regex_automata/dfa/search.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
use crate::{
dfa::{
accel,
automaton::{Automaton, OverlappingState},
},
util::{
prefilter::Prefilter,
primitives::StateID,
search::{Anchored, HalfMatch, Input, Span},
},
MatchError,
};
#[inline(never)]
pub fn find_fwd<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, MatchError> {
if input.is_done() {
return Ok(None);
}
let pre = if input.get_anchored().is_anchored() {
None
} else {
dfa.get_prefilter()
};
// Searching with a pattern ID is always anchored, so we should never use
// a prefilter.
if pre.is_some() {
if input.get_earliest() {
find_fwd_imp(dfa, input, pre, true)
} else {
find_fwd_imp(dfa, input, pre, false)
}
} else {
if input.get_earliest() {
find_fwd_imp(dfa, input, None, true)
} else {
find_fwd_imp(dfa, input, None, false)
}
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_fwd_imp<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
pre: Option<&'_ Prefilter>,
earliest: bool,
) -> Result<Option<HalfMatch>, MatchError> {
// See 'prefilter_restart' docs for explanation.
let universal_start = dfa.universal_start_state(Anchored::No).is_some();
let mut mat = None;
let mut sid = init_fwd(dfa, input)?;
let mut at = input.start();
// This could just be a closure, but then I think it would be unsound
// because it would need to be safe to invoke. This way, the lack of safety
// is clearer in the code below.
macro_rules! next_unchecked {
($sid:expr, $at:expr) => {{
let byte = *input.haystack().get_unchecked($at);
dfa.next_state_unchecked($sid, byte)
}};
}
if let Some(ref pre) = pre {
let span = Span::from(at..input.end());
// If a prefilter doesn't report false positives, then we don't need to
// touch the DFA at all. However, since all matches include the pattern
// ID, and the prefilter infrastructure doesn't report pattern IDs, we
// limit this optimization to cases where there is exactly one pattern.
// In that case, any match must be the 0th pattern.
match pre.find(input.haystack(), span) {
None => return Ok(mat),
Some(ref span) => {
at = span.start;
if !universal_start {
sid = prefilter_restart(dfa, &input, at)?;
}
}
}
}
while at < input.end() {
// SAFETY: There are two safety invariants we need to uphold here in
// the loops below: that 'sid' and 'prev_sid' are valid state IDs
// for this DFA, and that 'at' is a valid index into 'haystack'.
// For the former, we rely on the invariant that next_state* and
// start_state_forward always returns a valid state ID (given a valid
// state ID in the former case). For the latter safety invariant, we
// always guard unchecked access with a check that 'at' is less than
// 'end', where 'end <= haystack.len()'. In the unrolled loop below, we
// ensure that 'at' is always in bounds.
//
// PERF: See a similar comment in src/hybrid/search.rs that justifies
// this extra work to make the search loop fast. The same reasoning and
// benchmarks apply here.
let mut prev_sid;
while at < input.end() {
prev_sid = unsafe { next_unchecked!(sid, at) };
if dfa.is_special_state(prev_sid) || at + 3 >= input.end() {
core::mem::swap(&mut prev_sid, &mut sid);
break;
}
at += 1;
sid = unsafe { next_unchecked!(prev_sid, at) };
if dfa.is_special_state(sid) {
break;
}
at += 1;
prev_sid = unsafe { next_unchecked!(sid, at) };
if dfa.is_special_state(prev_sid) {
core::mem::swap(&mut prev_sid, &mut sid);
break;
}
at += 1;
sid = unsafe { next_unchecked!(prev_sid, at) };
if dfa.is_special_state(sid) {
break;
}
at += 1;
}
if dfa.is_special_state(sid) {
if dfa.is_start_state(sid) {
if let Some(ref pre) = pre {
let span = Span::from(at..input.end());
match pre.find(input.haystack(), span) {
None => return Ok(mat),
Some(ref span) => {
// We want to skip any update to 'at' below
// at the end of this iteration and just
// jump immediately back to the next state
// transition at the leading position of the
// candidate match.
