1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Atomic multi-shard [persist] writes.
//!
//! [persist]: mz_persist_client
//!
//! This crate presents an abstraction on top of persist shards, allowing
//! efficient atomic multi-shard writes. This is accomplished through an
//! additional _txn_ shard that coordinates writes to a (potentially large)
//! number of _data_ shards. Data shards may be added and removed to the set at
//! any time.
//!
//! **WARNING!** While a data shard is registered to the txn set, writing to it
//! directly (i.e. using a [WriteHandle] instead of the [TxnsHandle]) will lead
//! to incorrectness, undefined behavior, and (potentially sticky) panics.
//!
//! [WriteHandle]: mz_persist_client::write::WriteHandle
//! [TxnsHandle]: crate::txns::TxnsHandle
//!
//! Benefits of these txns:
//! - _Key idea_: A transactional write costs in proportion to the total size of
//! data written, and the number of data shards involved (plus one for the
//! txns shard).
//! - _Key idea_: As time progresses, the upper of every data shard is logically
//! (but not physically) advanced en masse with a single write to the txns
//! shard. (Data writes may also be bundled into this, if desired.)
//! - Transactions are write-only, but read-then-write transactions can be built
//! on top by using read and write timestamps selected to have no possible
//! writes in between (e.g. `write_ts/commit_ts = read_ts + 1`).
//! - Transactions of any size are supported in bounded memory. This is done
//! though the usual persist mechanism of spilling to s3. These spilled
//! batched are efficiently re-timestamped when a commit must be retried at a
//! higher timestamp.
//! - The data shards may be read independently of each other.
//! - The persist "maintenance" work assigned on behalf of the committed txn is
//! (usually, see below) assigned to the txn committer.
//! - It is possible to implement any of snapshot, serializable, or
//! strict-serializable isolation on top of this interface via write and read
//! timestamp selections (see [#Isolation](#isolation) below for details).
//! - It is possible to serialize and communicate an uncommitted [Txn] between
//! processes and also to merge uncommitted [Txn]s, if necessary (e.g.
//! consolidating all monitoring collections, statement logging, etc into the
//! periodic timestamp advancement). This is not initially implemented, but
//! could be.
//!
//! [Txn]: crate::txn_write::Txn
//!
//! Restrictions:
//! - Data shards must all use the same codecs for `K, V, T, D`. However, each
//! data shard may have a independent `K` and `V` schemas. The txns shard
//! inherits the `T` codec from the data shards (and uses its own `K, V, D`
//! ones).
//! - All txn writes are linearized through the txns shard, so there is some
//! limit to horizontal and geographical scale out.
//! - Performance has been tuned for _throughput_ and _un-contended latency_.
//! Latency on contended workloads will likely be quite bad. At a high level,
//! if N txns are run concurrently, 1 will commit and N-1 will have to
//! (usually cheaply) retry. (However, note that it is also possible to
//! combine and commit multiple txns at the same timestamp, as mentioned
//! above, which gives us some amount of knobs for doing something different
//! here.)
//!
//! # Intuition and Jargon
//!
//! - The _txns shard_ is the source of truth for what has (and has not)
//! committed to a set of _data shards_.
//! - Each data shard must be _registered_ at some `register_ts` before being
//! used in transactions. Registration is for bookkeeping only, there is no
//! particular meaning to the timestamp other than it being a lower bound on
//! when txns using this data shard can commit. Registration only needs to be
//! run once-ever per data shard, but it is idempotent, so can also be run
//! at-least-once.
//! - A txn is broken into three phases:
//! - (Elided: A pre-txn phase where MZ might perform reads for
//! read-then-write txns or might buffer writes.)
//! - _commit_: The txn is committed by writing lightweight pointers to
//! (potentially large) batches of data as updates in txns_shard with a
//! timestamp of `commit_ts`. Feel free to think of this as a WAL. This
//! makes the txn durable (thus "definite") and also advances the _logical
//! upper_ of every data shard registered at a timestamp before commit_ts,
//! including those not involved in the txn. However, at this point, it is
//! not yet possible to read at the commit ts.
//! - _apply_: We could serve reads of data shards from the information in the
//! txns shard, but instead we choose to serve them from the physical data
//! shard itself so that we may reuse existing persist infrastructure (e.g.
