stacker/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
//! A library to help grow the stack when it runs out of space.
//!
//! This is an implementation of manually instrumented segmented stacks where points in a program's
//! control flow are annotated with "maybe grow the stack here". Each point of annotation indicates
//! how far away from the end of the stack it's allowed to be, plus the amount of stack to allocate
//! if it does reach the end.
//!
//! Once a program has reached the end of its stack, a temporary stack on the heap is allocated and
//! is switched to for the duration of a closure.
//!
//! For a set of lower-level primitives, consider the `psm` crate.
//!
//! # Examples
//!
//! ```
//! // Grow the stack if we are within the "red zone" of 32K, and if we allocate
//! // a new stack allocate 1MB of stack space.
//! //
//! // If we're already in bounds, just run the provided closure on current stack.
//! stacker::maybe_grow(32 * 1024, 1024 * 1024, || {
//! // guaranteed to have at least 32K of stack
//! });
//! ```
#![allow(improper_ctypes)]
#[macro_use]
extern crate cfg_if;
extern crate libc;
#[cfg(windows)]
extern crate winapi;
#[macro_use]
extern crate psm;
use std::cell::Cell;
/// Grows the call stack if necessary.
///
/// This function is intended to be called at manually instrumented points in a program where
/// recursion is known to happen quite a bit. This function will check to see if we're within
/// `red_zone` bytes of the end of the stack, and if so it will allocate a new stack of at least
/// `stack_size` bytes.
///
/// The closure `f` is guaranteed to run on a stack with at least `red_zone` bytes, and it will be
/// run on the current stack if there's space available.
#[inline(always)]
pub fn maybe_grow<R, F: FnOnce() -> R>(red_zone: usize, stack_size: usize, callback: F) -> R {
// if we can't guess the remaining stack (unsupported on some platforms) we immediately grow
// the stack and then cache the new stack size (which we do know now because we allocated it.
let enough_space = match remaining_stack() {
Some(remaining) => remaining >= red_zone,
None => false,
};
if enough_space {
callback()
} else {
grow(stack_size, callback)
}
}
/// Always creates a new stack for the passed closure to run on.
/// The closure will still be on the same thread as the caller of `grow`.
/// This will allocate a new stack with at least `stack_size` bytes.
pub fn grow<R, F: FnOnce() -> R>(stack_size: usize, callback: F) -> R {
// To avoid monomorphizing `_grow()` and everything it calls,
// we convert the generic callback to a dynamic one.
let mut opt_callback = Some(callback);
let mut ret = None;
let ret_ref = &mut ret;
// This wrapper around `callback` achieves two things:
// * It converts the `impl FnOnce` to a `dyn FnMut`.
// `dyn` because we want it to not be generic, and
// `FnMut` because we can't pass a `dyn FnOnce` around without boxing it.
// * It eliminates the generic return value, by writing it to the stack of this function.
// Otherwise the closure would have to return an unsized value, which isn't possible.
let dyn_callback: &mut dyn FnMut() = &mut || {
let taken_callback = opt_callback.take().unwrap();
*ret_ref = Some(taken_callback());
};
_grow(stack_size, dyn_callback);
ret.unwrap()
}
/// Queries the amount of remaining stack as interpreted by this library.
///
/// This function will return the amount of stack space left which will be used
/// to determine whether a stack switch should be made or not.
pub fn remaining_stack() -> Option<usize> {
let current_ptr = current_stack_ptr();
get_stack_limit().map(|limit| current_ptr - limit)
}
psm_stack_information! (
yes {
fn current_stack_ptr() -> usize {
psm::stack_pointer() as usize
}
}
no {
#[inline(always)]
fn current_stack_ptr() -> usize {
unsafe {
let mut x = std::mem::MaybeUninit::<u8>::uninit();
// Unlikely to be ever exercised. As a fallback we execute a volatile read to a
// local (to hopefully defeat the optimisations that would make this local a static
// global) and take its address. This way we get a very approximate address of the
// current frame.
