tree_next;
                tree_next -= 2;
            }

            rev_code >>= FAST_LOOKUP_BITS - 1;
            for _ in FAST_LOOKUP_BITS + 1..code_size {
                rev_code >>= 1;
                tree_cur -= (rev_code & 1) as i16;
                if table.tree[(-tree_cur - 1) as usize] == 0 {
                    table.tree[(-tree_cur - 1) as usize] = tree_next as i16;
                    tree_cur = tree_next;
                    tree_next -= 2;
                } else {
                    tree_cur = table.tree[(-tree_cur - 1) as usize];
                }
            }

            rev_code >>= 1;
            tree_cur -= (rev_code & 1) as i16;
            table.tree[(-tree_cur - 1) as usize] = symbol_index as i16;
        }

        if r.block_type == 2 {
            l.counter = 0;
            return Action::Jump(ReadLitlenDistTablesCodeSize);
        }

        if r.block_type == 0 {
            break;
        }
        r.block_type -= 1;
    }

    l.counter = 0;
    Action::Jump(DecodeLitlen)
}

// A helper macro for generating the state machine.
//
// As Rust doesn't have fallthrough on matches, we have to return to the match statement
// and jump for each state change. (Which would ideally be optimized away, but often isn't.)
macro_rules! generate_state {
    ($state: ident, $state_machine: tt, $f: expr) => {
        loop {
            match $f {
                Action::None => continue,
                Action::Jump(new_state) => {
                    $state = new_state;
                    continue $state_machine;
                },
                Action::End(result) => break $state_machine result,
            }
        }
    };
}

#[derive(Copy, Clone)]
struct LocalVars {
    pub bit_buf: BitBuffer,
    pub num_bits: u32,
    pub dist: u32,
    pub counter: u32,
    pub num_extra: u32,
}

#[inline]
fn transfer(
    out_slice: &mut [u8],
    mut source_pos: usize,
    mut out_pos: usize,
    match_len: usize,
    out_buf_size_mask: usize,
) {
    for _ in 0..match_len >> 2 {
        out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
        out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
        out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
        out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask];
        source_pos += 4;
        out_pos += 4;
    }

    match match_len & 3 {
        0 => (),
        1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask],
        2 => {
            out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
            out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
        }
        3 => {
            out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
            out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
            out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
        }
        _ => unreachable!(),
    }
}

/// Presumes that there is at least match_len bytes in output left.
#[inline]
fn apply_match(
    out_slice: &mut [u8],
    out_pos: usize,
    dist: usize,
    match_len: usize,
    out_buf_size_mask: usize,
) {
    debug_assert!(out_pos + match_len <= out_slice.len());

    let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask;

    if match_len == 3 {
        // Fast path for match len 3.
        out_slice[out_pos] = out_slice[source_pos];
        out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
        out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
        return;
    }

    if cfg!(not(any(target_arch = "x86", target_arch = "x86_64"))) {
        // We are not on x86 so copy manually.
        transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
        return;
    }

    if source_pos >= out_pos && (source_pos - out_pos) < match_len {
        transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
    } else if match_len <= dist && source_pos + match_len < out_slice.len() {
        // Destination and source segments does not intersect and source does not wrap.
        if source_pos < out_pos {
            let (from_slice, to_slice) = out_slice.split_at_mut(out_pos);
            to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]);
        } else {
            let (to_slice, from_slice) = out_slice.split_at_mut(source_pos);
            to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]);
        }
    } else {
        transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
    }
}

/// Fast inner decompression loop which is run  while there is at least
/// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer
/// (The maximum one match would need + 1).
///
/// This was inspired by a similar optimization in zlib, which uses this info to do
/// faster unchecked copies of multiple bytes at a time.
/// Currently we don't do this here, but this function does avoid having to jump through the
/// big match loop on each state change(as rust does not have fallthrough or gotos at the moment),
/// and already improves decompression speed a fair bit.
fn decompress_fast(
    r: &mut DecompressorOxide,
    mut in_iter: &mut slice::Iter<u8>,
    out_buf: &mut OutputBuffer,
    flags: u32,
    local_vars: &mut LocalVars,
    out_buf_size_mask: usize,
) -> (TINFLStatus, State) {
    // Make a local copy of the most used variables, to avoid having to update and read from values
    // in a random memory location and to encourage more register use.
    let mut l = *local_vars;
    let mut state;

    let status: TINFLStatus = 'o: loop {
        state = State::DecodeLitlen;
        loop {
            // This function assumes that there is at least 259 bytes left in the output buffer,
            // and that there is at least 14 bytes left in the input buffer. 14 input bytes:
            // 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist)
            // + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes
            // We need the one extra byte as we may write one length and one full match
            // before checking again.
            if out_buf.bytes_left() < 259 || in_iter.len() < 14 {
                state = State::DecodeLitlen;
                break 'o TINFLStatus::Done;
            }