//! multi-worker persist-source). This means we must take the batch pointers
//! written to the txns shard and, in commit_ts order, "denormalize" them
//! into each data shard with `compare_and_append`. We call this process
//! applying the txn. Feel free to think of this as applying the WAL.
//!
//! (Note that this means each data shard's _physical upper_ reflects the
//! last committed txn touching that shard, and so the _logical upper_ may
//! be greater than this. See [TxnsCache] for more details.)
//! - _tidy_: After a committed txn has been applied, the updates for that txn
//! are retracted from the txns shard. (To handle races, both application
//! and retraction are written to be idempotent.) This prevents the txns
//! shard from growing unboundedly and also means that, at any given time,
//! the txns shard contains the set of txns that need to be applied (as well
//! as the set of registered data shards).
//!
//! [TxnsCache]: crate::txn_cache::TxnsCache
//!
//! # Usage
//!
//! ```
//! # use std::sync::Arc;
//! # use mz_ore::metrics::MetricsRegistry;
//! # use mz_persist_client::{Diagnostics, PersistClient, ShardId};
//! # use mz_txn_wal::metrics::Metrics;
//! # use mz_txn_wal::operator::DataSubscribe;
//! # use mz_txn_wal::txns::TxnsHandle;
//! # use mz_persist_types::codec_impls::{StringSchema, UnitSchema};
//! # use timely::progress::Antichain;
//! #
//! # tokio::runtime::Runtime::new().unwrap().block_on(async {
//! # let client = PersistClient::new_for_tests().await;
//! # let dyncfgs = mz_txn_wal::all_dyncfgs(client.dyncfgs().clone());
//! # let metrics = Arc::new(Metrics::new(&MetricsRegistry::new()));
//! # mz_ore::test::init_logging();
//! // Open a txn shard, initializing it if necessary.
//! let txns_id = ShardId::new();
//! let mut txns = TxnsHandle::<String, (), u64, i64>::open(
//! 0u64, client.clone(), dyncfgs, metrics, txns_id
//! ).await;
//!
//! // Register data shards to the txn set.
//! let (d0, d1) = (ShardId::new(), ShardId::new());
//! # let d0_write = client.open_writer(
//! # d0, StringSchema.into(), UnitSchema.into(), Diagnostics::for_tests()
//! # ).await.unwrap();
//! # let d1_write = client.open_writer(
//! # d1, StringSchema.into(), UnitSchema.into(), Diagnostics::for_tests()
//! # ).await.unwrap();
//! txns.register(1u64, [d0_write]).await.expect("not previously initialized");
//! txns.register(2u64, [d1_write]).await.expect("not previously initialized");
//!
//! // Commit a txn. This is durable if/when the `commit_at` succeeds, but reads
//! // at the commit ts will _block_ until after the txn is applied. Users are
//! // free to pass up the commit ack (e.g. to pgwire) to get a bit of latency
//! // back. NB: It is expected that the txn committer will run the apply step,
//! // but in the event of a crash, neither correctness nor liveness depend on
//! // it.
//! let mut txn = txns.begin();
//! txn.write(&d0, "0".into(), (), 1);
//! txn.write(&d1, "1".into(), (), -1);
//! let tidy = txn.commit_at(&mut txns, 3).await.expect("ts 3 available")
//! // Make it available to reads by applying it.
//! .apply(&mut txns).await;
//!
//! // Commit a contended txn at a higher timestamp. Note that the upper of `d1`
//! // is also advanced by this. At the same time clean up after our last commit
//! // (the tidy).
//! let mut txn = txns.begin();
//! txn.write(&d0, "2".into(), (), 1);
//! txn.tidy(tidy);
//! txn.commit_at(&mut txns, 3).await.expect_err("ts 3 not available");
//! let _tidy = txn.commit_at(&mut txns, 4).await.expect("ts 4 available")
//! .apply(&mut txns).await;
//!
//! // Read data shard(s) at some `read_ts`.
//! let mut subscribe = DataSubscribe::new("example", client, txns_id, d1, 4, Antichain::new(), true);
//! while subscribe.progress() <= 4 {
//! subscribe.step();
//! # tokio::task::yield_now().await;
//! }
//! let updates = subscribe.output();
//! # })
//! ```
//!
