1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! See if there are predicates of the form `<expr> = literal` that can be sped up using an index.
//! More specifically, look for an MFP on top of a Get, where the MFP has an appropriate filter, and
//! the Get has a matching index. Convert these to `IndexedFilter` joins, which is a semi-join with
//! a constant collection.
//!
//! E.g.: Logically, we go from something like
//! `SELECT f1, f2, f3 FROM t WHERE t.f1 = lit1 AND t.f2 = lit2`
//! to
//! `SELECT f1, f2, f3 FROM t, (SELECT * FROM (VALUES (lit1, lit2))) as filter_list
//!  WHERE t.f1 = filter_list.column1 AND t.f2 = filter_list.column2`

use std::collections::{BTreeMap, BTreeSet};

use itertools::Itertools;
use mz_expr::canonicalize::canonicalize_predicates;
use mz_expr::visit::{Visit, VisitChildren};
use mz_expr::JoinImplementation::IndexedFilter;
use mz_expr::{BinaryFunc, Id, MapFilterProject, MirRelationExpr, MirScalarExpr, VariadicFunc};
use mz_ore::collections::CollectionExt;
use mz_ore::iter::IteratorExt;
use mz_ore::stack::RecursionLimitError;
use mz_ore::vec::swap_remove_multiple;
use mz_repr::{GlobalId, Row};

use crate::canonicalize_mfp::CanonicalizeMfp;
use crate::notice::IndexTooWideForLiteralConstraints;
use crate::TransformCtx;

/// Convert literal constraints into `IndexedFilter` joins.
#[derive(Debug)]
pub struct LiteralConstraints;

impl crate::Transform for LiteralConstraints {
    fn name(&self) -> &'static str {
        "LiteralConstraints"
    }

    #[mz_ore::instrument(
        target = "optimizer",
        level = "debug",
        fields(path.segment = "literal_constraints")
    )]
    fn actually_perform_transform(
        &self,
        relation: &mut MirRelationExpr,
        ctx: &mut TransformCtx,
    ) -> Result<(), crate::TransformError> {
        let result = self.action(relation, ctx);
        mz_repr::explain::trace_plan(&*relation);
        result
    }
}

impl LiteralConstraints {
    fn action(
        &self,
        relation: &mut MirRelationExpr,
        transform_ctx: &mut TransformCtx,
    ) -> Result<(), crate::TransformError> {
        let mut mfp = MapFilterProject::extract_non_errors_from_expr_mut(relation);
        relation.try_visit_mut_children(|e| self.action(e, transform_ctx))?;

        if let MirRelationExpr::Get {
            id: Id::Global(id), ..
        } = *relation
        {
            let orig_mfp = mfp.clone();

            // Preparation for the literal constraints detection.
            Self::inline_literal_constraints(&mut mfp);
            Self::list_of_predicates_to_and_of_predicates(&mut mfp);
            Self::distribute_and_over_or(&mut mfp)?;
            Self::unary_and(&mut mfp);

            /// The above preparation might make the MFP more complicated, so we'll later want to
            /// either undo the preparation transformations or get back to `orig_mfp`.
            fn undo_preparation(
                mfp: &mut MapFilterProject,
                orig_mfp: &MapFilterProject,
                relation: &MirRelationExpr,
            ) {
                // undo list_of_predicates_to_and_of_predicates, distribute_and_over_or, unary_and
                // (It undoes the latter 2 through `MirScalarExp::reduce`.)
                LiteralConstraints::canonicalize_predicates(mfp, relation);
                // undo inline_literal_constraints
                mfp.optimize();
                // We can usually undo, but sometimes not (see comment on `distribute_and_over_or`),
                // so in those cases we might have a more complicated MFP than the original MFP
                // (despite the removal of the literal constraints and/or contradicting OR args).
                // So let's use the simpler one.
                if LiteralConstraints::predicates_size(orig_mfp)
                    < LiteralConstraints::predicates_size(mfp)
                {
                    *mfp = orig_mfp.clone();
                }
            }

            let removed_contradicting_or_args = Self::remove_impossible_or_args(&mut mfp)?;