            fill_bit_buffer(&mut l, &mut in_iter);

            if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {
                l.counter = symbol as u32;
                l.bit_buf >>= code_len;
                l.num_bits -= code_len;

                if (l.counter & 256) != 0 {
                    // The symbol is not a literal.
                    break;
                } else {
                    // If we have a 32-bit buffer we need to read another two bytes now
                    // to have enough bits to keep going.
                    if cfg!(not(target_pointer_width = "64")) {
                        fill_bit_buffer(&mut l, &mut in_iter);
                    }

                    if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {
                        l.bit_buf >>= code_len;
                        l.num_bits -= code_len;
                        // The previous symbol was a literal, so write it directly and check
                        // the next one.
                        out_buf.write_byte(l.counter as u8);
                        if (symbol & 256) != 0 {
                            l.counter = symbol as u32;
                            // The symbol is a length value.
                            break;
                        } else {
                            // The symbol is a literal, so write it directly and continue.
                            out_buf.write_byte(symbol as u8);
                        }
                    } else {
                        state.begin(InvalidCodeLen);
                        break 'o TINFLStatus::Failed;
                    }
                }
            } else {
                state.begin(InvalidCodeLen);
                break 'o TINFLStatus::Failed;
            }
        }

        // Mask the top bits since they may contain length info.
        l.counter &= 511;
        if l.counter == 256 {
            // We hit the end of block symbol.
            state.begin(BlockDone);
            break 'o TINFLStatus::Done;
        } else if l.counter > 285 {
            // Invalid code.
            // We already verified earlier that the code is > 256.
            state.begin(InvalidLitlen);
            break 'o TINFLStatus::Failed;
        } else {
            // The symbol was a length code.
            // # Optimization
            // Mask the value to avoid bounds checks
            // We could use get_unchecked later if can statically verify that
            // this will never go out of bounds.
            l.num_extra = u32::from(LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]);
            l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]);
            // Length and distance codes have a number of extra bits depending on
            // the base, which together with the base gives us the exact value.

            fill_bit_buffer(&mut l, &mut in_iter);
            if l.num_extra != 0 {
                let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1);
                l.bit_buf >>= l.num_extra;
                l.num_bits -= l.num_extra;
                l.counter += extra_bits as u32;
            }

            // We found a length code, so a distance code should follow.

            if cfg!(not(target_pointer_width = "64")) {
                fill_bit_buffer(&mut l, &mut in_iter);
            }

            if let Some((mut symbol, code_len)) = r.tables[DIST_TABLE].lookup(l.bit_buf) {
                symbol &= 511;
                l.bit_buf >>= code_len;
                l.num_bits -= code_len;
                if symbol > 29 {
                    state.begin(InvalidDist);
                    break 'o TINFLStatus::Failed;
                }

                l.num_extra = u32::from(DIST_EXTRA[symbol as usize]);
                l.dist = u32::from(DIST_BASE[symbol as usize]);
            } else {
                state.begin(InvalidCodeLen);
                break 'o TINFLStatus::Failed;
            }

            if l.num_extra != 0 {
                fill_bit_buffer(&mut l, &mut in_iter);
                let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1);
                l.bit_buf >>= l.num_extra;
                l.num_bits -= l.num_extra;
                l.dist += extra_bits as u32;
            }

            let position = out_buf.position();
            if l.dist as usize > out_buf.position()
                && (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)
            {
                // We encountered a distance that refers a position before
                // the start of the decoded data, so we can't continue.
                state.begin(DistanceOutOfBounds);
                break TINFLStatus::Failed;
            }

            apply_match(
                out_buf.get_mut(),
                position,
                l.dist as usize,
                l.counter as usize,
                out_buf_size_mask,
            );

            out_buf.set_position(position + l.counter as usize);
        }
    };

