sized_chunks/sparse_chunk/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//! A fixed capacity sparse array.
//!
//! See [`SparseChunk`](struct.SparseChunk.html)
use core::fmt::{Debug, Error, Formatter};
use core::iter::FromIterator;
use core::mem::{self, MaybeUninit};
use core::ops::Index;
use core::ops::IndexMut;
use core::ptr;
use core::slice::{from_raw_parts, from_raw_parts_mut};
#[cfg(feature = "std")]
use std::collections::{BTreeMap, HashMap};
use typenum::U64;
use bitmaps::{Bitmap, Bits, Iter as BitmapIter};
use crate::types::ChunkLength;
mod iter;
pub use self::iter::{Drain, Iter, IterMut, OptionDrain, OptionIter, OptionIterMut};
#[cfg(feature = "refpool")]
mod refpool;
/// A fixed capacity sparse array.
///
/// An inline sparse array of up to `N` items of type `A`, where `N` is an
/// [`Unsigned`][Unsigned] type level numeral. You can think of it as an array
/// of `Option<A>`, where the discriminant (whether the value is `Some<A>` or
/// `None`) is kept in a bitmap instead of adjacent to the value.
///
/// Because the bitmap is kept in a primitive type, the maximum value of `N` is
/// currently 128, corresponding to a type of `u128`. The type of the bitmap
/// will be the minimum unsigned integer type required to fit the number of bits
/// required. Thus, disregarding memory alignment rules, the allocated size of a
/// `SparseChunk` will be `uX` + `A` * `N` where `uX` is the type of the
/// discriminant bitmap, either `u8`, `u16`, `u32`, `u64` or `u128`.
///
/// # Examples
///
/// ```rust
/// # #[macro_use] extern crate sized_chunks;
/// # extern crate typenum;
/// # use sized_chunks::SparseChunk;
/// # use typenum::U20;
/// // Construct a chunk with a 20 item capacity
/// let mut chunk = SparseChunk::<i32, U20>::new();
/// // Set the 18th index to the value 5.
/// chunk.insert(18, 5);
/// // Set the 5th index to the value 23.
/// chunk.insert(5, 23);
///
/// assert_eq!(chunk.len(), 2);
/// assert_eq!(chunk.get(5), Some(&23));
/// assert_eq!(chunk.get(6), None);
/// assert_eq!(chunk.get(18), Some(&5));
/// ```
///
/// [Unsigned]: https://docs.rs/typenum/1.10.0/typenum/marker_traits/trait.Unsigned.html
pub struct SparseChunk<A, N: Bits + ChunkLength<A> = U64> {
map: Bitmap<N>,
data: MaybeUninit<N::SizedType>,
}
impl<A, N: Bits + ChunkLength<A>> Drop for SparseChunk<A, N> {
fn drop(&mut self) {
if mem::needs_drop::<A>() {
let bits = self.map;
for index in &bits {
unsafe { ptr::drop_in_place(&mut self.values_mut()[index]) }
}
}
}
}
impl<A: Clone, N: Bits + ChunkLength<A>> Clone for SparseChunk<A, N> {
fn clone(&self) -> Self {
let mut out = Self::new();
for index in &self.map {
out.insert(index, self[index].clone());
}
out
}
}
impl<A, N> SparseChunk<A, N>
where
N: Bits + ChunkLength<A>,
{
/// The maximum number of elements a `SparseChunk` can contain.
pub const CAPACITY: usize = N::USIZE;
#[inline]
fn values(&self) -> &[A] {
unsafe { from_raw_parts(&self.data as *const _ as *const A, N::USIZE) }
}
#[inline]
fn values_mut(&mut self) -> &mut [A] {
unsafe { from_raw_parts_mut(&mut self.data as *mut _ as *mut A, N::USIZE) }
}
/// Copy the value at an index, discarding ownership of the copied value
#[inline]
unsafe fn force_read(index: usize, chunk: &Self) -> A {
ptr::read(&chunk.values()[index as usize])
}
/// Write a value at an index without trying to drop what's already there
#[inline]
unsafe fn force_write(index: usize, value: A, chunk: &mut Self) {
ptr::write(&mut chunk.values_mut()[index as usize], value)
}
/// Construct a new empty chunk.
pub fn new() -> Self {
Self {
map: Bitmap::default(),
data: MaybeUninit::uninit(),
}
}
/// Construct a new chunk with one item.
pub fn unit(index: usize, value: A) -> Self {
let mut chunk = Self::new();
chunk.insert(index, value);
chunk
}
/// Construct a new chunk with two items.
pub fn pair(index1: usize, value1: A, index2: usize, value2: A) -> Self {
let mut chunk = Self::new();
chunk.insert(index1, value1);
chunk.insert(index2, value2);
chunk
}
/// Get the length of the chunk.
