1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
// The following ~400 lines of code exists for exactly one purpose, which is
// to optimize this code:
//
// byte_slice.iter().position(|&b| b > 0x7F).unwrap_or(byte_slice.len())
//
// Yes... Overengineered is a word that comes to mind, but this is effectively
// a very similar problem to memchr, and virtually nobody has been able to
// resist optimizing the crap out of that (except for perhaps the BSD and MUSL
// folks). In particular, this routine makes a very common case (ASCII) very
// fast, which seems worth it. We do stop short of adding AVX variants of the
// code below in order to retain our sanity and also to avoid needing to deal
// with runtime target feature detection. RESIST!
//
// In order to understand the SIMD version below, it would be good to read this
// comment describing how my memchr routine works:
// https://github.com/BurntSushi/rust-memchr/blob/b0a29f267f4a7fad8ffcc8fe8377a06498202883/src/x86/sse2.rs#L19-L106
//
// The primary difference with memchr is that for ASCII, we can do a bit less
// work. In particular, we don't need to detect the presence of a specific
// byte, but rather, whether any byte has its most significant bit set. That
// means we can effectively skip the _mm_cmpeq_epi8 step and jump straight to
// _mm_movemask_epi8.
#[cfg(any(test, miri, not(target_arch = "x86_64")))]
const USIZE_BYTES: usize = core::mem::size_of::<usize>();
#[cfg(any(test, miri, not(target_arch = "x86_64")))]
const FALLBACK_LOOP_SIZE: usize = 2 * USIZE_BYTES;
// This is a mask where the most significant bit of each byte in the usize
// is set. We test this bit to determine whether a character is ASCII or not.
// Namely, a single byte is regarded as an ASCII codepoint if and only if it's
// most significant bit is not set.
#[cfg(any(test, miri, not(target_arch = "x86_64")))]
const ASCII_MASK_U64: u64 = 0x8080808080808080;
#[cfg(any(test, miri, not(target_arch = "x86_64")))]
const ASCII_MASK: usize = ASCII_MASK_U64 as usize;
/// Returns the index of the first non ASCII byte in the given slice.
///
/// If slice only contains ASCII bytes, then the length of the slice is
/// returned.
pub fn first_non_ascii_byte(slice: &[u8]) -> usize {
#[cfg(any(miri, not(target_arch = "x86_64")))]
{
first_non_ascii_byte_fallback(slice)
}
#[cfg(all(not(miri), target_arch = "x86_64"))]
{
first_non_ascii_byte_sse2(slice)
}
}
#[cfg(any(test, miri, not(target_arch = "x86_64")))]
fn first_non_ascii_byte_fallback(slice: &[u8]) -> usize {
let align = USIZE_BYTES - 1;
let start_ptr = slice.as_ptr();
let end_ptr = slice[slice.len()..].as_ptr();
let mut ptr = start_ptr;
unsafe {
if slice.len() < USIZE_BYTES {
return first_non_ascii_byte_slow(start_ptr, end_ptr, ptr);
}
let chunk = read_unaligned_usize(ptr);
let mask = chunk & ASCII_MASK;
if mask != 0 {
return first_non_ascii_byte_mask(mask);
}
ptr = ptr_add(ptr, USIZE_BYTES - (start_ptr as usize & align));
debug_assert!(ptr > start_ptr);
debug_assert!(ptr_sub(end_ptr, USIZE_BYTES) >= start_ptr);
if slice.len() >= FALLBACK_LOOP_SIZE {
while ptr <= ptr_sub(end_ptr, FALLBACK_LOOP_SIZE) {
debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES);
let a = *(ptr as *const usize);
let b = *(ptr_add(ptr, USIZE_BYTES) as *const usize);
if (a | b) & ASCII_MASK != 0 {
// What a kludge. We wrap the position finding code into
// a non-inlineable function, which makes the codegen in
// the tight loop above a bit better by avoiding a
// couple extra movs. We pay for it by two additional
// stores, but only in the case of finding a non-ASCII
// byte.