x.as_mut_ptr().write_volatile(42);
x.as_ptr() as usize
}
}
}
);
thread_local! {
static STACK_LIMIT: Cell<Option<usize>> = Cell::new(unsafe {
guess_os_stack_limit()
})
}
#[inline(always)]
fn get_stack_limit() -> Option<usize> {
STACK_LIMIT.with(|s| s.get())
}
#[inline(always)]
#[allow(unused)]
fn set_stack_limit(l: Option<usize>) {
STACK_LIMIT.with(|s| s.set(l))
}
psm_stack_manipulation! {
yes {
struct StackRestoreGuard {
new_stack: *mut std::ffi::c_void,
stack_bytes: usize,
old_stack_limit: Option<usize>,
}
impl StackRestoreGuard {
#[cfg(target_arch = "wasm32")]
unsafe fn new(stack_bytes: usize, _page_size: usize) -> StackRestoreGuard {
let layout = std::alloc::Layout::from_size_align(stack_bytes, 16).unwrap();
let ptr = std::alloc::alloc(layout);
assert!(!ptr.is_null(), "unable to allocate stack");
StackRestoreGuard {
new_stack: ptr as *mut _,
stack_bytes,
old_stack_limit: get_stack_limit(),
}
}
#[cfg(not(target_arch = "wasm32"))]
unsafe fn new(stack_bytes: usize, page_size: usize) -> StackRestoreGuard {
let new_stack = libc::mmap(
std::ptr::null_mut(),
stack_bytes,
libc::PROT_NONE,
libc::MAP_PRIVATE |
libc::MAP_ANON,
-1, // Some implementations assert fd = -1 if MAP_ANON is specified
0
);
if new_stack == libc::MAP_FAILED {
let error = std::io::Error::last_os_error();
panic!("allocating stack failed with: {}", error)
}
let guard = StackRestoreGuard {
new_stack,
stack_bytes,
old_stack_limit: get_stack_limit(),
};
let above_guard_page = new_stack.add(page_size);
#[cfg(not(target_os = "openbsd"))]
let result = libc::mprotect(
above_guard_page,
stack_bytes - page_size,
libc::PROT_READ | libc::PROT_WRITE
);
#[cfg(target_os = "openbsd")]
let result = if libc::mmap(
above_guard_page,
stack_bytes - page_size,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_FIXED | libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_STACK,
-1,
0) == above_guard_page {
0
} else {
-1
};
if result == -1 {
let error = std::io::Error::last_os_error();
drop(guard);
panic!("setting stack permissions failed with: {}", error)
}
guard
}
}
impl Drop for StackRestoreGuard {
fn drop(&mut self) {
#[cfg(target_arch = "wasm32")]
unsafe {
std::alloc::dealloc(
self.new_stack as *mut u8,
std::alloc::Layout::from_size_align_unchecked(self.stack_bytes, 16),
);
}
#[cfg(not(target_arch = "wasm32"))]
unsafe {
// FIXME: check the error code and decide what to do with it.
// Perhaps a debug_assertion?
libc::munmap(self.new_stack, self.stack_bytes);
}
set_stack_limit(self.old_stack_limit);
}
}
fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
// Calculate a number of pages we want to allocate for the new stack.
// For maximum portability we want to produce a stack that is aligned to a page and has
// a size that’s a multiple of page size. Furthermore we want to allocate two extras pages
// for the stack guard. To achieve that we do our calculations in number of pages and
// convert to bytes last.
let page_size = page_size();
let requested_pages = stack_size
.checked_add(page_size - 1)
.expect("unreasonably large stack requested") / page_size;
let stack_pages = std::cmp::max(1, requested_pages) + 2;
let stack_bytes = stack_pages.checked_mul(page_size)
.expect("unreasonably large stack requesteed");
// Next, there are a couple of approaches to how we allocate the new stack. We take the
// most obvious path and use `mmap`. We also `mprotect` a guard page into our
// allocation.
