encoding_rs/single_byte.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
// Copyright Mozilla Foundation. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::*;
use crate::ascii::*;
use crate::data::position;
use crate::handles::*;
use crate::variant::*;
pub struct SingleByteDecoder {
table: &'static [u16; 128],
}
impl SingleByteDecoder {
pub fn new(data: &'static [u16; 128]) -> VariantDecoder {
VariantDecoder::SingleByte(SingleByteDecoder { table: data })
}
pub fn max_utf16_buffer_length(&self, byte_length: usize) -> Option<usize> {
Some(byte_length)
}
pub fn max_utf8_buffer_length_without_replacement(&self, byte_length: usize) -> Option<usize> {
byte_length.checked_mul(3)
}
pub fn max_utf8_buffer_length(&self, byte_length: usize) -> Option<usize> {
byte_length.checked_mul(3)
}
pub fn decode_to_utf8_raw(
&mut self,
src: &[u8],
dst: &mut [u8],
_last: bool,
) -> (DecoderResult, usize, usize) {
let mut source = ByteSource::new(src);
let mut dest = Utf8Destination::new(dst);
'outermost: loop {
match dest.copy_ascii_from_check_space_bmp(&mut source) {
CopyAsciiResult::Stop(ret) => return ret,
CopyAsciiResult::GoOn((mut non_ascii, mut handle)) => 'middle: loop {
// Start non-boilerplate
//
// Since the non-ASCIIness of `non_ascii` is hidden from
// the optimizer, it can't figure out that it's OK to
// statically omit the bound check when accessing
// `[u16; 128]` with an index
// `non_ascii as usize - 0x80usize`.
let mapped =
unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
// let mapped = self.table[non_ascii as usize - 0x80usize];
if mapped == 0u16 {
return (
DecoderResult::Malformed(1, 0),
source.consumed(),
handle.written(),
);
}
let dest_again = handle.write_bmp_excl_ascii(mapped);
// End non-boilerplate
match source.check_available() {
Space::Full(src_consumed) => {
return (
DecoderResult::InputEmpty,
src_consumed,
dest_again.written(),
);
}
Space::Available(source_handle) => {
match dest_again.check_space_bmp() {
Space::Full(dst_written) => {
return (
DecoderResult::OutputFull,
source_handle.consumed(),
dst_written,
);
}
Space::Available(mut destination_handle) => {
let (mut b, unread_handle) = source_handle.read();
let source_again = unread_handle.commit();
'innermost: loop {
if b > 127 {
non_ascii = b;
handle = destination_handle;
continue 'middle;
}
// Testing on Haswell says that we should write the
// byte unconditionally instead of trying to unread it
// to make it part of the next SIMD stride.
let dest_again_again = destination_handle.write_ascii(b);
if b < 60 {
// We've got punctuation
match source_again.check_available() {
Space::Full(src_consumed_again) => {
return (
DecoderResult::InputEmpty,
src_consumed_again,
dest_again_again.written(),
);
}
Space::Available(source_handle_again) => {
match dest_again_again.check_space_bmp() {
Space::Full(dst_written_again) => {
return (
DecoderResult::OutputFull,
source_handle_again.consumed(),
dst_written_again,
);
}
Space::Available(
destination_handle_again,
) => {
let (b_again, _unread_handle_again) =
source_handle_again.read();
b = b_again;
destination_handle =
destination_handle_again;
continue 'innermost;
}
}
}
}
}
// We've got markup or ASCII text
continue 'outermost;
}
}
}
}
}
},
}
}
}
pub fn decode_to_utf16_raw(
&mut self,
src: &[u8],
dst: &mut [u16],
_last: bool,
) -> (DecoderResult, usize, usize) {
let (pending, length) = if dst.len() < src.len() {
(DecoderResult::OutputFull, dst.len())
} else {
(DecoderResult::InputEmpty, src.len())
};
let mut converted = 0usize;
'outermost: loop {
match unsafe {
ascii_to_basic_latin(
src.as_ptr().add(converted),
dst.as_mut_ptr().add(converted),
length - converted,
)
} {
None => {
return (pending, length, length);
}
Some((mut non_ascii, consumed)) => {
converted += consumed;
'middle: loop {
// `converted` doesn't count the reading of `non_ascii` yet.
