mz_compute/logging/
timely.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Logging dataflows for events generated by timely dataflow.

use std::cell::RefCell;
use std::collections::BTreeMap;
use std::rc::Rc;
use std::time::Duration;

use differential_dataflow::consolidation::ConsolidatingContainerBuilder;
use differential_dataflow::AsCollection;
use mz_compute_client::logging::LoggingConfig;
use mz_ore::cast::CastFrom;
use mz_repr::{Datum, Diff, Timestamp};
use mz_timely_util::operator::consolidate_pact;
use mz_timely_util::replay::MzReplay;
use serde::{Deserialize, Serialize};
use timely::communication::Allocate;
use timely::container::columnation::{Columnation, CopyRegion};
use timely::container::CapacityContainerBuilder;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::channels::pushers::buffer::Session;
use timely::dataflow::channels::pushers::{Counter, Tee};
use timely::dataflow::operators::generic::builder_rc::OperatorBuilder;
use timely::dataflow::operators::Filter;
use timely::logging::{
    ChannelsEvent, MessagesEvent, OperatesEvent, ParkEvent, ScheduleEvent, ShutdownEvent,
    TimelyEvent,
};
use tracing::error;

use crate::extensions::arrange::MzArrange;
use crate::logging::compute::ComputeEvent;
use crate::logging::{EventQueue, LogVariant, SharedLoggingState, TimelyLog};
use crate::logging::{LogCollection, PermutedRowPacker};
use crate::row_spine::{RowRowBatcher, RowRowBuilder};
use crate::typedefs::{KeyValBatcher, RowRowSpine};

/// Constructs the logging dataflow for timely logs.
///
/// Params
/// * `worker`: The Timely worker hosting the log analysis dataflow.
/// * `config`: Logging configuration
/// * `event_queue`: The source to read log events from.
pub(super) fn construct<A: Allocate>(
    worker: &mut timely::worker::Worker<A>,
    config: &LoggingConfig,
    event_queue: EventQueue<Vec<(Duration, TimelyEvent)>>,
    shared_state: Rc<RefCell<SharedLoggingState>>,
) -> BTreeMap<LogVariant, LogCollection> {
    let logging_interval_ms = std::cmp::max(1, config.interval.as_millis());
    let worker_id = worker.index();
    let peers = worker.peers();
    let dataflow_index = worker.next_dataflow_index();

    worker.dataflow_named("Dataflow: timely logging", move |scope| {
        let (mut logs, token) = Some(event_queue.link)
            .mz_replay::<_, CapacityContainerBuilder<_>, _>(
                scope,
                "timely logs",
                config.interval,
                event_queue.activator,
                |mut session, data| session.give_iterator(data.iter()),
            );

        // If logging is disabled, we still need to install the indexes, but we can leave them
        // empty. We do so by immediately filtering all logs events.
        if !config.enable_logging {
            logs = logs.filter(|_| false);
        }

        // Build a demux operator that splits the replayed event stream up into the separate
        // logging streams.
        let mut demux = OperatorBuilder::new("Timely Logging Demux".to_string(), scope.clone());
        let mut input = demux.new_input(&logs, Pipeline);
        let (mut operates_out, operates) = demux.new_output();
        let (mut channels_out, channels) = demux.new_output();
        let (mut addresses_out, addresses) = demux.new_output();
        let (mut parks_out, parks) = demux.new_output();
        let (mut messages_sent_out, messages_sent) = demux.new_output();
        let (mut messages_received_out, messages_received) = demux.new_output();
        let (mut schedules_duration_out, schedules_duration) = demux.new_output();
        let (mut schedules_histogram_out, schedules_histogram) = demux.new_output();
        let (mut batches_sent_out, batches_sent) = demux.new_output();
        let (mut batches_received_out, batches_received) = demux.new_output();