//
// We use a guard pattern to ensure we deallocate the allocated stack when we leave
// this function and also try to uphold various safety invariants required by `psm`
// (such as not unwinding from the callback we pass to it).
//
// Other than that this code has no meaningful gotchas.
unsafe {
let guard = StackRestoreGuard::new(stack_bytes, page_size);
let above_guard_page = guard.new_stack.add(page_size);
set_stack_limit(Some(above_guard_page as usize));
let panic = psm::on_stack(above_guard_page as *mut _, stack_size, move || {
std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback)).err()
});
drop(guard);
if let Some(p) = panic {
std::panic::resume_unwind(p);
}
}
}
fn page_size() -> usize {
// FIXME: consider caching the page size.
#[cfg(not(target_arch = "wasm32"))]
unsafe { libc::sysconf(libc::_SC_PAGE_SIZE) as usize }
#[cfg(target_arch = "wasm32")]
{ 65536 }
}
}
no {
#[cfg(not(windows))]
fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
drop(stack_size);
callback();
}
}
}
cfg_if! {
if #[cfg(windows)] {
use std::ptr;
use std::io;
use winapi::shared::basetsd::*;
use winapi::shared::minwindef::{LPVOID, BOOL};
use winapi::shared::ntdef::*;
use winapi::um::fibersapi::*;
use winapi::um::memoryapi::*;
use winapi::um::processthreadsapi::*;
use winapi::um::winbase::*;
// Make sure the libstacker.a (implemented in C) is linked.
// See https://github.com/rust-lang/rust/issues/65610
#[link(name="stacker")]
extern {
fn __stacker_get_current_fiber() -> PVOID;
}
struct FiberInfo<F> {
callback: std::mem::MaybeUninit<F>,
panic: Option<Box<dyn std::any::Any + Send + 'static>>,
parent_fiber: LPVOID,
}
unsafe extern "system" fn fiber_proc<F: FnOnce()>(data: LPVOID) {
// This function is the entry point to our inner fiber, and as argument we get an
// instance of `FiberInfo`. We will set-up the "runtime" for the callback and execute
// it.
let data = &mut *(data as *mut FiberInfo<F>);
let old_stack_limit = get_stack_limit();
set_stack_limit(guess_os_stack_limit());
let callback = data.callback.as_ptr();
data.panic = std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback.read())).err();
// Restore to the previous Fiber
set_stack_limit(old_stack_limit);
SwitchToFiber(data.parent_fiber);
return;
}
fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
// Fibers (or stackful coroutines) is the only official way to create new stacks on the
// same thread on Windows. So in order to extend the stack we create fiber and switch
// to it so we can use it's stack. After running `callback` within our fiber, we switch
// back to the current stack and destroy the fiber and its associated stack.
unsafe {
let was_fiber = IsThreadAFiber() == TRUE as BOOL;
let mut data = FiberInfo {
callback: std::mem::MaybeUninit::new(callback),
panic: None,
parent_fiber: {
if was_fiber {
// Get a handle to the current fiber. We need to use a C implementation
// for this as GetCurrentFiber is an header only function.
__stacker_get_current_fiber()
} else {
// Convert the current thread to a fiber, so we are able to switch back
// to the current stack. Threads coverted to fibers still act like
// regular threads, but they have associated fiber data. We later
// convert it back to a regular thread and free the fiber data.
ConvertThreadToFiber(ptr::null_mut())
}
},
};
if data.parent_fiber.is_null() {
panic!("unable to convert thread to fiber: {}", io::Error::last_os_error());
}
let fiber = CreateFiber(
stack_size as SIZE_T,
Some(fiber_proc::<&mut dyn FnMut()>),
&mut data as *mut FiberInfo<&mut dyn FnMut()> as *mut _,
);
if fiber.is_null() {
panic!("unable to allocate fiber: {}", io::Error::last_os_error());
}
// Switch to the fiber we created. This changes stacks and starts executing
// fiber_proc on it. fiber_proc will run `callback` and then switch back to run the
// next statement.