// Since the non-ASCIIness of `non_ascii` is hidden from
// the optimizer, it can't figure out that it's OK to
// statically omit the bound check when accessing
// `[u16; 128]` with an index
// `non_ascii as usize - 0x80usize`.
let mapped =
unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
// let mapped = self.table[non_ascii as usize - 0x80usize];
if mapped == 0u16 {
return (
DecoderResult::Malformed(1, 0),
converted + 1, // +1 `for non_ascii`
converted,
);
}
unsafe {
// The bound check has already been performed
*(dst.get_unchecked_mut(converted)) = mapped;
}
converted += 1;
// Next, handle ASCII punctuation and non-ASCII without
// going back to ASCII acceleration. Non-ASCII scripts
// use ASCII punctuation, so this avoid going to
// acceleration just for punctuation/space and then
// failing. This is a significant boost to non-ASCII
// scripts.
// TODO: Split out Latin converters without this part
// this stuff makes Latin script-conversion slower.
if converted == length {
return (pending, length, length);
}
let mut b = unsafe { *(src.get_unchecked(converted)) };
'innermost: loop {
if b > 127 {
non_ascii = b;
continue 'middle;
}
// Testing on Haswell says that we should write the
// byte unconditionally instead of trying to unread it
// to make it part of the next SIMD stride.
unsafe {
*(dst.get_unchecked_mut(converted)) = u16::from(b);
}
converted += 1;
if b < 60 {
// We've got punctuation
if converted == length {
return (pending, length, length);
}
b = unsafe { *(src.get_unchecked(converted)) };
continue 'innermost;
}
// We've got markup or ASCII text
continue 'outermost;
}
}
}
}
}
}
pub fn latin1_byte_compatible_up_to(&self, buffer: &[u8]) -> usize {
let mut bytes = buffer;
let mut total = 0;
loop {
if let Some((non_ascii, offset)) = validate_ascii(bytes) {
total += offset;
let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
if mapped != u16::from(non_ascii) {
return total;
}
total += 1;
bytes = &bytes[offset + 1..];
} else {
return total;
}
}
}
}
pub struct SingleByteEncoder {
table: &'static [u16; 128],
run_bmp_offset: usize,
run_byte_offset: usize,
run_length: usize,
}
impl SingleByteEncoder {
pub fn new(
encoding: &'static Encoding,
data: &'static [u16; 128],
run_bmp_offset: u16,
run_byte_offset: u8,
run_length: u8,
) -> Encoder {
Encoder::new(
encoding,
VariantEncoder::SingleByte(SingleByteEncoder {
table: data,
run_bmp_offset: run_bmp_offset as usize,
run_byte_offset: run_byte_offset as usize,
run_length: run_length as usize,
}),
)
}
pub fn max_buffer_length_from_utf16_without_replacement(
&self,
u16_length: usize,
) -> Option<usize> {
Some(u16_length)
}
pub fn max_buffer_length_from_utf8_without_replacement(
&self,
byte_length: usize,
) -> Option<usize> {
Some(byte_length)
}
#[inline(always)]
fn encode_u16(&self, code_unit: u16) -> Option<u8> {
// First, we see if the code unit falls into a run of consecutive
// code units that can be mapped by offset. This is very efficient
// for most non-Latin encodings as well as Latin1-ish encodings.
//
// For encodings that don't fit this pattern, the run (which may
// have the length of just one) just establishes the starting point
// for the next rule.
//
// Next, we do a forward linear search in the part of the index
// after the run. Even in non-Latin1-ish Latin encodings (except
// macintosh), the lower case letters are here.
//
// Next, we search the third quadrant up to the start of the run
// (upper case letters in Latin encodings except macintosh, in
// Greek and in KOI encodings) and then the second quadrant,
// except if the run stared before the third quadrant, we search
// the second quadrant up to the run.
//
// Last, we search the first quadrant, which has unused controls
// or punctuation in most encodings. This is bad for macintosh
// and IBM866, but those are rare.