    *local_vars = l;
    (status, state)
}

/// Main decompression function. Keeps decompressing data from `in_buf` until the `in_buf` is
/// empty, `out` is full, the end of the deflate stream is hit, or there is an error in the
/// deflate stream.
///
/// # Arguments
///
/// `r` is a [`DecompressorOxide`] struct with the state of this stream.
///
/// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will
/// start at the first byte of this buffer.
///
/// `out` is a reference to the buffer that will store the decompressed data, and that
/// stores previously decompressed data if any.
///
/// * The offset given by `out_pos` indicates where in the output buffer slice writing should start.
/// * If [`TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF`] is not set, the output buffer is used in a
/// wrapping manner, and it's size is required to be a power of 2.
/// * The decompression function normally needs access to 32KiB of the previously decompressed data
///(or to the beginning of the decompressed data if less than 32KiB has been decompressed.)
///     - If this data is not available, decompression may fail.
///     - Some deflate compressors allow specifying a window size which limits match distances to
/// less than this, or alternatively an RLE mode where matches will only refer to the previous byte
/// and thus allows a smaller output buffer. The window size can be specified in the zlib
/// header structure, however, the header data should not be relied on to be correct.
///
/// `flags` indicates settings and status to the decompression function.
/// * The [`TINFL_FLAG_HAS_MORE_INPUT`] has to be specified if more compressed data is to be provided
/// in a subsequent call to this function.
/// * See the the [`inflate_flags`] module for details on other flags.
///
/// # Returns
///
/// Returns a tuple containing the status of the compressor, the number of input bytes read, and the
/// number of bytes output to `out`.
///
/// This function shouldn't panic pending any bugs.
pub fn decompress(
    r: &mut DecompressorOxide,
    in_buf: &[u8],
    out: &mut [u8],
    out_pos: usize,
    flags: u32,
) -> (TINFLStatus, usize, usize) {
    let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 {
        usize::max_value()
    } else {
        // In the case of zero len, any attempt to write would produce HasMoreOutput,
        // so to gracefully process the case of there really being no output,
        // set the mask to all zeros.
        out.len().saturating_sub(1)
    };

    // Ensure the output buffer's size is a power of 2, unless the output buffer
    // is large enough to hold the entire output file (in which case it doesn't
    // matter).
    // Also make sure that the output buffer position is not past the end of the output buffer.
    if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0 || out_pos > out.len() {
        return (TINFLStatus::BadParam, 0, 0);
    }

    let mut in_iter = in_buf.iter();

    let mut state = r.state;

    let mut out_buf = OutputBuffer::from_slice_and_pos(out, out_pos);

    // Make a local copy of the important variables here so we can work with them on the stack.
    let mut l = LocalVars {
        bit_buf: r.bit_buf,
        num_bits: r.num_bits,
        dist: r.dist,
        counter: r.counter,
        num_extra: r.num_extra,
    };

    let mut status = 'state_machine: loop {
        match state {
            Start => generate_state!(state, 'state_machine, {
                l.bit_buf = 0;
                l.num_bits = 0;
                l.dist = 0;
                l.counter = 0;
                l.num_extra = 0;
                r.z_header0 = 0;
                r.z_header1 = 0;
                r.z_adler32 = 1;
                r.check_adler32 = 1;
                if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 {
                    Action::Jump(State::ReadZlibCmf)
                } else {
                    Action::Jump(State::ReadBlockHeader)
                }
            }),

            ReadZlibCmf => generate_state!(state, 'state_machine, {
                read_byte(&mut in_iter, flags, |cmf| {
                    r.z_header0 = u32::from(cmf);
                    Action::Jump(State::ReadZlibFlg)
                })
            }),

            ReadZlibFlg => generate_state!(state, 'state_machine, {
                read_byte(&mut in_iter, flags, |flg| {
                    r.z_header1 = u32::from(flg);
                    validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask)
                })
            }),

            // Read the block header and jump to the relevant section depending on the block type.
            ReadBlockHeader => generate_state!(state, 'state_machine, {
                read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| {
                    r.finish = (bits & 1) as u32;
                    r.block_type = (bits >> 1) as u32 & 3;
                    match r.block_type {
                        0 => Action::Jump(BlockTypeNoCompression),
                        1 => {
                            start_static_table(r);
                            init_tree(r, l)
                        },
                        2 => {
                            l.counter = 0;
                            Action::Jump(ReadTableSizes)
                        },
                        3 => Action::Jump(BlockTypeUnexpected),
                        _ => unreachable!()
                    }
                })
            }),

            // Raw/Stored/uncompressed block.
            BlockTypeNoCompression => generate_state!(state, 'state_machine, {
                pad_to_bytes(&mut l, &mut in_iter, flags, |l| {
                    l.counter = 0;
                    Action::Jump(RawHeader)
                })
            }),

            // Check that the raw block header is correct.
            RawHeader => generate_state!(state, 'state_machine, {
                if l.counter < 4 {
                    // Read block length and block length check.
                    if l.num_bits != 0 {
                        read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
                            r.raw_header[l.counter as usize] = bits as u8;
                            l.counter += 1;
                            Action::None
                        })
                    } else {
                        read_byte(&mut in_iter, flags, |byte| {
                            r.raw_header[l.counter as usize] = byte;
                            l.counter += 1;
                            Action::None
                        })
                    }
                } else {
                    // Check if the length value of a raw block is correct.
                    // The 2 first (2-byte) words in a raw header are the length and the
                    // ones complement of the length.
                    let length = u16::from(r.raw_header[0]) | (u16::from(r.raw_header[1]) << 8);
                    let check = u16::from(r.raw_header[2]) | (u16::from(r.raw_header[3]) << 8);
                    let valid = length == !check;
                    l.counter = length.into();

                    if !valid {
                        Action::Jump(BadRawLength)
                    } else if l.counter == 0 {
                        // Empty raw block. Sometimes used for synchronization.
                        Action::Jump(BlockDone)
                    } else if l.num_bits != 0 {
                        // There is some data in the bit buffer, so we need to write that first.
                        Action::Jump(RawReadFirstByte)
                    } else {
                        // The bit buffer is empty, so memcpy the rest of the uncompressed data from
                        // the block.
                        Action::Jump(RawMemcpy1)
                    }
                }
            }),