            // todo: We might want to also call `canonicalize_equivalences`,
            // see near the end of literal_constraints.slt.

            let key_val = Self::detect_literal_constraints(&mfp, id, transform_ctx);

            match key_val {
                None => {
                    // We didn't find a usable index, so no chance to remove literal constraints.
                    // But, we might have removed contradicting OR args.
                    if removed_contradicting_or_args {
                        undo_preparation(&mut mfp, &orig_mfp, relation);
                    } else {
                        // We didn't remove anything, so let's go with the original MFP.
                        mfp = orig_mfp;
                    }
                }
                Some((idx_id, key, possible_vals)) => {
                    // We found a usable index. We'll try to remove the corresponding literal
                    // constraints.
                    if Self::remove_literal_constraints(&mut mfp, &key)
                        || removed_contradicting_or_args
                    {
                        // We were able to remove the literal constraints or contradicting OR args,
                        // so we would like to use this new MFP, so we try undoing the preparation.
                        undo_preparation(&mut mfp, &orig_mfp, relation);
                    } else {
                        // We were not able to remove the literal constraint, so `mfp` is
                        // equivalent to `orig_mfp`, but `orig_mfp` is often simpler (or the same).
                        mfp = orig_mfp;
                    }

                    // We transform the Get into a semi-join with a constant collection.

                    let inp_id = id.clone();
                    let inp_typ = relation.typ();
                    let filter_list = MirRelationExpr::Constant {
                        rows: Ok(possible_vals.iter().map(|val| (val.clone(), 1)).collect()),
                        typ: mz_repr::RelationType {
                            column_types: key
                                .iter()
                                .map(|e| {
                                    e.typ(&inp_typ.column_types)
                                        // We make sure to not include a null in `expr_eq_literal`.
                                        .nullable(false)
                                })
                                .collect(),
                            // (Note that the key inference for `MirRelationExpr::Constant` inspects
                            // the constant values to detect keys not listed within the node, but it
                            // can only detect a single-column key this way. A multi-column key is
                            // common here, so we explicitly add it.)
                            keys: vec![(0..key.len()).collect()],
                        },
                    }
                    .arrange_by(&[(0..key.len()).map(MirScalarExpr::Column).collect_vec()]);

                    if possible_vals.is_empty() {
                        // Even better than what we were hoping for: Found contradicting
                        // literal constraints, so the whole relation is empty.
                        *relation = MirRelationExpr::Constant {
                            rows: Ok(Vec::new()),
                            typ: relation.typ(),
                        };
                    } else {
                        // The common case: We need to build the join which is the main point of
                        // this transform.
                        *relation = MirRelationExpr::Join {
                            // It's important to keep the `filter_list` in the second position.
                            // Both the lowering and EXPLAIN depends on this.
                            inputs: vec![relation.clone().arrange_by(&[key.clone()]), filter_list],
                            equivalences: key
                                .iter()
                                .enumerate()
                                .map(|(i, e)| {
                                    vec![(*e).clone(), MirScalarExpr::column(i + inp_typ.arity())]
                                })
                                .collect(),
                            implementation: IndexedFilter(
                                inp_id,
                                idx_id,
                                key.clone(),
                                possible_vals,
                            ),
                        };

                        // Rebuild the MFP to add the projection that removes the columns coming from
                        // the filter_list side of the join.
                        let (map, filter, project) = mfp.as_map_filter_project();
                        mfp = MapFilterProject::new(inp_typ.arity() + key.len())
                            .project(0..inp_typ.arity()) // make the join semi
                            .map(map)
                            .filter(filter)
                            .project(project);
                        mfp.optimize()
                    }
                }
            }
        }

        CanonicalizeMfp::rebuild_mfp(mfp, relation);