//! # Isolation
//!
//! This section is about "read-then-write" txns where all reads are performed
//! before any writes (read-only and write-only are trivial specializations of
//! this). All reads are performed at some `read_ts` and then all writes are
//! performed at `write_ts` (aka the `commit_ts`).
//!
//! - To implement snapshot isolation using the above, select any `read_ts <
//! write_ts`. The `write_ts` can advance as necessary when retrying on
//! conflicts.
//! - To implement serializable isolation using the above, select `write_ts =
//! read_ts + 1`. If the `write_ts` must be pushed as a result of a conflict,
//! then the `read_ts` must be similarly advanced. Note that if you happen to
//! have a system for efficiently computing changes to data as inputs change
//! (hmmm), it may be better to reason about `(read_ts, new_read_ts]` then to
//! recompute the reads from scratch.
//! - To implement strict serializable (serializable + linearizable) isolation,
//! do the same as serializable, but with the additional constraints on
//! write_ts required by linearizability (handwave).
//!
//! # Implementation
//!
//! For details of the implementation of writes, see [TxnsHandle].
//!
//! For details of the implementation of reads, see [TxnsCache].
#![warn(missing_docs, missing_debug_implementations)]
use std::fmt::Debug;
use std::fmt::Write;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::Hashable;
use mz_dyncfg::ConfigSet;
use mz_ore::instrument;
use mz_persist_client::critical::SinceHandle;
use mz_persist_client::error::UpperMismatch;
use mz_persist_client::write::WriteHandle;
use mz_persist_client::ShardId;
use mz_persist_types::codec_impls::{ShardIdSchema, VecU8Schema};
use mz_persist_types::stats::PartStats;
use mz_persist_types::txn::{TxnsCodec, TxnsEntry};
use mz_persist_types::{Codec, Codec64, Opaque, StepForward};
use timely::order::TotalOrder;
use timely::progress::{Antichain, Timestamp};
use tracing::{debug, error};
use crate::proto::ProtoIdBatch;
use crate::txns::DataWriteApply;
pub mod metrics;
pub mod operator;
pub mod txn_cache;
pub mod txn_read;
pub mod txn_write;
pub mod txns;
mod proto {
use bytes::Bytes;
use mz_persist_client::batch::ProtoBatch;
use prost::Message;
use uuid::Uuid;
include!(concat!(env!("OUT_DIR"), "/mz_txn_wal.proto.rs"));
impl ProtoIdBatch {
pub(crate) fn new(batch: ProtoBatch) -> ProtoIdBatch {
ProtoIdBatch {
batch_id: Bytes::copy_from_slice(Uuid::new_v4().as_bytes()),
batch: Some(batch),
}
}
/// Recovers the ProtoBatch from an encoded batch.
///
/// This might be an encoded ProtoIdBatch (new path) or a ProtoBatch
/// (legacy path). Some proto shenanigans are done to sniff out which.
pub(crate) fn parse(buf: &[u8]) -> ProtoBatch {
let b = ProtoIdBatch::decode(buf).expect("valid ProtoIdBatch");
// First try the new format.
if let Some(batch) = b.batch {
return batch;
}
// Fall back to the legacy format.
ProtoBatch::decode(buf).expect("valid (legacy) ProtoBatch")
}
}
}
/// Adds the full set of all txn-wal `Config`s.
pub fn all_dyncfgs(configs: ConfigSet) -> ConfigSet {
configs
.add(&crate::operator::DATA_SHARD_RETRYER_CLAMP)
.add(&crate::operator::DATA_SHARD_RETRYER_INITIAL_BACKOFF)
.add(&crate::operator::DATA_SHARD_RETRYER_MULTIPLIER)
.add(&crate::txns::APPLY_ENSURE_SCHEMA_MATCH)
}
/// A reasonable default implementation of [TxnsCodec].
///
/// This uses the "native" Codecs for `ShardId` and `Vec<u8>`, with the latter
/// empty for [TxnsEntry::Register] and non-empty for [TxnsEntry::Append].