            // Read the byte from the bit buffer.
            RawReadFirstByte => generate_state!(state, 'state_machine, {
                read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
                    l.dist = bits as u32;
                    Action::Jump(RawStoreFirstByte)
                })
            }),

            // Write the byte we just read to the output buffer.
            RawStoreFirstByte => generate_state!(state, 'state_machine, {
                if out_buf.bytes_left() == 0 {
                    Action::End(TINFLStatus::HasMoreOutput)
                } else {
                    out_buf.write_byte(l.dist as u8);
                    l.counter -= 1;
                    if l.counter == 0 || l.num_bits == 0 {
                        Action::Jump(RawMemcpy1)
                    } else {
                        // There is still some data left in the bit buffer that needs to be output.
                        // TODO: Changed this to jump to `RawReadfirstbyte` rather than
                        // `RawStoreFirstByte` as that seemed to be the correct path, but this
                        // needs testing.
                        Action::Jump(RawReadFirstByte)
                    }
                }
            }),

            RawMemcpy1 => generate_state!(state, 'state_machine, {
                if l.counter == 0 {
                    Action::Jump(BlockDone)
                } else if out_buf.bytes_left() == 0 {
                    Action::End(TINFLStatus::HasMoreOutput)
                } else {
                    Action::Jump(RawMemcpy2)
                }
            }),

            RawMemcpy2 => generate_state!(state, 'state_machine, {
                if in_iter.len() > 0 {
                    // Copy as many raw bytes as possible from the input to the output using memcpy.
                    // Raw block lengths are limited to 64 * 1024, so casting through usize and u32
                    // is not an issue.
                    let space_left = out_buf.bytes_left();
                    let bytes_to_copy = cmp::min(cmp::min(
                        space_left,
                        in_iter.len()),
                        l.counter as usize
                    );

                    out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]);

                    (&mut in_iter).nth(bytes_to_copy - 1);
                    l.counter -= bytes_to_copy as u32;
                    Action::Jump(RawMemcpy1)
                } else {
                    end_of_input(flags)
                }
            }),

            // Read how many huffman codes/symbols are used for each table.
            ReadTableSizes => generate_state!(state, 'state_machine, {
                if l.counter < 3 {
                    let num_bits = [5, 5, 4][l.counter as usize];
                    read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| {
                        r.table_sizes[l.counter as usize] =
                            bits as u32 + u32::from(MIN_TABLE_SIZES[l.counter as usize]);
                        l.counter += 1;
                        Action::None
                    })
                } else {
                    memset(&mut r.tables[HUFFLEN_TABLE].code_size[..], 0);
                    l.counter = 0;
                    Action::Jump(ReadHufflenTableCodeSize)
                }
            }),

            // Read the 3-bit lengths of the huffman codes describing the huffman code lengths used
            // to decode the lengths of the main tables.
            ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, {
                if l.counter < r.table_sizes[HUFFLEN_TABLE] {
                    read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| {
                        // These lengths are not stored in a normal ascending order, but rather one
                        // specified by the deflate specification intended to put the most used
                        // values at the front as trailing zero lengths do not have to be stored.
                        r.tables[HUFFLEN_TABLE]
                            .code_size[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] =
                                bits as u8;
                        l.counter += 1;
                        Action::None
                    })
                } else {
                    r.table_sizes[HUFFLEN_TABLE] = 19;
                    init_tree(r, &mut l)
                }
            }),

            ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, {
                if l.counter < r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] {
                    decode_huffman_code(
                        r, &mut l, HUFFLEN_TABLE,
                        flags, &mut in_iter, |r, l, symbol| {
                            l.dist = symbol as u32;
                            if l.dist < 16 {
                                r.len_codes[l.counter as usize] = l.dist as u8;
                                l.counter += 1;
                                Action::None
                            } else if l.dist == 16 && l.counter == 0 {
                                Action::Jump(BadCodeSizeDistPrevLookup)
                            } else {
                                l.num_extra = [2, 3, 7][l.dist as usize - 16];
                                Action::Jump(ReadExtraBitsCodeSize)
                            }
                        }
                    )
                } else if l.counter != r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] {
                    Action::Jump(BadCodeSizeSum)
                } else {
                    r.tables[LITLEN_TABLE].code_size[..r.table_sizes[LITLEN_TABLE] as usize]
                        .copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize]);

                    let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize;
                    let dist_table_end = (r.table_sizes[LITLEN_TABLE] +
                                          r.table_sizes[DIST_TABLE]) as usize;
                    r.tables[DIST_TABLE].code_size[..r.table_sizes[DIST_TABLE] as usize]
                        .copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]);

                    r.block_type -= 1;
                    init_tree(r, &mut l)
                }
            }),

            ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, {
                let num_extra = l.num_extra;
                read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| {
                    // Mask to avoid a bounds check.
                    extra_bits += [3, 3, 11][(l.dist as usize - 16) & 3];
                    let val = if l.dist == 16 {
                        r.len_codes[l.counter as usize - 1]
                    } else {
                        0
                    };

                    memset(
                        &mut r.len_codes[
                            l.counter as usize..l.counter as usize + extra_bits as usize
                        ],
                        val,
                    );
                    l.counter += extra_bits as u32;
                    Action::Jump(ReadLitlenDistTablesCodeSize)
                })
            }),

            DecodeLitlen => generate_state!(state, 'state_machine, {
                if in_iter.len() < 4 || out_buf.bytes_left() < 2 {
                    // See if we can decode a literal with the data we have left.
                    // Jumps to next state (WriteSymbol) if successful.
                    decode_huffman_code(
                        r,
                        &mut l,
                        LITLEN_TABLE,
                        flags,
                        &mut in_iter,
                        |_r, l, symbol| {
                            l.counter = symbol as u32;
                            Action::Jump(WriteSymbol)
                        },
                    )
                } else if
                // If there is enough space, use the fast inner decompression
                // function.
                    out_buf.bytes_left() >= 259 &&
                    in_iter.len() >= 14
                {
                    let (status, new_state) = decompress_fast(
                        r,
                        &mut in_iter,
                        &mut out_buf,
                        flags,
                        &mut l,
                        out_buf_size_mask,
                    );

                    state = new_state;
                    if status == TINFLStatus::Done {
                        Action::Jump(new_state)
                    } else {
                        Action::End(status)
                    }
                } else {
                    fill_bit_buffer(&mut l, &mut in_iter);

                    if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {

                    l.counter = symbol as u32;
                    l.bit_buf >>= code_len;
                    l.num_bits -= code_len;

                    if (l.counter & 256) != 0 {
                        // The symbol is not a literal.
                        Action::Jump(HuffDecodeOuterLoop1)
                    } else {
                        // If we have a 32-bit buffer we need to read another two bytes now
                        // to have enough bits to keep going.
                        if cfg!(not(target_pointer_width = "64")) {
                            fill_bit_buffer(&mut l, &mut in_iter);
                        }

                        if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {

                            l.bit_buf >>= code_len;
                            l.num_bits -= code_len;
                            // The previous symbol was a literal, so write it directly and check
                            // the next one.
                            out_buf.write_byte(l.counter as u8);
                            if (symbol & 256) != 0 {
                                l.counter = symbol as u32;
                                // The symbol is a length value.
                                Action::Jump(HuffDecodeOuterLoop1)
                            } else {
                                // The symbol is a literal, so write it directly and continue.
                                out_buf.write_byte(symbol as u8);
                                Action::None
                            }
                        } else {
                            Action::Jump(InvalidCodeLen)
                        }
                    }
                    } else {
                        Action::Jump(InvalidCodeLen)
                    }
                }
            }),

            WriteSymbol => generate_state!(state, 'state_machine, {
                if l.counter >= 256 {
                    Action::Jump(HuffDecodeOuterLoop1)
                } else if out_buf.bytes_left() > 0 {
                    out_buf.write_byte(l.counter as u8);
                    Action::Jump(DecodeLitlen)
                } else {
                    Action::End(TINFLStatus::HasMoreOutput)
                }
            }),

            HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, {
                // Mask the top bits since they may contain length info.
                l.counter &= 511;

                if l.counter == 256 {
                    // We hit the end of block symbol.
                    Action::Jump(BlockDone)
                } else if l.counter > 285 {
                    // Invalid code.
                    // We already verified earlier that the code is > 256.
                    Action::Jump(InvalidLitlen)
                } else {
                    // # Optimization
                    // Mask the value to avoid bounds checks
                    // We could use get_unchecked later if can statically verify that
                    // this will never go out of bounds.
                    l.num_extra =
                        u32::from(LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]);
                    l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]);
                    // Length and distance codes have a number of extra bits depending on
                    // the base, which together with the base gives us the exact value.
                    if l.num_extra != 0 {
                        Action::Jump(ReadExtraBitsLitlen)
                    } else {
                        Action::Jump(DecodeDistance)
                    }
                }
            }),