SwitchToFiber(fiber);
DeleteFiber(fiber);
// Clean-up.
if !was_fiber {
if ConvertFiberToThread() == 0 {
// FIXME: Perhaps should not panic here?
panic!("unable to convert back to thread: {}", io::Error::last_os_error());
}
}
if let Some(p) = data.panic {
std::panic::resume_unwind(p);
}
}
}
#[inline(always)]
fn get_thread_stack_guarantee() -> usize {
let min_guarantee = if cfg!(target_pointer_width = "32") {
0x1000
} else {
0x2000
};
let mut stack_guarantee = 0;
unsafe {
// Read the current thread stack guarantee
// This is the stack reserved for stack overflow
// exception handling.
// This doesn't return the true value so we need
// some further logic to calculate the real stack
// guarantee. This logic is what is used on x86-32 and
// x86-64 Windows 10. Other versions and platforms may differ
SetThreadStackGuarantee(&mut stack_guarantee)
};
std::cmp::max(stack_guarantee, min_guarantee) as usize + 0x1000
}
#[inline(always)]
unsafe fn guess_os_stack_limit() -> Option<usize> {
// Query the allocation which contains our stack pointer in order
// to discover the size of the stack
//
// FIXME: we could read stack base from the TIB, specifically the 3rd element of it.
type QueryT = winapi::um::winnt::MEMORY_BASIC_INFORMATION;
let mut mi = std::mem::MaybeUninit::<QueryT>::uninit();
VirtualQuery(
psm::stack_pointer() as *const _,
mi.as_mut_ptr(),
std::mem::size_of::<QueryT>() as SIZE_T,
);
Some(mi.assume_init().AllocationBase as usize + get_thread_stack_guarantee() + 0x1000)
}
} else if #[cfg(any(target_os = "linux", target_os="solaris", target_os = "netbsd"))] {
unsafe fn guess_os_stack_limit() -> Option<usize> {
let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit();
assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0);
assert_eq!(libc::pthread_getattr_np(libc::pthread_self(),
attr.as_mut_ptr()), 0);
let mut stackaddr = std::ptr::null_mut();
let mut stacksize = 0;
assert_eq!(libc::pthread_attr_getstack(
attr.as_ptr(), &mut stackaddr, &mut stacksize
), 0);
assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0);
Some(stackaddr as usize)
}
} else if #[cfg(any(target_os = "freebsd", target_os = "dragonfly"))] {
unsafe fn guess_os_stack_limit() -> Option<usize> {
let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit();
assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0);
assert_eq!(libc::pthread_attr_get_np(libc::pthread_self(), attr.as_mut_ptr()), 0);
let mut stackaddr = std::ptr::null_mut();
let mut stacksize = 0;
assert_eq!(libc::pthread_attr_getstack(
attr.as_ptr(), &mut stackaddr, &mut stacksize
), 0);
assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0);
Some(stackaddr as usize)
}
} else if #[cfg(target_os = "openbsd")] {
unsafe fn guess_os_stack_limit() -> Option<usize> {
let mut stackinfo = std::mem::MaybeUninit::<libc::stack_t>::uninit();
assert_eq!(libc::pthread_stackseg_np(libc::pthread_self(), stackinfo.as_mut_ptr()), 0);
Some(stackinfo.assume_init().ss_sp as usize - stackinfo.assume_init().ss_size)
}
} else if #[cfg(target_os = "macos")] {
unsafe fn guess_os_stack_limit() -> Option<usize> {
Some(libc::pthread_get_stackaddr_np(libc::pthread_self()) as usize -
libc::pthread_get_stacksize_np(libc::pthread_self()) as usize)
}
} else {
// fallback for other platforms is to always increase the stack if we're on
// the root stack. After we increased the stack once, we know the new stack
// size and don't need this pessimization anymore
#[inline(always)]
unsafe fn guess_os_stack_limit() -> Option<usize> {
None
}
}
}