        Ok(())
    }

    /// Detects literal constraints in an MFP on top of a Get of `id`, and a matching index that can
    /// be used to speed up the Filter of the MFP.
    ///
    /// For example, if there is an index on `(f1, f2)`, and the Filter is
    /// `(f1 = 3 AND f2 = 5) OR (f1 = 7 AND f2 = 9)`, it returns `Some([f1, f2], [[3,5], [7,9]])`.
    ///
    /// We can use an index if each argument of the OR includes a literal constraint on each of the
    /// key fields of the index. Extra predicates inside the OR arguments are ok.
    ///
    /// Returns (idx_id, idx_key, values to lookup in the index).
    fn detect_literal_constraints(
        mfp: &MapFilterProject,
        get_id: GlobalId,
        transform_ctx: &mut TransformCtx,
    ) -> Option<(GlobalId, Vec<MirScalarExpr>, Vec<Row>)> {
        // Checks whether an index with the specified key can be used to speed up the given filter.
        // See comment of `IndexMatch`.
        fn match_index(key: &[MirScalarExpr], or_args: &Vec<MirScalarExpr>) -> IndexMatch {
            if key.is_empty() {
                // Nothing to do with an index that has an empty key.
                return IndexMatch::UnusableNoSubset;
            }
            if !key.iter().all_unique() {
                // This is a weird index. Why does it have duplicate key expressions?
                return IndexMatch::UnusableNoSubset;
            }
            let mut literal_values = Vec::new();
            let mut inv_cast_any = false;
            // This starts with all key fields of the index.
            // At the end, it will contain a subset S of index key fields such that if the index had
            // only S as its key, then the index would be usable.
            let mut usable_key_fields = key.iter().collect::<BTreeSet<_>>();
            let mut usable = true;
            for or_arg in or_args {
                let mut row = Row::default();
                let mut packer = row.packer();
                for key_field in key {
                    let and_args = or_arg.and_or_args(VariadicFunc::And);
                    // Let's find a constraint for this key field
                    if let Some((literal, inv_cast)) = and_args
                        .iter()
                        .find_map(|and_arg| and_arg.expr_eq_literal(key_field))
                    {
                        // (Note that the above find_map can find only 0 or 1 result, because
                        // of `remove_impossible_or_args`.)
                        packer.push(literal.unpack_first());
                        inv_cast_any |= inv_cast;
                    } else {
                        // There is an `or_arg` where we didn't find a constraint for a key field,
                        // so the index is unusable. Throw out the field from the usable fields.
                        usable = false;
                        usable_key_fields.remove(key_field);
                        if usable_key_fields.is_empty() {
                            return IndexMatch::UnusableNoSubset;
                        }
                    }
                }
                literal_values.push(row);
            }
            if usable {
                // We should deduplicate, because a constraint can be duplicated by
                // `distribute_and_over_or`. For example: `IN ('l1', 'l2') AND (a > 0 OR a < 5)`:
                // the 2 args of the OR will cause the IN constraints to be duplicated. This doesn't
                // alter the meaning of the expression when evaluated as a filter, but if we extract
                // those literals 2 times into `literal_values` then the Peek code will look up
                // those keys from the index 2 times, leading to duplicate results.
                literal_values.sort();
                literal_values.dedup();
                IndexMatch::Usable(literal_values, inv_cast_any)
            } else {
                if usable_key_fields.is_empty() {
                    IndexMatch::UnusableNoSubset
                } else {
                    IndexMatch::UnusableTooWide(
                        usable_key_fields.into_iter().cloned().collect_vec(),
                    )
                }
            }
        }

        let or_args = Self::get_or_args(mfp);

        let index_matches = transform_ctx
            .indexes
            .indexes_on(get_id)
            .map(|(index_id, key)| (index_id, key.to_owned(), match_index(key, &or_args)))
            .collect_vec();

        let result = index_matches
            .iter()
            .cloned()
            .filter_map(|(idx_id, key, index_match)| match index_match {
                IndexMatch::Usable(vals, inv_cast) => Some((idx_id, key, vals, inv_cast)),
                _ => None,
            })
            // Maximize:
            //  1. number of predicates that are sped using a single index.
            //  2. whether we are using a simpler index by having removed a cast from the key expr.
            .max_by_key(|(_idx_id, key, _vals, inv_cast)| (key.len(), *inv_cast))
            .map(|(idx_id, key, vals, _inv_cast)| (idx_id, key, vals));