            ReadExtraBitsLitlen => generate_state!(state, 'state_machine, {
                let num_extra = l.num_extra;
                read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| {
                    l.counter += extra_bits as u32;
                    Action::Jump(DecodeDistance)
                })
            }),

            DecodeDistance => generate_state!(state, 'state_machine, {
                // Try to read a huffman code from the input buffer and look up what
                // length code the decoded symbol refers to.
                decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| {
                    if symbol > 29 {
                        // Invalid distance code.
                        return Action::Jump(InvalidDist)
                    }
                    // # Optimization
                    // Mask the value to avoid bounds checks
                    // We could use get_unchecked later if can statically verify that
                    // this will never go out of bounds.
                    l.num_extra = u32::from(DIST_EXTRA[symbol as usize & BASE_EXTRA_MASK]);
                    l.dist = u32::from(DIST_BASE[symbol as usize & BASE_EXTRA_MASK]);
                    if l.num_extra != 0 {
                        // ReadEXTRA_BITS_DISTACNE
                        Action::Jump(ReadExtraBitsDistance)
                    } else {
                        Action::Jump(HuffDecodeOuterLoop2)
                    }
                })
            }),

            ReadExtraBitsDistance => generate_state!(state, 'state_machine, {
                let num_extra = l.num_extra;
                read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| {
                    l.dist += extra_bits as u32;
                    Action::Jump(HuffDecodeOuterLoop2)
                })
            }),

            HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, {
                if l.dist as usize > out_buf.position() &&
                    (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)
                {
                    // We encountered a distance that refers a position before
                    // the start of the decoded data, so we can't continue.
                    Action::Jump(DistanceOutOfBounds)
                } else {
                    let out_pos = out_buf.position();
                    let source_pos = out_buf.position()
                        .wrapping_sub(l.dist as usize) & out_buf_size_mask;

                    let out_len = out_buf.get_ref().len() as usize;
                    let match_end_pos = out_buf.position() + l.counter as usize;

                    if match_end_pos > out_len ||
                        // miniz doesn't do this check here. Not sure how it makes sure
                        // that this case doesn't happen.
                        (source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize)
                    {
                        // Not enough space for all of the data in the output buffer,
                        // so copy what we have space for.
                        if l.counter == 0 {
                            Action::Jump(DecodeLitlen)
                        } else {
                            Action::Jump(WriteLenBytesToEnd)
                        }
                    } else {
                        apply_match(
                            out_buf.get_mut(),
                            out_pos,
                            l.dist as usize,
                            l.counter as usize,
                            out_buf_size_mask
                        );
                        out_buf.set_position(out_pos + l.counter as usize);
                        Action::Jump(DecodeLitlen)
                    }
                }
            }),

            WriteLenBytesToEnd => generate_state!(state, 'state_machine, {
                if out_buf.bytes_left() > 0 {
                    let out_pos = out_buf.position();
                    let source_pos = out_buf.position()
                        .wrapping_sub(l.dist as usize) & out_buf_size_mask;


                    let len = cmp::min(out_buf.bytes_left(), l.counter as usize);

                    transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask);

                    out_buf.set_position(out_pos + len);
                    l.counter -= len as u32;
                    if l.counter == 0 {
                        Action::Jump(DecodeLitlen)
                    } else {
                        Action::None
                    }
                } else {
                    Action::End(TINFLStatus::HasMoreOutput)
                }
            }),

            BlockDone => generate_state!(state, 'state_machine, {
                // End once we've read the last block.
                if r.finish != 0 {
                    pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None);

                    let in_consumed = in_buf.len() - in_iter.len();
                    let undo = undo_bytes(&mut l, in_consumed as u32) as usize;
                    in_iter = in_buf[in_consumed - undo..].iter();

                    l.bit_buf &= ((1 as BitBuffer) << l.num_bits) - 1;
                    debug_assert_eq!(l.num_bits, 0);

                    if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 {
                        l.counter = 0;
                        Action::Jump(ReadAdler32)
                    } else {
                        Action::Jump(DoneForever)
                    }
                } else {
                    Action::Jump(ReadBlockHeader)
                }
            }),

            ReadAdler32 => generate_state!(state, 'state_machine, {
                if l.counter < 4 {
                    if l.num_bits != 0 {
                        read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
                            r.z_adler32 <<= 8;
                            r.z_adler32 |= bits as u32;
                            l.counter += 1;
                            Action::None
                        })
                    } else {
                        read_byte(&mut in_iter, flags, |byte| {
                            r.z_adler32 <<= 8;
                            r.z_adler32 |= u32::from(byte);
                            l.counter += 1;
                            Action::None
                        })
                    }
                } else {
                    Action::Jump(DoneForever)
                }
            }),