// Run of consecutive units
let unit_as_usize = code_unit as usize;
let offset = unit_as_usize.wrapping_sub(self.run_bmp_offset);
if offset < self.run_length {
return Some((128 + self.run_byte_offset + offset) as u8);
}
// Search after the run
let tail_start = self.run_byte_offset + self.run_length;
if let Some(pos) = position(&self.table[tail_start..], code_unit) {
return Some((128 + tail_start + pos) as u8);
}
if self.run_byte_offset >= 64 {
// Search third quadrant before the run
if let Some(pos) = position(&self.table[64..self.run_byte_offset], code_unit) {
return Some(((128 + 64) + pos) as u8);
}
// Search second quadrant
if let Some(pos) = position(&self.table[32..64], code_unit) {
return Some(((128 + 32) + pos) as u8);
}
} else if let Some(pos) = position(&self.table[32..self.run_byte_offset], code_unit) {
// windows-1252, windows-874, ISO-8859-15 and ISO-8859-5
// Search second quadrant before the run
return Some(((128 + 32) + pos) as u8);
}
// Search first quadrant
if let Some(pos) = position(&self.table[..32], code_unit) {
return Some((128 + pos) as u8);
}
None
}
ascii_compatible_bmp_encoder_function!(
{
match self.encode_u16(bmp) {
Some(byte) => handle.write_one(byte),
None => {
return (
EncoderResult::unmappable_from_bmp(bmp),
source.consumed(),
handle.written(),
);
}
}
},
bmp,
self,
source,
handle,
copy_ascii_to_check_space_one,
check_space_one,
encode_from_utf8_raw,
str,
Utf8Source,
true
);
pub fn encode_from_utf16_raw(
&mut self,
src: &[u16],
dst: &mut [u8],
_last: bool,
) -> (EncoderResult, usize, usize) {
let (pending, length) = if dst.len() < src.len() {
(EncoderResult::OutputFull, dst.len())
} else {
(EncoderResult::InputEmpty, src.len())
};
let mut converted = 0usize;
'outermost: loop {
match unsafe {
basic_latin_to_ascii(
src.as_ptr().add(converted),
dst.as_mut_ptr().add(converted),
length - converted,
)
} {
None => {
return (pending, length, length);
}
Some((mut non_ascii, consumed)) => {
converted += consumed;
'middle: loop {
// `converted` doesn't count the reading of `non_ascii` yet.
match self.encode_u16(non_ascii) {
Some(byte) => {
unsafe {
*(dst.get_unchecked_mut(converted)) = byte;
}
converted += 1;
}
None => {
// At this point, we need to know if we
// have a surrogate.
let high_bits = non_ascii & 0xFC00u16;
if high_bits == 0xD800u16 {
// high surrogate
if converted + 1 == length {
// End of buffer. This surrogate is unpaired.
return (
EncoderResult::Unmappable('\u{FFFD}'),
converted + 1, // +1 `for non_ascii`
converted,
);
}
let second =
u32::from(unsafe { *src.get_unchecked(converted + 1) });
if second & 0xFC00u32 != 0xDC00u32 {
return (
EncoderResult::Unmappable('\u{FFFD}'),
converted + 1, // +1 `for non_ascii`
converted,
);
}
// The next code unit is a low surrogate.
let astral: char = unsafe {
::std::char::from_u32_unchecked(
(u32::from(non_ascii) << 10) + second
- (((0xD800u32 << 10) - 0x1_0000u32) + 0xDC00u32),
)
};
return (
EncoderResult::Unmappable(astral),
converted + 2, // +2 `for non_ascii` and `second`
converted,
);
}
if high_bits == 0xDC00u16 {
// Unpaired low surrogate
return (
EncoderResult::Unmappable('\u{FFFD}'),
converted + 1, // +1 `for non_ascii`
converted,
);
}
return (
EncoderResult::unmappable_from_bmp(non_ascii),
converted + 1, // +1 `for non_ascii`
converted,
);
}
}
// Next, handle ASCII punctuation and non-ASCII without
// going back to ASCII acceleration. Non-ASCII scripts
// use ASCII punctuation, so this avoid going to
// acceleration just for punctuation/space and then
// failing. This is a significant boost to non-ASCII
// scripts.
// TODO: Split out Latin converters without this part
// this stuff makes Latin script-conversion slower.
if converted == length {
return (pending, length, length);
}
let mut unit = unsafe { *(src.get_unchecked(converted)) };
'innermost: loop {
if unit > 127 {
non_ascii = unit;
continue 'middle;
}
// Testing on Haswell says that we should write the
// byte unconditionally instead of trying to unread it
// to make it part of the next SIMD stride.