        if result.is_none() && !or_args.is_empty() {
            // Let's see if we can give a hint to the user.
            index_matches
                .into_iter()
                .for_each(|(index_id, index_key, index_match)| {
                    match index_match {
                        IndexMatch::UnusableTooWide(usable_subset) => {
                            // see comment of `UnusableTooWide`
                            assert!(!usable_subset.is_empty());
                            // Determine literal values that we would get if the index was on
                            // `usable_subset`.
                            let literal_values = match match_index(&usable_subset, &or_args) {
                                IndexMatch::Usable(literal_vals, _) => literal_vals,
                                _ => unreachable!(), // `usable_subset` would make the index usable.
                            };

                            // Let's come up with a recommendation for what columns to index:
                            // Intersect literal constraints across all OR args. (Which might
                            // include columns that are NOT in this index, and therefore not in
                            // `usable_subset`.)
                            let recommended_key = or_args
                                .iter()
                                .map(|or_arg| {
                                    let and_args = or_arg.and_or_args(VariadicFunc::And);
                                    and_args
                                        .iter()
                                        .filter_map(|and_arg| and_arg.any_expr_eq_literal())
                                        .collect::<BTreeSet<_>>()
                                })
                                .reduce(|fields1, fields2| {
                                    fields1.intersection(&fields2).cloned().collect()
                                })
                                // The unwrap is safe because above we checked `!or_args.is_empty()`
                                .unwrap()
                                .into_iter()
                                .collect_vec();

                            transform_ctx.df_meta.push_optimizer_notice_dedup(
                                IndexTooWideForLiteralConstraints {
                                    index_id,
                                    index_key,
                                    usable_subset,
                                    literal_values,
                                    index_on_id: get_id,
                                    recommended_key,
                                },
                            )
                        }
                        _ => (),
                    }
                });
        }

        result
    }

    /// Removes the expressions that [LiteralConstraints::detect_literal_constraints] found, if
    /// possible. Returns whether it removed anything.
    /// For example, if the key of the detected literal constraint is just `f1`, and we have the
    /// expression
    /// `(f1 = 3 AND f2 = 5) OR (f1 = 7 AND f2 = 5)`, then this modifies it to `f2 = 5`.
    /// However, if OR branches differ in their non-key parts, then we cannot remove the literal
    /// constraint. For example,
    /// `(f1 = 3 AND f2 = 5) OR (f1 = 7 AND f2 = 555)`, then we cannot remove the `f1` parts,
    /// because then the filter wouldn't know whether to check `f2 = 5` or `f2 = 555`.
    fn remove_literal_constraints(mfp: &mut MapFilterProject, key: &Vec<MirScalarExpr>) -> bool {
        let or_args = Self::get_or_args(mfp);
        if or_args.len() == 0 {
            return false;
        }