#[derive(Debug)]
pub struct TxnsCodecDefault;
impl TxnsCodec for TxnsCodecDefault {
type Key = ShardId;
type Val = Vec<u8>;
fn schemas() -> (<Self::Key as Codec>::Schema, <Self::Val as Codec>::Schema) {
(ShardIdSchema, VecU8Schema)
}
fn encode(e: TxnsEntry) -> (Self::Key, Self::Val) {
match e {
TxnsEntry::Register(data_id, ts) => (data_id, ts.to_vec()),
TxnsEntry::Append(data_id, ts, batch) => {
// Put the ts at the end to let decode truncate it off.
(data_id, batch.into_iter().chain(ts).collect())
}
}
}
fn decode(key: Self::Key, mut val: Self::Val) -> TxnsEntry {
let mut ts = [0u8; 8];
let ts_idx = val.len().checked_sub(8).expect("ts encoded at end of val");
ts.copy_from_slice(&val[ts_idx..]);
val.truncate(ts_idx);
if val.is_empty() {
TxnsEntry::Register(key, ts)
} else {
TxnsEntry::Append(key, ts, val)
}
}
fn should_fetch_part(data_id: &ShardId, stats: &PartStats) -> Option<bool> {
let stats = stats
.key
.col("")?
.try_as_string()
.map_err(|err| error!("unexpected stats type: {}", err))
.ok()?;
let data_id_str = data_id.to_string();
Some(stats.lower <= data_id_str && stats.upper >= data_id_str)
}
}
/// Helper for common logging for compare_and_append-ing a small amount of data.
#[instrument(level = "debug", fields(shard=%txns_or_data_write.shard_id(), ts=?new_upper))]
pub(crate) async fn small_caa<S, F, K, V, T, D>(
name: F,
txns_or_data_write: &mut WriteHandle<K, V, T, D>,
updates: &[((&K, &V), &T, D)],
upper: T,
new_upper: T,
) -> Result<(), T>
where
S: AsRef<str>,
F: Fn() -> S,
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + TotalOrder + Codec64 + Sync,
D: Debug + Semigroup + Ord + Codec64 + Send + Sync,
{
fn debug_sep<'a, T: Debug + 'a>(sep: &str, xs: impl IntoIterator<Item = &'a T>) -> String {
xs.into_iter().fold(String::new(), |mut output, x| {
let _ = write!(output, "{}{:?}", sep, x);
output
})
}
debug!(
"CaA {} [{:?},{:?}){}",
name().as_ref(),
upper,
new_upper,
// This is a "small" CaA so we can inline the data in this debug log.
debug_sep("\n ", updates)
);
let res = txns_or_data_write
.compare_and_append(
updates,
Antichain::from_elem(upper.clone()),
Antichain::from_elem(new_upper.clone()),
)
.await
.expect("usage was valid");
match res {
Ok(()) => {
debug!(
"CaA {} [{:?},{:?}) success",
name().as_ref(),
upper,
new_upper
);
Ok(())
}
Err(UpperMismatch { current, .. }) => {
let current = current
.into_option()
.expect("txns shard should not be closed");
debug!(
"CaA {} [{:?},{:?}) mismatch actual={:?}",
name().as_ref(),
upper,
new_upper,
current,
);
Err(current)
}
}
}
/// Ensures that the upper of the shard is past init_ts by writing an empty
/// batch, retrying as necessary.
///
/// This method is idempotent.
pub(crate) async fn empty_caa<S, F, K, V, T, D>(
name: F,
txns_or_data_write: &mut WriteHandle<K, V, T, D>,
init_ts: T,
) where
S: AsRef<str>,
F: Fn() -> S,
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
D: Debug + Semigroup + Ord + Codec64 + Send + Sync,
{
let name = name();
let empty: &[((&K, &V), &T, D)] = &[];
let Some(mut upper) = txns_or_data_write.shared_upper().into_option() else {
// Shard is closed, which means the upper must be past init_ts.
return;
};
loop {
if init_ts < upper {
return;
}
let res = small_caa(
|| name.as_ref(),
txns_or_data_write,
empty,
upper,
init_ts.step_forward(),
)
.await;
match res {
Ok(()) => return,
Err(current) => {
upper = current;
}
}
}
}
/// Ensures that a committed batch has been applied into a physical data shard,
/// making it available for reads.