#[inline]
pub fn len(&self) -> usize {
self.map.len()
}
/// Test if the chunk is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.map.len() == 0
}
/// Test if the chunk is at capacity.
#[inline]
pub fn is_full(&self) -> bool {
self.len() == N::USIZE
}
/// Insert a new value at a given index.
///
/// Returns the previous value at that index, if any.
pub fn insert(&mut self, index: usize, value: A) -> Option<A> {
if index >= N::USIZE {
panic!("SparseChunk::insert: index out of bounds");
}
if self.map.set(index, true) {
Some(mem::replace(&mut self.values_mut()[index], value))
} else {
unsafe { SparseChunk::force_write(index, value, self) };
None
}
}
/// Remove the value at a given index.
///
/// Returns the value, or `None` if the index had no value.
pub fn remove(&mut self, index: usize) -> Option<A> {
if index >= N::USIZE {
panic!("SparseChunk::remove: index out of bounds");
}
if self.map.set(index, false) {
Some(unsafe { SparseChunk::force_read(index, self) })
} else {
None
}
}
/// Remove the first value present in the array.
///
/// Returns the value that was removed, or `None` if the array was empty.
pub fn pop(&mut self) -> Option<A> {
self.first_index().and_then(|index| self.remove(index))
}
/// Get the value at a given index.
pub fn get(&self, index: usize) -> Option<&A> {
if index >= N::USIZE {
return None;
}
if self.map.get(index) {
Some(unsafe { self.get_unchecked(index) })
} else {
None
}
}
/// Get a mutable reference to the value at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<&mut A> {
if index >= N::USIZE {
return None;
}
if self.map.get(index) {
Some(unsafe { self.get_unchecked_mut(index) })
} else {
None
}
}
/// Get an unchecked reference to the value at a given index.
///
/// # Safety
///
/// Uninhabited indices contain uninitialised data, so make sure you validate
/// the index before using this method.
pub unsafe fn get_unchecked(&self, index: usize) -> &A {
self.values().get_unchecked(index)
}
/// Get an unchecked mutable reference to the value at a given index.
///
/// # Safety
///
/// Uninhabited indices contain uninitialised data, so make sure you validate
/// the index before using this method.
pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut A {
self.values_mut().get_unchecked_mut(index)
}
/// Make an iterator over the indices which contain values.
pub fn indices(&self) -> BitmapIter<'_, N> {
self.map.into_iter()
}
/// Find the first index which contains a value.
pub fn first_index(&self) -> Option<usize> {
self.map.first_index()
}
/// Make an iterator of references to the values contained in the array.
pub fn iter(&self) -> Iter<'_, A, N> {
Iter {
indices: self.indices(),
chunk: self,
}
}
/// Make an iterator of mutable references to the values contained in the
/// array.
pub fn iter_mut(&mut self) -> IterMut<'_, A, N> {
IterMut {
bitmap: self.map,
chunk: self,
}
}
/// Turn the chunk into an iterator over the values contained within it.
pub fn drain(self) -> Drain<A, N> {
Drain { chunk: self }
}
/// Make an iterator of pairs of indices and references to the values
/// contained in the array.
pub fn entries(&self) -> impl Iterator<Item = (usize, &A)> {
self.indices().zip(self.iter())
}
/// Make an iterator of `Option`s of references to the values contained in the array.
///
/// Iterates over every index in the `SparseChunk`, from zero to its full capacity,
/// returning an `Option<&A>` for each index.
pub fn option_iter(&self) -> OptionIter<'_, A, N> {
OptionIter {
chunk: self,
index: 0,
}
}
/// Make an iterator of `Option`s of mutable references to the values contained in the array.
///
/// Iterates over every index in the `SparseChunk`, from zero to its full capacity,
/// returning an `Option<&mut A>` for each index.
pub fn option_iter_mut(&mut self) -> OptionIterMut<'_, A, N> {
OptionIterMut {
chunk: self,
index: 0,
}
}
/// Make a draining iterator of `Option's of the values contained in the array.
///
/// Iterates over every index in the `SparseChunk`, from zero to its full capacity,
/// returning an `Option<A>` for each index.