        let mut demux_state = DemuxState::default();
        demux.build(move |_capability| {
            move |_frontiers| {
                let mut operates = operates_out.activate();
                let mut channels = channels_out.activate();
                let mut addresses = addresses_out.activate();
                let mut parks = parks_out.activate();
                let mut messages_sent = messages_sent_out.activate();
                let mut messages_received = messages_received_out.activate();
                let mut batches_sent = batches_sent_out.activate();
                let mut batches_received = batches_received_out.activate();
                let mut schedules_duration = schedules_duration_out.activate();
                let mut schedules_histogram = schedules_histogram_out.activate();

                input.for_each(|cap, data| {
                    let mut output_buffers = DemuxOutput {
                        operates: operates.session_with_builder(&cap),
                        channels: channels.session_with_builder(&cap),
                        addresses: addresses.session_with_builder(&cap),
                        parks: parks.session_with_builder(&cap),
                        messages_sent: messages_sent.session_with_builder(&cap),
                        messages_received: messages_received.session_with_builder(&cap),
                        schedules_duration: schedules_duration.session_with_builder(&cap),
                        schedules_histogram: schedules_histogram.session_with_builder(&cap),
                        batches_sent: batches_sent.session_with_builder(&cap),
                        batches_received: batches_received.session_with_builder(&cap),
                    };

                    for (time, event) in data.drain(..) {
                        if let TimelyEvent::Messages(msg) = &event {
                            match msg.is_send {
                                true => assert_eq!(msg.source, worker_id),
                                false => assert_eq!(msg.target, worker_id),
                            }
                        }

                        DemuxHandler {
                            state: &mut demux_state,
                            shared_state: &mut shared_state.borrow_mut(),
                            output: &mut output_buffers,
                            logging_interval_ms,
                            peers,
                            time,
                        }
                        .handle(event);
                    }
                });
            }
        });

        // Encode the contents of each logging stream into its expected `Row` format.
        // We pre-arrange the logging streams to force a consolidation and reduce the amount of
        // updates that reach `Row` encoding.

        let packer = PermutedRowPacker::new(TimelyLog::Operates);
        let operates = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &operates,
            Pipeline,
            "Consolidate Timely operates",
        )
        .as_collection()
        .map(move |(id, name)| {
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(id)),
                Datum::UInt64(u64::cast_from(worker_id)),
                Datum::String(&name),
            ])
        });

        let packer = PermutedRowPacker::new(TimelyLog::Channels);
        let channels = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &channels,
            Pipeline,
            "Consolidate Timely operates",
        )
        .as_collection()
        .map(move |(datum, ())| {
            let (source_node, source_port) = datum.source;
            let (target_node, target_port) = datum.target;
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(datum.id)),
                Datum::UInt64(u64::cast_from(worker_id)),
                Datum::UInt64(u64::cast_from(source_node)),
                Datum::UInt64(u64::cast_from(source_port)),
                Datum::UInt64(u64::cast_from(target_node)),
                Datum::UInt64(u64::cast_from(target_port)),
            ])
        });

        let packer = PermutedRowPacker::new(TimelyLog::Addresses);
        let addresses = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &addresses,
            Pipeline,
            "Consolidate Timely addresses",
        )
        .as_collection()
        .map({
            move |(id, address)| {
                packer.pack_by_index(|packer, index| match index {
                    0 => packer.push(Datum::UInt64(u64::cast_from(id))),
                    1 => packer.push(Datum::UInt64(u64::cast_from(worker_id))),
                    2 => {
                        packer.push_list(address.iter().map(|i| Datum::UInt64(u64::cast_from(*i))))
                    }
                    _ => unreachable!("Addresses relation has three columns"),
                })
            }
        });

        let packer = PermutedRowPacker::new(TimelyLog::Parks);
        let parks = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &parks,
            Pipeline,
            "Consolidate Timely parks",
        )
        .as_collection()
        .map(move |(datum, ())| {
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(worker_id)),
                Datum::UInt64(u64::try_from(datum.duration_pow).expect("duration too big")),
                datum
                    .requested_pow
                    .map(|v| Datum::UInt64(v.try_into().expect("requested too big")))
                    .unwrap_or(Datum::Null),
            ])
        });