            // We are done.
            DoneForever => break TINFLStatus::Done,

            // Anything else indicates failure.
            // BadZlibHeader | BadRawLength | BlockTypeUnexpected | DistanceOutOfBounds |
            // BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen |
            // InvalidDist | InvalidCodeLen
            _ => break TINFLStatus::Failed,
        };
    };

    let in_undo = if status != TINFLStatus::NeedsMoreInput
        && status != TINFLStatus::FailedCannotMakeProgress
    {
        undo_bytes(&mut l, (in_buf.len() - in_iter.len()) as u32) as usize
    } else {
        0
    };

    if status == TINFLStatus::NeedsMoreInput && out_buf.bytes_left() == 0 {
        status = TINFLStatus::HasMoreOutput
    }

    r.state = state;
    r.bit_buf = l.bit_buf;
    r.num_bits = l.num_bits;
    r.dist = l.dist;
    r.counter = l.counter;
    r.num_extra = l.num_extra;

    r.bit_buf &= ((1 as BitBuffer) << r.num_bits) - 1;

    // If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if
    // requested.
    let need_adler = if (flags & TINFL_FLAG_IGNORE_ADLER32) == 0 {
        flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0
    } else {
        // If TINFL_FLAG_IGNORE_ADLER32 is enabled, ignore the checksum.
        false
    };
    if need_adler && status as i32 >= 0 {
        let out_buf_pos = out_buf.position();
        r.check_adler32 = update_adler32(r.check_adler32, &out_buf.get_ref()[out_pos..out_buf_pos]);

        // disabled so that random input from fuzzer would not be rejected early,
        // before it has a chance to reach interesting parts of code
        if !cfg!(fuzzing) {
            // Once we are done, check if the checksum matches with the one provided in the zlib header.
            if status == TINFLStatus::Done
                && flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0
                && r.check_adler32 != r.z_adler32
            {
                status = TINFLStatus::Adler32Mismatch;
            }
        }
    }

    (
        status,
        in_buf.len() - in_iter.len() - in_undo,
        out_buf.position() - out_pos,
    )
}

#[cfg(test)]
mod test {
    use super::*;

    //TODO: Fix these.

    fn tinfl_decompress_oxide<'i>(
        r: &mut DecompressorOxide,
        input_buffer: &'i [u8],
        output_buffer: &mut [u8],
        flags: u32,
    ) -> (TINFLStatus, &'i [u8], usize) {
        let (status, in_pos, out_pos) = decompress(r, input_buffer, output_buffer, 0, flags);
        (status, &input_buffer[in_pos..], out_pos)
    }

    #[test]
    fn decompress_zlib() {
        let encoded = [
            120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19,
        ];
        let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER;

        let mut b = DecompressorOxide::new();
        const LEN: usize = 32;
        let mut b_buf = vec![0; LEN];

        // This should fail with the out buffer being to small.
        let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);

        assert_eq!(b_status.0, TINFLStatus::Failed);

        let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;

        b = DecompressorOxide::new();

        // With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail.
        let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);

        assert_eq!(b_buf[..b_status.2], b"Hello, zlib!"[..]);
        assert_eq!(b_status.0, TINFLStatus::Done);
    }

    #[test]
    fn raw_block() {
        const LEN: usize = 64;

        let text = b"Hello, zlib!";
        let encoded = {
            let len = text.len();
            let notlen = !len;
            let mut encoded = vec![
                1,
                len as u8,
                (len >> 8) as u8,
                notlen as u8,
                (notlen >> 8) as u8,
            ];
            encoded.extend_from_slice(&text[..]);
            encoded
        };

        //let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER |
        let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;

        let mut b = DecompressorOxide::new();

        let mut b_buf = vec![0; LEN];

        let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);
        assert_eq!(b_buf[..b_status.2], text[..]);
        assert_eq!(b_status.0, TINFLStatus::Done);
    }

    fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) {
        let ret = table.lookup(bit_buf).unwrap();
        (ret.0 & 511, ret.1)
    }