//
// ... but only if we actually made progress
// with our prefilter, otherwise if the start
// state has a self-loop, we can get stuck.
if span.start > at {
at = span.start;
if !universal_start {
sid = prefilter_restart(dfa, &input, at)?;
}
continue;
}
}
}
} else if dfa.is_accel_state(sid) {
let needles = dfa.accelerator(sid);
at = accel::find_fwd(needles, input.haystack(), at + 1)
.unwrap_or(input.end());
continue;
}
} else if dfa.is_match_state(sid) {
let pattern = dfa.match_pattern(sid, 0);
mat = Some(HalfMatch::new(pattern, at));
if earliest {
return Ok(mat);
}
if dfa.is_accel_state(sid) {
let needles = dfa.accelerator(sid);
at = accel::find_fwd(needles, input.haystack(), at + 1)
.unwrap_or(input.end());
continue;
}
} else if dfa.is_accel_state(sid) {
let needs = dfa.accelerator(sid);
at = accel::find_fwd(needs, input.haystack(), at + 1)
.unwrap_or(input.end());
continue;
} else if dfa.is_dead_state(sid) {
return Ok(mat);
} else {
// It's important that this is a debug_assert, since this can
// actually be tripped even if DFA::from_bytes succeeds and
// returns a supposedly valid DFA.
return Err(MatchError::quit(input.haystack()[at], at));
}
}
at += 1;
}
eoi_fwd(dfa, input, &mut sid, &mut mat)?;
Ok(mat)
}
#[inline(never)]
pub fn find_rev<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, MatchError> {
if input.is_done() {
return Ok(None);
}
if input.get_earliest() {
find_rev_imp(dfa, input, true)
} else {
find_rev_imp(dfa, input, false)
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_rev_imp<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
earliest: bool,
) -> Result<Option<HalfMatch>, MatchError> {
let mut mat = None;
let mut sid = init_rev(dfa, input)?;
// In reverse search, the loop below can't handle the case of searching an
// empty slice. Ideally we could write something congruent to the forward
// search, i.e., 'while at >= start', but 'start' might be 0. Since we use
// an unsigned offset, 'at >= 0' is trivially always true. We could avoid
// this extra case handling by using a signed offset, but Rust makes it
// annoying to do. So... We just handle the empty case separately.
if input.start() == input.end() {
eoi_rev(dfa, input, &mut sid, &mut mat)?;
return Ok(mat);
}
let mut at = input.end() - 1;
macro_rules! next_unchecked {
($sid:expr, $at:expr) => {{
let byte = *input.haystack().get_unchecked($at);
dfa.next_state_unchecked($sid, byte)
}};
}
loop {
// SAFETY: See comments in 'find_fwd' for a safety argument.
let mut prev_sid;
while at >= input.start() {
prev_sid = unsafe { next_unchecked!(sid, at) };
if dfa.is_special_state(prev_sid)
|| at <= input.start().saturating_add(3)
{
core::mem::swap(&mut prev_sid, &mut sid);
break;
}
at -= 1;
sid = unsafe { next_unchecked!(prev_sid, at) };
if dfa.is_special_state(sid) {
break;
}
at -= 1;
prev_sid = unsafe { next_unchecked!(sid, at) };
if dfa.is_special_state(prev_sid) {
core::mem::swap(&mut prev_sid, &mut sid);
break;
}
at -= 1;
sid = unsafe { next_unchecked!(prev_sid, at) };
if dfa.is_special_state(sid) {
break;
}
at -= 1;
}
if dfa.is_special_state(sid) {
if dfa.is_start_state(sid) {
if dfa.is_accel_state(sid) {
let needles = dfa.accelerator(sid);
at = accel::find_rev(needles, input.haystack(), at)
.map(|i| i + 1)
.unwrap_or(input.start());
}
} else if dfa.is_match_state(sid) {
let pattern = dfa.match_pattern(sid, 0);
// Since reverse searches report the beginning of a match
// and the beginning is inclusive (not exclusive like the
// end of a match), we add 1 to make it inclusive.
mat = Some(HalfMatch::new(pattern, at + 1));
if earliest {
return Ok(mat);
}
if dfa.is_accel_state(sid) {
let needles = dfa.accelerator(sid);
at = accel::find_rev(needles, input.haystack(), at)
.map(|i| i + 1)
.unwrap_or(input.start());
}
} else if dfa.is_accel_state(sid) {
let needles = dfa.accelerator(sid);
// If the accelerator returns nothing, why don't we quit the
// search? Well, if the accelerator doesn't find anything, that
// doesn't mean we don't have a match. It just means that we
// can't leave the current state given one of the 255 possible
// byte values. However, there might be an EOI transition. So
// we set 'at' to the end of the haystack, which will cause
// this loop to stop and fall down into the EOI transition.