        let packer = PermutedRowPacker::new(TimelyLog::BatchesSent);
        let batches_sent = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &batches_sent,
            Pipeline,
            "Consolidate Timely batches sent",
        )
        .as_collection()
        .map(move |(datum, ())| {
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(datum.channel)),
                Datum::UInt64(u64::cast_from(worker_id)),
                Datum::UInt64(u64::cast_from(datum.worker)),
            ])
        });

        let packer = PermutedRowPacker::new(TimelyLog::BatchesReceived);
        let batches_received = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &batches_received,
            Pipeline,
            "Consolidate Timely batches received",
        )
        .as_collection()
        .map(move |(datum, ())| {
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(datum.channel)),
                Datum::UInt64(u64::cast_from(datum.worker)),
                Datum::UInt64(u64::cast_from(worker_id)),
            ])
        });

        let packer = PermutedRowPacker::new(TimelyLog::MessagesSent);
        let messages_sent = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &messages_sent,
            Pipeline,
            "Consolidate Timely messages sent",
        )
        .as_collection()
        .map(move |(datum, ())| {
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(datum.channel)),
                Datum::UInt64(u64::cast_from(worker_id)),
                Datum::UInt64(u64::cast_from(datum.worker)),
            ])
        });

        let packer = PermutedRowPacker::new(TimelyLog::MessagesReceived);
        let messages_received = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &messages_received,
            Pipeline,
            "Consolidate Timely messages received",
        )
        .as_collection()
        .map(move |(datum, ())| {
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(datum.channel)),
                Datum::UInt64(u64::cast_from(datum.worker)),
                Datum::UInt64(u64::cast_from(worker_id)),
            ])
        });

        let packer = PermutedRowPacker::new(TimelyLog::Elapsed);
        let elapsed = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &schedules_duration,
            Pipeline,
            "Consolidate Timely duration",
        )
        .as_collection()
        .map(move |(operator, _)| {
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(operator)),
                Datum::UInt64(u64::cast_from(worker_id)),
            ])
        });

        let packer = PermutedRowPacker::new(TimelyLog::Histogram);
        let histogram = consolidate_pact::<KeyValBatcher<_, _, _, _>, _, _, _, _>(
            &schedules_histogram,
            Pipeline,
            "Consolidate Timely histogram",
        )
        .as_collection()
        .map(move |(datum, _)| {
            packer.pack_slice(&[
                Datum::UInt64(u64::cast_from(datum.operator)),
                Datum::UInt64(u64::cast_from(worker_id)),
                Datum::UInt64(u64::try_from(datum.duration_pow).expect("duration too big")),
            ])
        });

        use TimelyLog::*;
        let logs = [
            (Operates, operates),
            (Channels, channels),
            (Elapsed, elapsed),
            (Histogram, histogram),
            (Addresses, addresses),
            (Parks, parks),
            (MessagesSent, messages_sent),
            (MessagesReceived, messages_received),
            (BatchesSent, batches_sent),
            (BatchesReceived, batches_received),
        ];

        // Build the output arrangements.
        let mut result = BTreeMap::new();
        for (variant, collection) in logs {
            let variant = LogVariant::Timely(variant);
            if config.index_logs.contains_key(&variant) {
                let trace = collection
                    .mz_arrange::<RowRowBatcher<_, _>, RowRowBuilder<_, _>, RowRowSpine<_, _>>(
                        &format!("Arrange {variant:?}"),
                    )
                    .trace;
                let collection = LogCollection {
                    trace,
                    token: Rc::clone(&token),
                    dataflow_index,
                };
                result.insert(variant, collection);
            }
        }

        result
    })
}

/// State maintained by the demux operator.
#[derive(Default)]
struct DemuxState {
    /// Information about live operators, indexed by operator ID.
    operators: BTreeMap<usize, OperatesEvent>,
    /// Maps dataflow IDs to channels in the dataflow.
    dataflow_channels: BTreeMap<usize, Vec<ChannelsEvent>>,
    /// Information about the last requested park.
    last_park: Option<Park>,
    /// Maps channel IDs to boxed slices counting the messages sent to each target worker.
    messages_sent: BTreeMap<usize, Box<[MessageCount]>>,
    /// Maps channel IDs to boxed slices counting the messages received from each source worker.
    messages_received: BTreeMap<usize, Box<[MessageCount]>>,
    /// Stores for scheduled operators the time when they were scheduled.
    schedule_starts: BTreeMap<usize, Duration>,
    /// Maps operator IDs to a vector recording the (count, elapsed_ns) values in each histogram
    /// bucket.
    schedules_data: BTreeMap<usize, Vec<(isize, i64)>>,
}