#[inline(never)]
unsafe fn findpos(
start_ptr: *const u8,
ptr: *const u8,
) -> usize {
let a = *(ptr as *const usize);
let b = *(ptr_add(ptr, USIZE_BYTES) as *const usize);
let mut at = sub(ptr, start_ptr);
let maska = a & ASCII_MASK;
if maska != 0 {
return at + first_non_ascii_byte_mask(maska);
}
at += USIZE_BYTES;
let maskb = b & ASCII_MASK;
debug_assert!(maskb != 0);
return at + first_non_ascii_byte_mask(maskb);
}
return findpos(start_ptr, ptr);
}
ptr = ptr_add(ptr, FALLBACK_LOOP_SIZE);
}
}
first_non_ascii_byte_slow(start_ptr, end_ptr, ptr)
}
}
#[cfg(all(not(miri), target_arch = "x86_64"))]
fn first_non_ascii_byte_sse2(slice: &[u8]) -> usize {
use core::arch::x86_64::*;
const VECTOR_SIZE: usize = core::mem::size_of::<__m128i>();
const VECTOR_ALIGN: usize = VECTOR_SIZE - 1;
const VECTOR_LOOP_SIZE: usize = 4 * VECTOR_SIZE;
let start_ptr = slice.as_ptr();
let end_ptr = slice[slice.len()..].as_ptr();
let mut ptr = start_ptr;
unsafe {
if slice.len() < VECTOR_SIZE {
return first_non_ascii_byte_slow(start_ptr, end_ptr, ptr);
}
let chunk = _mm_loadu_si128(ptr as *const __m128i);
let mask = _mm_movemask_epi8(chunk);
if mask != 0 {
return mask.trailing_zeros() as usize;
}
ptr = ptr.add(VECTOR_SIZE - (start_ptr as usize & VECTOR_ALIGN));
debug_assert!(ptr > start_ptr);
debug_assert!(end_ptr.sub(VECTOR_SIZE) >= start_ptr);
if slice.len() >= VECTOR_LOOP_SIZE {
while ptr <= ptr_sub(end_ptr, VECTOR_LOOP_SIZE) {
debug_assert_eq!(0, (ptr as usize) % VECTOR_SIZE);
let a = _mm_load_si128(ptr as *const __m128i);
let b = _mm_load_si128(ptr.add(VECTOR_SIZE) as *const __m128i);
let c =
_mm_load_si128(ptr.add(2 * VECTOR_SIZE) as *const __m128i);
let d =
_mm_load_si128(ptr.add(3 * VECTOR_SIZE) as *const __m128i);
let or1 = _mm_or_si128(a, b);
let or2 = _mm_or_si128(c, d);
let or3 = _mm_or_si128(or1, or2);
if _mm_movemask_epi8(or3) != 0 {
let mut at = sub(ptr, start_ptr);
let mask = _mm_movemask_epi8(a);
if mask != 0 {
return at + mask.trailing_zeros() as usize;
}
at += VECTOR_SIZE;
let mask = _mm_movemask_epi8(b);
if mask != 0 {
return at + mask.trailing_zeros() as usize;
}
at += VECTOR_SIZE;
let mask = _mm_movemask_epi8(c);
if mask != 0 {
return at + mask.trailing_zeros() as usize;
}
at += VECTOR_SIZE;
let mask = _mm_movemask_epi8(d);
debug_assert!(mask != 0);
return at + mask.trailing_zeros() as usize;
}
ptr = ptr_add(ptr, VECTOR_LOOP_SIZE);
}
}
while ptr <= end_ptr.sub(VECTOR_SIZE) {
debug_assert!(sub(end_ptr, ptr) >= VECTOR_SIZE);
let chunk = _mm_loadu_si128(ptr as *const __m128i);
let mask = _mm_movemask_epi8(chunk);
if mask != 0 {
return sub(ptr, start_ptr) + mask.trailing_zeros() as usize;
}
ptr = ptr.add(VECTOR_SIZE);
}
first_non_ascii_byte_slow(start_ptr, end_ptr, ptr)
}
}
#[inline(always)]
unsafe fn first_non_ascii_byte_slow(
start_ptr: *const u8,
end_ptr: *const u8,
mut ptr: *const u8,
) -> usize {
debug_assert!(start_ptr <= ptr);
debug_assert!(ptr <= end_ptr);
while ptr < end_ptr {
if *ptr > 0x7F {
return sub(ptr, start_ptr);
}
ptr = ptr.offset(1);
}
sub(end_ptr, start_ptr)
}
/// Compute the position of the first ASCII byte in the given mask.