        // In simple situations it would be enough to check here that if we remove the detected
        // literal constraints from each OR arg, then the residual OR args are all equal.
        // However, this wouldn't be able to perform the removal when the expression that should
        // remain in the end has an OR. This is because conversion to DNF makes duplicates of
        // every literal constraint, with different residuals. To also handle this case, we collect
        // the possible residuals for every literal constraint row, and check that all sets are
        // equal. Example: The user wrote
        // `WHERE ((a=1 AND b=1) OR (a=2 AND b=2)) AND (c OR (d AND e))`.
        // The DNF of this is
        // `(a=1 AND b=1 AND c) OR (a=1 AND b=1 AND d AND e) OR (a=2 AND b=2 AND c) OR (a=2 AND b=2 AND d AND e)`.
        // Then `constraints_to_residual_sets` will be:
        // [
        //   [`a=1`, `b=1`]  ->  {[`c`], [`d`, `e`]},
        //   [`a=2`, `b=2`]  ->  {[`c`], [`d`, `e`]}
        // ]
        // After removing the literal constraints we have
        // `c OR (d AND e)`
        let mut constraints_to_residual_sets = BTreeMap::new();
        or_args.iter().for_each(|or_arg| {
            let and_args = or_arg.and_or_args(VariadicFunc::And);
            let (mut constraints, mut residual): (Vec<_>, Vec<_>) =
                and_args.iter().cloned().partition(|and_arg| {
                    key.iter()
                        .any(|key_field| matches!(and_arg.expr_eq_literal(key_field), Some(..)))
                });
            // In every or_arg there has to be some literal constraints, otherwise
            // `detect_literal_constraints` would have returned None.
            assert!(constraints.len() >= 1);
            // `remove_impossible_or_args` made sure that inside each or_arg, each
            // expression can be literal constrained only once. So if we find one of the
            // key fields being literal constrained, then it's definitely that literal
            // constraint that detect_literal_constraints based one of its return values on.
            //
            // This is important, because without `remove_impossible_or_args`, we might
            // have the situation here that or_arg would be something like
            // `a = 5 AND a = 8`, of which `detect_literal_constraints` found only the `a = 5`,
            // but here we would remove both the `a = 5` and the `a = 8`.
            constraints.sort();
            residual.sort();
            let entry = constraints_to_residual_sets
                .entry(constraints)
                .or_insert_with(BTreeSet::new);
            entry.insert(residual);
        });
        let residual_sets = constraints_to_residual_sets
            .into_iter()
            .map(|(_constraints, residual_set)| residual_set)
            .collect::<Vec<_>>();
        if residual_sets.iter().all_equal() {
            // We can remove the literal constraint
            assert!(residual_sets.len() >= 1); // We already checked `or_args.len() == 0` above
            let residual_set = residual_sets.into_iter().into_first();
            let new_pred = MirScalarExpr::CallVariadic {
                func: VariadicFunc::Or,
                exprs: residual_set
                    .into_iter()
                    .map(|residual| MirScalarExpr::CallVariadic {
                        func: VariadicFunc::And,
                        exprs: residual,
                    })
                    .collect::<Vec<_>>(),
            };
            let (map, _predicates, project) = mfp.as_map_filter_project();
            *mfp = MapFilterProject::new(mfp.input_arity)
                .map(map)
                .filter(std::iter::once(new_pred))
                .project(project);

            true
        } else {
            false
        }
    }

    /// 1. Removes such OR args in which there are contradicting literal constraints.
    /// 2. Also, if an OR arg doesn't have any contradiction, this fn just deduplicates
    /// the AND arg list of that OR arg. (Might additionally sort all AND arg lists.)
    ///
    /// Returns whether it performed any removal or deduplication.
    ///
    /// Example for 1:
    /// `<arg1> OR (a = 5 AND a = 5 AND a = 8) OR <arg3>`
    /// -->
    /// `<arg1> OR <arg3> `
    ///
    /// Example for 2:
    /// `<arg1> OR (a = 5 AND a = 5 AND b = 8) OR <arg3>`
    /// -->
    /// `<arg1> OR (a = 5 AND b = 8) OR <arg3>`
    fn remove_impossible_or_args(mfp: &mut MapFilterProject) -> Result<bool, RecursionLimitError> {
        let mut or_args = Self::get_or_args(mfp);
        if or_args.len() == 0 {
            return Ok(false);
        }
        let mut to_remove = Vec::new();
        let mut changed = false;
        or_args.iter_mut().enumerate().for_each(|(i, or_arg)| {
            if let MirScalarExpr::CallVariadic {
                func: VariadicFunc::And,
                exprs: and_args,
            } = or_arg
            {
                if and_args
                    .iter()
                    .any(|e| e.impossible_literal_equality_because_types())
                {
                    changed = true;
                    to_remove.push(i);
                } else {
                    and_args.sort_by_key(|e: &MirScalarExpr| e.invert_casts_on_expr_eq_literal());
                    let and_args_before_dedup = and_args.clone();
                    and_args
                        .dedup_by_key(|e: &mut MirScalarExpr| e.invert_casts_on_expr_eq_literal());
                    if *and_args != and_args_before_dedup {
                        changed = true;
                    }
                    // Deduplicated, so we cannot have something like `a = 5 AND a = 5`.
                    // This means that if we now have `<expr1> = <literal1> AND <expr1> = <literal2>`,
                    // then `literal1` is definitely not the same as `literal2`. This means that this
                    // whole or_arg is a contradiction, because it's something like `a = 5 AND a = 8`.
                    let mut literal_constrained_exprs = and_args
                        .iter()
                        .filter_map(|and_arg| and_arg.any_expr_eq_literal());
                    if !literal_constrained_exprs.all_unique() {
                        changed = true;
                        to_remove.push(i);
                    }
                }
            } else {
                // `unary_and` made sure that each OR arg is an AND
                unreachable!("OR arg was not an AND in remove_impossible_or_args");
            }
        });
        // We remove the marked OR args.
        // (If the OR has 0 or 1 args remaining, then `reduce_and_canonicalize_and_or` will later
        // further simplify.)
        swap_remove_multiple(&mut or_args, to_remove);
        // Rebuild the MFP if needed
        if changed {
            let new_predicates = vec![MirScalarExpr::CallVariadic {
                func: VariadicFunc::Or,
                exprs: or_args,
            }];
            let (map, _predicates, project) = mfp.as_map_filter_project();
            *mfp = MapFilterProject::new(mfp.input_arity)
                .map(map)
                .filter(new_predicates)
                .project(project);
            Ok(true)
        } else {
            Ok(false)
        }
    }