struct Park {
    /// Time when the park occurred.
    time: Duration,
    /// Requested park time.
    requested: Option<Duration>,
}

/// Organize message counts into number of batches and records.
#[derive(Default, Copy, Clone, Debug)]
struct MessageCount {
    /// The number of batches sent across a channel.
    batches: i64,
    /// The number of records sent across a channel.
    records: i64,
}

type Pusher<D> =
    Counter<Timestamp, Vec<(D, Timestamp, Diff)>, Tee<Timestamp, Vec<(D, Timestamp, Diff)>>>;
type OutputSession<'a, D> =
    Session<'a, Timestamp, ConsolidatingContainerBuilder<Vec<(D, Timestamp, Diff)>>, Pusher<D>>;

/// Bundled output buffers used by the demux operator.
//
// We use tuples rather than dedicated `*Datum` structs for `operates` and `addresses` to avoid
// having to manually implement `Columnation`. If `Columnation` could be `#[derive]`ed, that
// wouldn't be an issue.
struct DemuxOutput<'a> {
    operates: OutputSession<'a, (usize, String)>,
    channels: OutputSession<'a, (ChannelDatum, ())>,
    addresses: OutputSession<'a, (usize, Vec<usize>)>,
    parks: OutputSession<'a, (ParkDatum, ())>,
    batches_sent: OutputSession<'a, (MessageDatum, ())>,
    batches_received: OutputSession<'a, (MessageDatum, ())>,
    messages_sent: OutputSession<'a, (MessageDatum, ())>,
    messages_received: OutputSession<'a, (MessageDatum, ())>,
    schedules_duration: OutputSession<'a, (usize, ())>,
    schedules_histogram: OutputSession<'a, (ScheduleHistogramDatum, ())>,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
struct ChannelDatum {
    id: usize,
    source: (usize, usize),
    target: (usize, usize),
}

impl Columnation for ChannelDatum {
    type InnerRegion = CopyRegion<Self>;
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
struct ParkDatum {
    duration_pow: u128,
    requested_pow: Option<u128>,
}

impl Columnation for ParkDatum {
    type InnerRegion = CopyRegion<Self>;
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
struct MessageDatum {
    channel: usize,
    worker: usize,
}

impl Columnation for MessageDatum {
    type InnerRegion = CopyRegion<Self>;
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
struct ScheduleHistogramDatum {
    operator: usize,
    duration_pow: u128,
}

impl Columnation for ScheduleHistogramDatum {
    type InnerRegion = CopyRegion<Self>;
}

/// Event handler of the demux operator.
struct DemuxHandler<'a, 'b> {
    /// State kept by the demux operator.
    state: &'a mut DemuxState,
    /// State shared across log receivers.
    shared_state: &'a mut SharedLoggingState,
    /// Demux output buffers.
    output: &'a mut DemuxOutput<'b>,
    /// The logging interval specifying the time granularity for the updates.
    logging_interval_ms: u128,
    /// The number of timely workers.
    peers: usize,
    /// The current event time.
    time: Duration,
}

impl DemuxHandler<'_, '_> {
    /// Return the timestamp associated with the current event, based on the event time and the
    /// logging interval.
    fn ts(&self) -> Timestamp {
        let time_ms = self.time.as_millis();
        let interval = self.logging_interval_ms;
        let rounded = (time_ms / interval + 1) * interval;
        rounded.try_into().expect("must fit")
    }