unsafe {
*(dst.get_unchecked_mut(converted)) = unit as u8;
}
converted += 1;
if unit < 60 {
// We've got punctuation
if converted == length {
return (pending, length, length);
}
unit = unsafe { *(src.get_unchecked(converted)) };
continue 'innermost;
}
// We've got markup or ASCII text
continue 'outermost;
}
}
}
}
}
}
}
// Any copyright to the test code below this comment is dedicated to the
// Public Domain. http://creativecommons.org/publicdomain/zero/1.0/
#[cfg(test)]
mod tests {
use super::super::testing::*;
use super::super::*;
#[test]
fn test_windows_1255_ca() {
decode(WINDOWS_1255, b"\xCA", "\u{05BA}");
encode(WINDOWS_1255, "\u{05BA}", b"\xCA");
}
#[test]
fn test_ascii_punctuation() {
let bytes = b"\xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4. \xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4.";
let characters = "\u{0391}\u{03C5}\u{03C4}\u{03CC} \
\u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \
\u{03C4}\u{03B5}\u{03C3}\u{03C4}. \u{0391}\u{03C5}\u{03C4}\u{03CC} \
\u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \
\u{03C4}\u{03B5}\u{03C3}\u{03C4}.";
decode(WINDOWS_1253, bytes, characters);
encode(WINDOWS_1253, characters, bytes);
}
#[test]
fn test_decode_malformed() {
decode(
WINDOWS_1253,
b"\xC1\xF5\xD2\xF4\xFC",
"\u{0391}\u{03C5}\u{FFFD}\u{03C4}\u{03CC}",
);
}
#[test]
fn test_encode_unmappables() {
encode(
WINDOWS_1253,
"\u{0391}\u{03C5}\u{2603}\u{03C4}\u{03CC}",
b"\xC1\xF5☃\xF4\xFC",
);
encode(
WINDOWS_1253,
"\u{0391}\u{03C5}\u{1F4A9}\u{03C4}\u{03CC}",
b"\xC1\xF5💩\xF4\xFC",
);
}
#[test]
fn test_encode_unpaired_surrogates() {
encode_from_utf16(
WINDOWS_1253,
&[0x0391u16, 0x03C5u16, 0xDCA9u16, 0x03C4u16, 0x03CCu16],
b"\xC1\xF5�\xF4\xFC",
);
encode_from_utf16(
WINDOWS_1253,
&[0x0391u16, 0x03C5u16, 0xD83Du16, 0x03C4u16, 0x03CCu16],
b"\xC1\xF5�\xF4\xFC",
);
encode_from_utf16(
WINDOWS_1253,
&[0x0391u16, 0x03C5u16, 0x03C4u16, 0x03CCu16, 0xD83Du16],
b"\xC1\xF5\xF4\xFC�",
);
}
pub const HIGH_BYTES: &'static [u8; 128] = &[
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E,
0x8F, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D,
0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC,
0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB,
0xBC, 0xBD, 0xBE, 0xBF, 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA,
0xCB, 0xCC, 0xCD, 0xCE, 0xCF, 0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9,
0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8,
0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,
0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF,
];
fn decode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) {
let mut with_replacement = [0u16; 128];
let mut it = data.iter().enumerate();
loop {
match it.next() {
Some((i, code_point)) => {
if *code_point == 0 {
with_replacement[i] = 0xFFFD;
} else {
with_replacement[i] = *code_point;
}
}
None => {
break;
}
}
}
decode_to_utf16(encoding, HIGH_BYTES, &with_replacement[..]);
}
fn encode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) {
let mut with_zeros = [0u8; 128];
let mut it = data.iter().enumerate();
loop {
match it.next() {
Some((i, code_point)) => {
if *code_point == 0 {
with_zeros[i] = 0;
} else {
with_zeros[i] = HIGH_BYTES[i];
}
}
None => {
break;
}
}
}
encode_from_utf16(encoding, data, &with_zeros[..]);
}
#[test]
fn test_single_byte_from_two_low_surrogates() {
let expectation = b"��";
let mut output = [0u8; 40];
let mut encoder = WINDOWS_1253.new_encoder();
let (result, read, written, had_errors) =
encoder.encode_from_utf16(&[0xDC00u16, 0xDEDEu16], &mut output[..], true);
assert_eq!(result, CoderResult::InputEmpty);
assert_eq!(read, 2);
assert_eq!(written, expectation.len());
assert!(had_errors);
assert_eq!(&output[..written], expectation);
}
// These tests are so self-referential that they are pretty useless.
// BEGIN GENERATED CODE. PLEASE DO NOT EDIT.
// Instead, please regenerate using generate-encoding-data.py
#[test]
fn test_single_byte_decode() {
decode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866);
decode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10);
if cfg!(miri) {
// Miri is too slow
return;
}
decode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13);
decode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14);
decode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15);
decode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16);
decode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2);
decode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3);
decode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4);
decode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5);
decode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6);
decode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7);
decode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8);
decode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r);
decode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u);
decode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh);
decode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250);
decode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251);
decode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252);
decode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253);
decode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254);
decode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255);
decode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256);
decode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257);
decode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258);
decode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874);
decode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic);
}
#[test]
fn test_single_byte_encode() {
encode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866);
encode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10);
if cfg!(miri) {
// Miri is too slow
return;
}
encode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13);
encode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14);
encode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15);
encode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16);
encode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2);
encode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3);
encode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4);
encode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5);
encode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6);
encode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7);
encode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8);
encode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r);
encode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u);
encode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh);
encode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250);
encode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251);
encode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252);
encode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253);
encode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254);
encode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255);
encode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256);
encode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257);
encode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258);
encode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874);
encode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic);
}
// END GENERATED CODE
}