    /// Returns the arguments of the predicate's top-level OR as a Vec.
    /// If there is no top-level OR, then interpret the predicate as a 1-arg OR, i.e., return a
    /// 1-element Vec.
    ///
    /// Assumes that [LiteralConstraints::list_of_predicates_to_and_of_predicates] has already run.
    fn get_or_args(mfp: &MapFilterProject) -> Vec<MirScalarExpr> {
        assert_eq!(mfp.predicates.len(), 1); // list_of_predicates_to_and_of_predicates ensured this
        let (_, pred) = mfp.predicates.get(0).unwrap();
        pred.and_or_args(VariadicFunc::Or)
    }

    /// Makes the job of [LiteralConstraints::detect_literal_constraints] easier by undoing some CSE to
    /// reconstruct literal constraints.
    fn inline_literal_constraints(mfp: &mut MapFilterProject) {
        let mut should_inline = vec![false; mfp.input_arity + mfp.expressions.len()];
        // Mark those expressions for inlining that contain a subexpression of the form
        // `<xxx> = <lit>` or `<lit> = <xxx>`.
        for (i, e) in mfp.expressions.iter().enumerate() {
            e.visit_pre(|s| {
                if s.any_expr_eq_literal().is_some() {
                    should_inline[i + mfp.input_arity] = true;
                }
            });
        }
        // Whenever
        // `<Column(i)> = <lit>` or `<lit> = <Column(i)>`
        // appears in a predicate, mark the ith expression to be inlined.
        for (_before, p) in mfp.predicates.iter() {
            p.visit_pre(|e| {
                if let MirScalarExpr::CallBinary {
                    func: BinaryFunc::Eq,
                    expr1,
                    expr2,
                } = e
                {
                    if matches!(**expr1, MirScalarExpr::Literal(..)) {
                        if let MirScalarExpr::Column(col) = **expr2 {
                            if col >= mfp.input_arity {
                                should_inline[col] = true;
                            }
                        }
                    }
                    if matches!(**expr2, MirScalarExpr::Literal(..)) {
                        if let MirScalarExpr::Column(col) = **expr1 {
                            if col >= mfp.input_arity {
                                should_inline[col] = true;
                            }
                        }
                    }
                }
            });
        }
        // Perform the marked inlinings.
        mfp.perform_inlining(should_inline);
    }