    /// Handle the given timely event.
    fn handle(&mut self, event: TimelyEvent) {
        use TimelyEvent::*;

        match event {
            Operates(e) => self.handle_operates(e),
            Channels(e) => self.handle_channels(e),
            Shutdown(e) => self.handle_shutdown(e),
            Park(e) => self.handle_park(e),
            Messages(e) => self.handle_messages(e),
            Schedule(e) => self.handle_schedule(e),
            _ => (),
        }
    }

    fn handle_operates(&mut self, event: OperatesEvent) {
        let ts = self.ts();
        let datum = (event.id, event.name.clone());
        self.output.operates.give((datum, ts, 1));

        let datum = (event.id, event.addr.clone());
        self.output.addresses.give((datum, ts, 1));

        self.state.operators.insert(event.id, event);
    }

    fn handle_channels(&mut self, event: ChannelsEvent) {
        let ts = self.ts();
        let datum = ChannelDatum {
            id: event.id,
            source: event.source,
            target: event.target,
        };
        self.output.channels.give(((datum, ()), ts, 1));

        let datum = (event.id, event.scope_addr.clone());
        self.output.addresses.give((datum, ts, 1));

        let dataflow_index = event.scope_addr[0];
        self.state
            .dataflow_channels
            .entry(dataflow_index)
            .or_default()
            .push(event);
    }

    fn handle_shutdown(&mut self, event: ShutdownEvent) {
        // Dropped operators should result in a negative record for
        // the `operates` collection, cancelling out the initial
        // operator announcement.
        // Remove logging for this operator.

        let Some(operator) = self.state.operators.remove(&event.id) else {
            error!(operator_id = ?event.id, "missing operator entry at time of shutdown");
            return;
        };

        // Retract operator information.
        let ts = self.ts();
        let datum = (operator.id, operator.name);
        self.output.operates.give((datum, ts, -1));

        // Retract schedules information for the operator
        if let Some(schedules) = self.state.schedules_data.remove(&event.id) {
            for (bucket, (count, elapsed_ns)) in schedules
                .into_iter()
                .enumerate()
                .filter(|(_, (count, _))| *count != 0)
            {
                self.output
                    .schedules_duration
                    .give(((event.id, ()), ts, -elapsed_ns));

                let datum = ScheduleHistogramDatum {
                    operator: event.id,
                    duration_pow: 1 << bucket,
                };
                let diff = Diff::cast_from(-count);
                self.output
                    .schedules_histogram
                    .give(((datum, ()), ts, diff));
            }
        }

        if operator.addr.len() == 1 {
            let dataflow_index = operator.addr[0];
            self.handle_dataflow_shutdown(dataflow_index);
        }

        let datum = (operator.id, operator.addr);
        self.output.addresses.give((datum, ts, -1));
    }

    fn handle_dataflow_shutdown(&mut self, dataflow_index: usize) {
        // Notify compute logging about the shutdown.
        if let Some(logger) = &self.shared_state.compute_logger {
            logger.log(ComputeEvent::DataflowShutdown { dataflow_index });
        }

        // When a dataflow shuts down, we need to retract all its channels.
        let Some(channels) = self.state.dataflow_channels.remove(&dataflow_index) else {
            return;
        };

        let ts = self.ts();
        for channel in channels {
            // Retract channel description.
            let datum = ChannelDatum {
                id: channel.id,
                source: channel.source,
                target: channel.target,
            };
            self.output.channels.give(((datum, ()), ts, -1));

            let datum = (channel.id, channel.scope_addr);
            self.output.addresses.give((datum, ts, -1));

            // Retract messages logged for this channel.
            if let Some(sent) = self.state.messages_sent.remove(&channel.id) {
                for (target_worker, count) in sent.iter().enumerate() {
                    let datum = MessageDatum {
                        channel: channel.id,
                        worker: target_worker,
                    };
                    self.output
                        .messages_sent
                        .give(((datum, ()), ts, -count.records));
                    self.output
                        .batches_sent
                        .give(((datum, ()), ts, -count.batches));
                }
            }
            if let Some(received) = self.state.messages_received.remove(&channel.id) {
                for (source_worker, count) in received.iter().enumerate() {
                    let datum = MessageDatum {
                        channel: channel.id,
                        worker: source_worker,
                    };
                    self.output
                        .messages_received
                        .give(((datum, ()), ts, -count.records));
                    self.output
                        .batches_received
                        .give(((datum, ()), ts, -count.batches));
                }
            }
        }
    }