    #[test]
    fn fixed_table_lookup() {
        let mut d = DecompressorOxide::new();
        d.block_type = 1;
        start_static_table(&mut d);
        let mut l = LocalVars {
            bit_buf: d.bit_buf,
            num_bits: d.num_bits,
            dist: d.dist,
            counter: d.counter,
            num_extra: d.num_extra,
        };
        init_tree(&mut d, &mut l);
        let llt = &d.tables[LITLEN_TABLE];
        let dt = &d.tables[DIST_TABLE];
        assert_eq!(masked_lookup(llt, 0b00001100), (0, 8));
        assert_eq!(masked_lookup(llt, 0b00011110), (72, 8));
        assert_eq!(masked_lookup(llt, 0b01011110), (74, 8));
        assert_eq!(masked_lookup(llt, 0b11111101), (143, 8));
        assert_eq!(masked_lookup(llt, 0b000010011), (144, 9));
        assert_eq!(masked_lookup(llt, 0b111111111), (255, 9));
        assert_eq!(masked_lookup(llt, 0b00000000), (256, 7));
        assert_eq!(masked_lookup(llt, 0b1110100), (279, 7));
        assert_eq!(masked_lookup(llt, 0b00000011), (280, 8));
        assert_eq!(masked_lookup(llt, 0b11100011), (287, 8));

        assert_eq!(masked_lookup(dt, 0), (0, 5));
        assert_eq!(masked_lookup(dt, 20), (5, 5));
    }

    fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) {
        let mut r = DecompressorOxide::default();
        let mut output_buf = vec![0; 1024 * 32];
        let flags = if zlib {
            inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER
        } else {
            0
        } | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF
            | TINFL_FLAG_HAS_MORE_INPUT;
        let (d_status, _in_bytes, _out_bytes) =
            decompress(&mut r, input, &mut output_buf, 0, flags);
        assert_eq!(expected_status, d_status);
        assert_eq!(expected_state, r.state);
    }

    #[test]
    fn bogus_input() {
        use self::check_result as cr;
        const F: TINFLStatus = TINFLStatus::Failed;
        const OK: TINFLStatus = TINFLStatus::Done;
        // Bad CM.
        cr(&[0x77, 0x85], F, State::BadZlibHeader, true);
        // Bad window size (but check is correct).
        cr(&[0x88, 0x98], F, State::BadZlibHeader, true);
        // Bad check bits.
        cr(&[0x78, 0x98], F, State::BadZlibHeader, true);

        // Too many code lengths. (From inflate library issues)
        cr(
            b"M\xff\xffM*\xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM",
            F,
            State::BadTotalSymbols,
            false,
        );
        // Bad CLEN (also from inflate library issues)
        cr(
            b"\xdd\xff\xff*M\x94ffffffffff",
            F,
            State::BadTotalSymbols,
            false,
        );

        // Port of inflate coverage tests from zlib-ng
        // https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c
        let c = |a, b, c| cr(a, b, c, false);

        // Invalid uncompressed/raw block length.
        c(&[0, 0, 0, 0, 0], F, State::BadRawLength);
        // Ok empty uncompressed block.
        c(&[3, 0], OK, State::DoneForever);
        // Invalid block type.
        c(&[6], F, State::BlockTypeUnexpected);
        // Ok uncompressed block.
        c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever);
        // Too many litlens, we handle this later than zlib, so this test won't
        // give the same result.
        //        c(&[0xfc, 0, 0], F, State::BadTotalSymbols);
        // Invalid set of code lengths - TODO Check if this is the correct error for this.
        c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols);
        // Invalid repeat in list of code lengths.
        // (Try to repeat a non-existant code.)
        c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup);
        // Missing end of block code (should we have a separate error for this?) - fails on futher input
        //    c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols);
        // Invalid set of literals/lengths
        c(
            &[
                4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0,
            ],
            F,
            State::BadTotalSymbols,
        );
        // Invalid set of distances _ needsmoreinput
        // c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols);
        // Invalid distance code
        c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist);

        // Distance refers to position before the start
        c(
            &[0x0c, 0xc0, 0x81, 0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0],
            F,
            State::DistanceOutOfBounds,
        );

        // Trailer
        // Bad gzip trailer checksum GZip header not handled by miniz_oxide
        //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false)
        // Bad gzip trailer length
        //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false)
    }

    #[test]
    fn empty_output_buffer_non_wrapping() {
        let encoded = [
            120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19,
        ];
        let flags = TINFL_FLAG_COMPUTE_ADLER32
            | TINFL_FLAG_PARSE_ZLIB_HEADER
            | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
        let mut r = DecompressorOxide::new();
        let mut output_buf = vec![];
        // Check that we handle an empty buffer properly and not panicking.
        // https://github.com/Frommi/miniz_oxide/issues/23
        let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags);
        assert_eq!(res, (TINFLStatus::HasMoreOutput, 4, 0));
    }

    #[test]
    fn empty_output_buffer_wrapping() {
        let encoded = [
            0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00,
        ];
        let flags = TINFL_FLAG_COMPUTE_ADLER32;
        let mut r = DecompressorOxide::new();
        let mut output_buf = vec![];
        // Check that we handle an empty buffer properly and not panicking.
        // https://github.com/Frommi/miniz_oxide/issues/23
        let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags);
        assert_eq!(res, (TINFLStatus::HasMoreOutput, 2, 0));
    }
}