    /// MFPs have a Vec of predicates `[p1, p2, ...]`, which logically represents `p1 AND p2 AND ...`.
    /// This function performs this conversion. Note that it might create a variadic AND with
    /// 0 or 1 args, so the resulting predicate Vec always has exactly 1 element.
    fn list_of_predicates_to_and_of_predicates(mfp: &mut MapFilterProject) {
        // Rebuild the MFP. (Unfortunately, we cannot modify the predicates in place, because MFP
        // predicates also have a "before" field, which we need to update. (`filter` will recompute
        // these.)
        let (map, _predicates, project) = mfp.as_map_filter_project();
        let new_predicates = vec![MirScalarExpr::CallVariadic {
            func: VariadicFunc::And,
            exprs: mfp.predicates.iter().map(|(_, p)| p.clone()).collect(),
        }];
        *mfp = MapFilterProject::new(mfp.input_arity)
            .map(map)
            .filter(new_predicates)
            .project(project);
    }

    /// Call [mz_expr::canonicalize::canonicalize_predicates] on each of the predicates in the MFP.
    fn canonicalize_predicates(mfp: &mut MapFilterProject, relation: &MirRelationExpr) {
        let (map, mut predicates, project) = mfp.as_map_filter_project();
        let typ_after_map = relation.clone().map(map.clone()).typ();
        canonicalize_predicates(&mut predicates, &typ_after_map.column_types);
        // Rebuild the MFP with the new predicates.
        *mfp = MapFilterProject::new(mfp.input_arity)
            .map(map)
            .filter(predicates)
            .project(project);
    }

    /// Distribute AND over OR + do flatten_and_or until fixed point.
    /// This effectively converts to disjunctive normal form (DNF) (i.e., an OR of ANDs), because
    /// [MirScalarExpr::reduce] did Demorgans and double-negation-elimination. So after
    /// [MirScalarExpr::reduce], we get here a tree of AND/OR nodes. A distribution step lifts an OR
    /// up the tree by 1 level, and a [MirScalarExpr::flatten_associative] merges two ORs that are at
    /// adjacent levels, so eventually we'll end up with just one OR that is at the top of the tree,
    /// with ANDs below it.
    /// For example:
    /// (a || b) && (c || d)
    ///   ->
    /// ((a || b) && c) || ((a || b) && d)
    ///   ->
    /// (a && c) || (b && c) || (a && d) || (b && d)
    /// (This is a variadic OR with 4 arguments.)
    ///
    /// Example:
    /// User wrote `WHERE (a,b) IN ((1,2), (1,4), (8,5))`,
    /// from which [MirScalarExpr::undistribute_and_or] made this before us:
    /// (#0 = 1 AND (#1 = 2 OR #1 = 4)) OR (#0 = 8 AND #1 = 5)
    /// And now we distribute the first AND over the first OR in 2 steps: First to
    /// ((#0 = 1 AND #1 = 2) OR (#0 = 1 AND #1 = 4)) OR (#0 = 8 AND #1 = 5)
    /// then [MirScalarExpr::flatten_associative]:
    /// (#0 = 1 AND #1 = 2) OR (#0 = 1 AND #1 = 4) OR (#0 = 8 AND #1 = 5)
    ///
    /// Note that [MirScalarExpr::undistribute_and_or] is not exactly an inverse to this because
    /// 1) it can undistribute both AND over OR and OR over AND.
    /// 2) it cannot always undo the distribution, because an expression might have multiple
    /// overlapping undistribution opportunities, see comment there.
    fn distribute_and_over_or(mfp: &mut MapFilterProject) -> Result<(), RecursionLimitError> {
        mfp.predicates.iter_mut().try_for_each(|(_, p)| {
            let mut old_p = MirScalarExpr::column(0);
            while old_p != *p {
                let size = p.size();
                // We might make the expression exponentially larger, so we should have some limit.
                // Below 1000 (e.g., a single IN list of ~300 elements, or 3 IN lists of 4-5
                // elements each), we are <10 ms for a single IN list, and even less for multiple IN
                // lists.
                if size > 1000 {
                    break;
                }
                old_p = p.clone();
                p.visit_mut_post(&mut |e: &mut MirScalarExpr| {
                    if let MirScalarExpr::CallVariadic {
                        func: VariadicFunc::And,
                        exprs: and_args,
                    } = e
                    {
                        if let Some((i, _)) = and_args.iter().enumerate().find(|(_i, a)| {
                            matches!(
                                a,
                                MirScalarExpr::CallVariadic {
                                    func: VariadicFunc::Or,
                                    ..
                                }
                            )
                        }) {
                            // We found an AND whose ith argument is an OR. We'll distribute the other
                            // args of the AND over this OR.
                            let mut or = and_args.swap_remove(i);
                            let to_distribute = MirScalarExpr::CallVariadic {
                                func: VariadicFunc::And,
                                exprs: (*and_args).clone(),
                            };
                            if let MirScalarExpr::CallVariadic {
                                func: VariadicFunc::Or,
                                exprs: ref mut or_args,
                            } = or
                            {
                                or_args.iter_mut().for_each(|a| {
                                    *a = a.clone().and(to_distribute.clone());
                                });
                            } else {
                                unreachable!(); // because the `find` found a match already
                            }
                            *e = or; // The modified OR will be the new top-level expr.
                        }
                    }
                })?;
                p.visit_mut_post(&mut |e: &mut MirScalarExpr| {
                    e.flatten_associative();
                })?;
            }
            Ok(())
        })
    }