at = accel::find_rev(needles, input.haystack(), at)
.map(|i| i + 1)
.unwrap_or(input.start());
} else if dfa.is_dead_state(sid) {
return Ok(mat);
} else {
return Err(MatchError::quit(input.haystack()[at], at));
}
}
if at == input.start() {
break;
}
at -= 1;
}
eoi_rev(dfa, input, &mut sid, &mut mat)?;
Ok(mat)
}
#[inline(never)]
pub fn find_overlapping_fwd<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
state.mat = None;
if input.is_done() {
return Ok(());
}
let pre = if input.get_anchored().is_anchored() {
None
} else {
dfa.get_prefilter()
};
if pre.is_some() {
find_overlapping_fwd_imp(dfa, input, pre, state)
} else {
find_overlapping_fwd_imp(dfa, input, None, state)
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_overlapping_fwd_imp<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
pre: Option<&'_ Prefilter>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
// See 'prefilter_restart' docs for explanation.
let universal_start = dfa.universal_start_state(Anchored::No).is_some();
let mut sid = match state.id {
None => {
state.at = input.start();
init_fwd(dfa, input)?
}
Some(sid) => {
if let Some(match_index) = state.next_match_index {
let match_len = dfa.match_len(sid);
if match_index < match_len {
state.next_match_index = Some(match_index + 1);
let pattern = dfa.match_pattern(sid, match_index);
state.mat = Some(HalfMatch::new(pattern, state.at));
return Ok(());
}
}
// Once we've reported all matches at a given position, we need to
// advance the search to the next position.
state.at += 1;
if state.at > input.end() {
return Ok(());
}
sid
}
};
// NOTE: We don't optimize the crap out of this routine primarily because
// it seems like most find_overlapping searches will have higher match
// counts, and thus, throughput is perhaps not as important. But if you
// have a use case for something faster, feel free to file an issue.
while state.at < input.end() {
sid = dfa.next_state(sid, input.haystack()[state.at]);
if dfa.is_special_state(sid) {
state.id = Some(sid);
if dfa.is_start_state(sid) {
if let Some(ref pre) = pre {
let span = Span::from(state.at..input.end());
match pre.find(input.haystack(), span) {
None => return Ok(()),
Some(ref span) => {
if span.start > state.at {
state.at = span.start;
if !universal_start {
sid = prefilter_restart(
dfa, &input, state.at,
)?;
}
continue;
}
}
}
} else if dfa.is_accel_state(sid) {
let needles = dfa.accelerator(sid);
state.at = accel::find_fwd(
needles,
input.haystack(),
state.at + 1,
)
.unwrap_or(input.end());
continue;
}
} else if dfa.is_match_state(sid) {
state.next_match_index = Some(1);
let pattern = dfa.match_pattern(sid, 0);
state.mat = Some(HalfMatch::new(pattern, state.at));
return Ok(());
} else if dfa.is_accel_state(sid) {
let needs = dfa.accelerator(sid);
// If the accelerator returns nothing, why don't we quit the
// search? Well, if the accelerator doesn't find anything, that
// doesn't mean we don't have a match. It just means that we
// can't leave the current state given one of the 255 possible
// byte values. However, there might be an EOI transition. So
// we set 'at' to the end of the haystack, which will cause
// this loop to stop and fall down into the EOI transition.
state.at =
accel::find_fwd(needs, input.haystack(), state.at + 1)
.unwrap_or(input.end());
continue;
} else if dfa.is_dead_state(sid) {
return Ok(());
} else {
return Err(MatchError::quit(
input.haystack()[state.at],
state.at,
));
}
}
state.at += 1;
}
let result = eoi_fwd(dfa, input, &mut sid, &mut state.mat);
state.id = Some(sid);
if state.mat.is_some() {
// '1' is always correct here since if we get to this point, this
// always corresponds to the first (index '0') match discovered at
// this position. So the next match to report at this position (if
// it exists) is at index '1'.
state.next_match_index = Some(1);
}
result
}
#[inline(never)]
pub(crate) fn find_overlapping_rev<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
state.mat = None;
if input.is_done() {
return Ok(());
}
let mut sid = match state.id {
None => {
let sid = init_rev(dfa, input)?;
state.id = Some(sid);
if input.start() == input.end() {
state.rev_eoi = true;
} else {
state.at = input.end() - 1;
}
sid
}
Some(sid) => {
if let Some(match_index) = state.next_match_index {
let match_len = dfa.match_len(sid);
if match_index < match_len {
state.next_match_index = Some(match_index + 1);
let pattern = dfa.match_pattern(sid, match_index);
state.mat = Some(HalfMatch::new(pattern, state.at));
return Ok(());
}
}
// Once we've reported all matches at a given position, we need
// to advance the search to the next position. However, if we've
// already followed the EOI transition, then we know we're done
// with the search and there cannot be any more matches to report.
if state.rev_eoi {
return Ok(());
} else if state.at == input.start() {
// At this point, we should follow the EOI transition. This
// will cause us the skip the main loop below and fall through
// to the final 'eoi_rev' transition.