    fn handle_park(&mut self, event: ParkEvent) {
        match event {
            ParkEvent::Park(requested) => {
                let park = Park {
                    time: self.time,
                    requested,
                };
                let existing = self.state.last_park.replace(park);
                if existing.is_some() {
                    error!("park without a succeeding unpark");
                }
            }
            ParkEvent::Unpark => {
                let Some(park) = self.state.last_park.take() else {
                    error!("unpark without a preceeding park");
                    return;
                };

                let duration_ns = self.time.saturating_sub(park.time).as_nanos();
                let duration_pow = duration_ns.next_power_of_two();
                let requested_pow = park.requested.map(|r| r.as_nanos().next_power_of_two());

                let ts = self.ts();
                let datum = ParkDatum {
                    duration_pow,
                    requested_pow,
                };
                self.output.parks.give(((datum, ()), ts, 1));
            }
        }
    }

    fn handle_messages(&mut self, event: MessagesEvent) {
        let ts = self.ts();
        let count = Diff::try_from(event.length).expect("must fit");

        if event.is_send {
            let datum = MessageDatum {
                channel: event.channel,
                worker: event.target,
            };
            self.output.messages_sent.give(((datum, ()), ts, count));
            self.output.batches_sent.give(((datum, ()), ts, 1));

            let sent_counts = self
                .state
                .messages_sent
                .entry(event.channel)
                .or_insert_with(|| vec![Default::default(); self.peers].into_boxed_slice());
            sent_counts[event.target].records += count;
            sent_counts[event.target].batches += 1;
        } else {
            let datum = MessageDatum {
                channel: event.channel,
                worker: event.source,
            };
            self.output.messages_received.give(((datum, ()), ts, count));
            self.output.batches_received.give(((datum, ()), ts, 1));

            let received_counts = self
                .state
                .messages_received
                .entry(event.channel)
                .or_insert_with(|| vec![Default::default(); self.peers].into_boxed_slice());
            received_counts[event.source].records += count;
            received_counts[event.source].batches += 1;
        }
    }

    fn handle_schedule(&mut self, event: ScheduleEvent) {
        match event.start_stop {
            timely::logging::StartStop::Start => {
                let existing = self.state.schedule_starts.insert(event.id, self.time);
                if existing.is_some() {
                    error!(operator_id = ?event.id, "schedule start without succeeding stop");
                }
            }
            timely::logging::StartStop::Stop => {
                let Some(start_time) = self.state.schedule_starts.remove(&event.id) else {
                    error!(operator_id = ?event.id, "schedule stop without preceeding start");
                    return;
                };

                let elapsed_ns = self.time.saturating_sub(start_time).as_nanos();
                let elapsed_diff = Diff::try_from(elapsed_ns).expect("must fit");
                let elapsed_pow = elapsed_ns.next_power_of_two();

                let ts = self.ts();
                let datum = event.id;
                self.output
                    .schedules_duration
                    .give(((datum, ()), ts, elapsed_diff));

                let datum = ScheduleHistogramDatum {
                    operator: event.id,
                    duration_pow: elapsed_pow,
                };
                self.output.schedules_histogram.give(((datum, ()), ts, 1));

                // Record count and elapsed time for later retraction.
                let index = usize::cast_from(elapsed_pow.trailing_zeros());
                let data = self.state.schedules_data.entry(event.id).or_default();
                grow_vec(data, index);
                let (count, duration) = &mut data[index];
                *count += 1;
                *duration += elapsed_diff;
            }
        }
    }
}

/// Grow the given vector so it fits the given index.
///
/// This does nothing if the vector is already large enough.
fn grow_vec<T>(vec: &mut Vec<T>, index: usize)
where
    T: Clone + Default,
{
    if vec.len() <= index {
        vec.resize(index + 1, Default::default());
    }
}