    /// For each of the arguments of the top-level OR (if no top-level OR, then interpret the whole
    /// expression as a 1-arg OR, see [LiteralConstraints::get_or_args]), check if it's an AND, and
    /// if not, then wrap it in a 1-arg AND.
    fn unary_and(mfp: &mut MapFilterProject) {
        let mut or_args = Self::get_or_args(mfp);
        let mut changed = false;
        or_args.iter_mut().for_each(|or_arg| {
            if !matches!(
                or_arg,
                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::And,
                    ..
                }
            ) {
                *or_arg = MirScalarExpr::CallVariadic {
                    func: VariadicFunc::And,
                    exprs: vec![or_arg.clone()],
                };
                changed = true;
            }
        });
        if changed {
            let new_predicates = vec![MirScalarExpr::CallVariadic {
                func: VariadicFunc::Or,
                exprs: or_args,
            }];
            let (map, _predicates, project) = mfp.as_map_filter_project();
            *mfp = MapFilterProject::new(mfp.input_arity)
                .map(map)
                .filter(new_predicates)
                .project(project);
        }
    }

    fn predicates_size(mfp: &MapFilterProject) -> usize {
        let mut sum = 0;
        for (_, p) in mfp.predicates.iter() {
            sum = sum + p.size();
        }
        sum
    }
}

/// Whether an index is usable to speed up a Filter with literal constraints.
#[derive(Clone)]
enum IndexMatch {
    /// The index is usable, that is, each OR argument constrains each key field.
    ///
    /// The `Vec<Row>` has the constraining literal values, where each Row corresponds to one OR
    /// argument, and each value in the Row corresponds to one key field.
    ///
    /// The `bool` indicates whether we needed to inverse cast equalities to match them up with key
    /// fields. The inverse cast enables index usage when an implicit cast is wrapping a key field.
    /// E.g., if `a` is smallint, and the user writes `a = 5`, then HIR inserts an implicit cast:
    /// `smallint_to_integer(a) = 5`, which we invert to `a = 5`, where the `5` is a smallint
    /// literal. For more details on the inversion, see `invert_casts_on_expr_eq_literal_inner`.
    Usable(Vec<Row>, bool),
    /// The index is unusable. However, there is a subset of key fields such that if the index would
    /// be only on this subset, then it would be usable.
    /// Note: this Vec is never empty. (If it were empty, then we'd get `UnusableNoSubset` instead.)
    UnusableTooWide(Vec<MirScalarExpr>),
    /// The index is unusable. Moreover, none of its key fields could be used as an alternate index
    /// to speed up this filter.
    UnusableNoSubset,
}