///
/// The mask should be computed by `chunk & ASCII_MASK`, where `chunk` is
/// 8 contiguous bytes of the slice being checked where *at least* one of those
/// bytes is not an ASCII byte.
///
/// The position returned is always in the inclusive range [0, 7].
#[cfg(any(test, miri, not(target_arch = "x86_64")))]
fn first_non_ascii_byte_mask(mask: usize) -> usize {
#[cfg(target_endian = "little")]
{
mask.trailing_zeros() as usize / 8
}
#[cfg(target_endian = "big")]
{
mask.leading_zeros() as usize / 8
}
}
/// Increment the given pointer by the given amount.
unsafe fn ptr_add(ptr: *const u8, amt: usize) -> *const u8 {
debug_assert!(amt < ::core::isize::MAX as usize);
ptr.offset(amt as isize)
}
/// Decrement the given pointer by the given amount.
unsafe fn ptr_sub(ptr: *const u8, amt: usize) -> *const u8 {
debug_assert!(amt < ::core::isize::MAX as usize);
ptr.offset((amt as isize).wrapping_neg())
}
#[cfg(any(test, miri, not(target_arch = "x86_64")))]
unsafe fn read_unaligned_usize(ptr: *const u8) -> usize {
use core::ptr;
let mut n: usize = 0;
ptr::copy_nonoverlapping(ptr, &mut n as *mut _ as *mut u8, USIZE_BYTES);
n
}
/// Subtract `b` from `a` and return the difference. `a` should be greater than
/// or equal to `b`.
fn sub(a: *const u8, b: *const u8) -> usize {
debug_assert!(a >= b);
(a as usize) - (b as usize)
}
#[cfg(test)]
mod tests {
use super::*;
// Our testing approach here is to try and exhaustively test every case.
// This includes the position at which a non-ASCII byte occurs in addition
// to the alignment of the slice that we're searching.
#[test]
fn positive_fallback_forward() {
for i in 0..517 {
let s = "a".repeat(i);
assert_eq!(
i,
first_non_ascii_byte_fallback(s.as_bytes()),
"i: {:?}, len: {:?}, s: {:?}",
i,
s.len(),
s
);
}
}
#[test]
#[cfg(target_arch = "x86_64")]
#[cfg(not(miri))]
fn positive_sse2_forward() {
for i in 0..517 {
let b = "a".repeat(i).into_bytes();
assert_eq!(b.len(), first_non_ascii_byte_sse2(&b));
}
}
#[test]
#[cfg(not(miri))]
fn negative_fallback_forward() {
for i in 0..517 {
for align in 0..65 {
let mut s = "a".repeat(i);
s.push_str("☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃");
let s = s.get(align..).unwrap_or("");
assert_eq!(
i.saturating_sub(align),
first_non_ascii_byte_fallback(s.as_bytes()),
"i: {:?}, align: {:?}, len: {:?}, s: {:?}",
i,
align,
s.len(),
s
);
}
}
}
#[test]
#[cfg(target_arch = "x86_64")]
#[cfg(not(miri))]
fn negative_sse2_forward() {
for i in 0..517 {
for align in 0..65 {
let mut s = "a".repeat(i);
s.push_str("☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃");
let s = s.get(align..).unwrap_or("");
assert_eq!(
i.saturating_sub(align),
first_non_ascii_byte_sse2(s.as_bytes()),
"i: {:?}, align: {:?}, len: {:?}, s: {:?}",
i,
align,
s.len(),
s
);
}
}
}
}