state.rev_eoi = true;
} else {
// We haven't hit the end of the search yet, so move on.
state.at -= 1;
}
sid
}
};
while !state.rev_eoi {
sid = dfa.next_state(sid, input.haystack()[state.at]);
if dfa.is_special_state(sid) {
state.id = Some(sid);
if dfa.is_start_state(sid) {
if dfa.is_accel_state(sid) {
let needles = dfa.accelerator(sid);
state.at =
accel::find_rev(needles, input.haystack(), state.at)
.map(|i| i + 1)
.unwrap_or(input.start());
}
} else if dfa.is_match_state(sid) {
state.next_match_index = Some(1);
let pattern = dfa.match_pattern(sid, 0);
state.mat = Some(HalfMatch::new(pattern, state.at + 1));
return Ok(());
} else if dfa.is_accel_state(sid) {
let needles = dfa.accelerator(sid);
// If the accelerator returns nothing, why don't we quit the
// search? Well, if the accelerator doesn't find anything, that
// doesn't mean we don't have a match. It just means that we
// can't leave the current state given one of the 255 possible
// byte values. However, there might be an EOI transition. So
// we set 'at' to the end of the haystack, which will cause
// this loop to stop and fall down into the EOI transition.
state.at =
accel::find_rev(needles, input.haystack(), state.at)
.map(|i| i + 1)
.unwrap_or(input.start());
} else if dfa.is_dead_state(sid) {
return Ok(());
} else {
return Err(MatchError::quit(
input.haystack()[state.at],
state.at,
));
}
}
if state.at == input.start() {
break;
}
state.at -= 1;
}
let result = eoi_rev(dfa, input, &mut sid, &mut state.mat);
state.rev_eoi = true;
state.id = Some(sid);
if state.mat.is_some() {
// '1' is always correct here since if we get to this point, this
// always corresponds to the first (index '0') match discovered at
// this position. So the next match to report at this position (if
// it exists) is at index '1'.
state.next_match_index = Some(1);
}
result
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn init_fwd<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
) -> Result<StateID, MatchError> {
let sid = dfa.start_state_forward(input)?;
// Start states can never be match states, since all matches are delayed
// by 1 byte.
debug_assert!(!dfa.is_match_state(sid));
Ok(sid)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn init_rev<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
) -> Result<StateID, MatchError> {
let sid = dfa.start_state_reverse(input)?;
// Start states can never be match states, since all matches are delayed
// by 1 byte.
debug_assert!(!dfa.is_match_state(sid));
Ok(sid)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn eoi_fwd<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
sid: &mut StateID,
mat: &mut Option<HalfMatch>,
) -> Result<(), MatchError> {
let sp = input.get_span();
match input.haystack().get(sp.end) {
Some(&b) => {
*sid = dfa.next_state(*sid, b);
if dfa.is_match_state(*sid) {
let pattern = dfa.match_pattern(*sid, 0);
*mat = Some(HalfMatch::new(pattern, sp.end));
} else if dfa.is_quit_state(*sid) {
return Err(MatchError::quit(b, sp.end));
}
}
None => {
*sid = dfa.next_eoi_state(*sid);
if dfa.is_match_state(*sid) {
let pattern = dfa.match_pattern(*sid, 0);
*mat = Some(HalfMatch::new(pattern, input.haystack().len()));
}
}
}
Ok(())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn eoi_rev<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
sid: &mut StateID,
mat: &mut Option<HalfMatch>,
) -> Result<(), MatchError> {
let sp = input.get_span();
if sp.start > 0 {
let byte = input.haystack()[sp.start - 1];
*sid = dfa.next_state(*sid, byte);
if dfa.is_match_state(*sid) {
let pattern = dfa.match_pattern(*sid, 0);
*mat = Some(HalfMatch::new(pattern, sp.start));
} else if dfa.is_quit_state(*sid) {
return Err(MatchError::quit(byte, sp.start - 1));
}
} else {
*sid = dfa.next_eoi_state(*sid);
if dfa.is_match_state(*sid) {
let pattern = dfa.match_pattern(*sid, 0);
*mat = Some(HalfMatch::new(pattern, 0));
}
}
Ok(())
}
/// Re-compute the starting state that a DFA should be in after finding a
/// prefilter candidate match at the position `at`.
///
/// The function with the same name has a bit more docs in hybrid/search.rs.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn prefilter_restart<A: Automaton + ?Sized>(
dfa: &A,
input: &Input<'_>,
at: usize,
) -> Result<StateID, MatchError> {
let mut input = input.clone();
input.set_start(at);
init_fwd(dfa, &input)
}