pub fn option_drain(self) -> OptionDrain<A, N> {
OptionDrain {
chunk: self,
index: 0,
}
}
}
impl<A, N: Bits + ChunkLength<A>> Default for SparseChunk<A, N> {
fn default() -> Self {
Self::new()
}
}
impl<A, N: Bits + ChunkLength<A>> Index<usize> for SparseChunk<A, N> {
type Output = A;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
self.get(index).unwrap()
}
}
impl<A, N: Bits + ChunkLength<A>> IndexMut<usize> for SparseChunk<A, N> {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
self.get_mut(index).unwrap()
}
}
impl<A, N: Bits + ChunkLength<A>> IntoIterator for SparseChunk<A, N> {
type Item = A;
type IntoIter = Drain<A, N>;
#[inline]
fn into_iter(self) -> Self::IntoIter {
self.drain()
}
}
impl<A, N: Bits + ChunkLength<A>> FromIterator<Option<A>> for SparseChunk<A, N> {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = Option<A>>,
{
let mut out = Self::new();
for (index, value) in iter.into_iter().enumerate() {
if let Some(value) = value {
out.insert(index, value);
}
}
out
}
}
impl<A, N> PartialEq for SparseChunk<A, N>
where
A: PartialEq,
N: Bits + ChunkLength<A>,
{
fn eq(&self, other: &Self) -> bool {
if self.map != other.map {
return false;
}
for index in self.indices() {
if self.get(index) != other.get(index) {
return false;
}
}
true
}
}
#[cfg(feature = "std")]
impl<A, N> PartialEq<BTreeMap<usize, A>> for SparseChunk<A, N>
where
A: PartialEq,
N: Bits + ChunkLength<A>,
{
fn eq(&self, other: &BTreeMap<usize, A>) -> bool {
if self.len() != other.len() {
return false;
}
for index in self.indices() {
if self.get(index) != other.get(&index) {
return false;
}
}
true
}
}
#[cfg(feature = "std")]
impl<A, N> PartialEq<HashMap<usize, A>> for SparseChunk<A, N>
where
A: PartialEq,
N: Bits + ChunkLength<A>,
{
fn eq(&self, other: &HashMap<usize, A>) -> bool {
if self.len() != other.len() {
return false;
}
for index in self.indices() {
if self.get(index) != other.get(&index) {
return false;
}
}
true
}
}
impl<A, N> Eq for SparseChunk<A, N>
where
A: Eq,
N: Bits + ChunkLength<A>,
{
}
impl<A, N> Debug for SparseChunk<A, N>
where
A: Debug,
N: Bits + ChunkLength<A>,
{
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
f.write_str("SparseChunk")?;
f.debug_map().entries(self.entries()).finish()
}
}
#[cfg(test)]
mod test {
use super::*;
use typenum::U32;
#[test]
fn insert_remove_iterate() {
let mut chunk: SparseChunk<_, U32> = SparseChunk::new();
assert_eq!(None, chunk.insert(5, 5));
assert_eq!(None, chunk.insert(1, 1));
assert_eq!(None, chunk.insert(24, 42));
assert_eq!(None, chunk.insert(22, 22));
assert_eq!(Some(42), chunk.insert(24, 24));
assert_eq!(None, chunk.insert(31, 31));
assert_eq!(Some(24), chunk.remove(24));
assert_eq!(4, chunk.len());
let indices: Vec<_> = chunk.indices().collect();
assert_eq!(vec![1, 5, 22, 31], indices);
let values: Vec<_> = chunk.into_iter().collect();
assert_eq!(vec![1, 5, 22, 31], values);
}
#[test]
fn clone_chunk() {
let mut chunk: SparseChunk<_, U32> = SparseChunk::new();
assert_eq!(None, chunk.insert(5, 5));
assert_eq!(None, chunk.insert(1, 1));
assert_eq!(None, chunk.insert(24, 42));
assert_eq!(None, chunk.insert(22, 22));
let cloned = chunk.clone();
let right_indices: Vec<_> = chunk.indices().collect();
let left_indices: Vec<_> = cloned.indices().collect();
let right: Vec<_> = chunk.into_iter().collect();
let left: Vec<_> = cloned.into_iter().collect();
assert_eq!(left, right);
assert_eq!(left_indices, right_indices);
assert_eq!(vec![1, 5, 22, 24], left_indices);
assert_eq!(vec![1, 5, 22, 24], right_indices);
}
use crate::tests::DropTest;
use std::sync::atomic::{AtomicUsize, Ordering};
#[test]
fn dropping() {
let counter = AtomicUsize::new(0);
{
let mut chunk: SparseChunk<DropTest<'_>> = SparseChunk::new();
for i in 0..40 {
chunk.insert(i, DropTest::new(&counter));
}
assert_eq!(40, counter.load(Ordering::Relaxed));
for i in 0..20 {
chunk.remove(i);
}
assert_eq!(20, counter.load(Ordering::Relaxed));
}
assert_eq!(0, counter.load(Ordering::Relaxed));
}
#[test]
fn equality() {
let mut c1 = SparseChunk::<usize>::new();
for i in 0..32 {
c1.insert(i, i);
}
let mut c2 = c1.clone();
assert_eq!(c1, c2);
for i in 4..8 {
c2.insert(i, 0);
}
assert_ne!(c1, c2);
c2 = c1.clone();
for i in 0..16 {
c2.remove(i);
}
assert_ne!(c1, c2);
}
}