///
/// This process is definite work on top of definite input, so the
/// implementation assumes that if the upper of the shard passes commit_ts then
/// the work must have already been done by someone else. (Think how our compute
/// replicas race to compute some MATERIALIZED VIEW, but they're all guaranteed
/// to get the same answer.)
#[instrument(level = "debug", fields(shard=%data_write.shard_id(), ts=?commit_ts))]
async fn apply_caa<K, V, T, D>(
data_write: &mut DataWriteApply<K, V, T, D>,
batch_raws: &Vec<&[u8]>,
commit_ts: T,
) where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
D: Semigroup + Ord + Codec64 + Send + Sync,
{
let mut batches = batch_raws
.into_iter()
.map(|batch| ProtoIdBatch::parse(batch))
.map(|batch| data_write.batch_from_transmittable_batch(batch))
.collect::<Vec<_>>();
let Some(mut upper) = data_write.shared_upper().into_option() else {
// Shard is closed, which means the upper must be past init_ts.
// Mark the batches as consumed, so we don't get warnings in the logs.
for batch in batches {
batch.into_hollow_batch();
}
return;
};
loop {
if commit_ts < upper {
debug!(
"CaA data {:.9} apply t={:?} already done",
data_write.shard_id().to_string(),
commit_ts
);
// Mark the batches as consumed, so we don't get warnings in the logs.
for batch in batches {
batch.into_hollow_batch();
}
return;
}
// Make sure we're using the same schema to CaA these batches as what
// they were written with.
data_write.maybe_replace_with_batch_schema(&batches).await;
debug!(
"CaA data {:.9} apply b={:?} t={:?} [{:?},{:?})",
data_write.shard_id().to_string(),
batch_raws
.iter()
.map(|batch_raw| batch_raw.hashed())
.collect::<Vec<_>>(),
commit_ts,
upper,
commit_ts.step_forward(),
);
let mut batches = batches.iter_mut().collect::<Vec<_>>();
let res = data_write
.compare_and_append_batch(
batches.as_mut_slice(),
Antichain::from_elem(upper.clone()),
Antichain::from_elem(commit_ts.step_forward()),
)
.await
.expect("usage was valid");
match res {
Ok(()) => {
debug!(
"CaA data {:.9} apply t={:?} [{:?},{:?}) success",
data_write.shard_id().to_string(),
commit_ts,
upper,
commit_ts.step_forward(),
);
return;
}
Err(UpperMismatch { current, .. }) => {
let current = current.into_option().expect("data should not be closed");
debug!(
"CaA data {:.9} apply t={:?} [{:?},{:?}) mismatch actual={:?}",
data_write.shard_id().to_string(),
commit_ts,
upper,
commit_ts.step_forward(),
current,
);
upper = current;
continue;
}
}
}
}
#[instrument(level = "debug", fields(shard=%txns_since.shard_id(), ts=?new_since_ts))]
pub(crate) async fn cads<T, O, C>(
txns_since: &mut SinceHandle<C::Key, C::Val, T, i64, O>,
new_since_ts: T,
) where
T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
O: Opaque + Debug + Codec64,
C: TxnsCodec,
{
// Fast-path, don't bother trying to CaDS if we're already past that
// since.
if !txns_since.since().less_than(&new_since_ts) {
return;
}
let token = txns_since.opaque().clone();
let res = txns_since
.compare_and_downgrade_since(&token, (&token, &Antichain::from_elem(new_since_ts)))
.await;
match res {
Ok(_) => {}
Err(actual) => {
mz_ore::halt!("fenced by another process @ {actual:?}. ours = {token:?}")
}
}
}
#[cfg(test)]
pub mod tests {
use std::collections::{BTreeMap, BTreeSet};
use std::sync::Arc;
use std::sync::Mutex;
use crossbeam_channel::{Receiver, Sender, TryRecvError};
use differential_dataflow::consolidation::consolidate_updates;
use mz_persist_client::read::ReadHandle;
use mz_persist_client::{Diagnostics, PersistClient, ShardId};
use mz_persist_types::codec_impls::{StringSchema, UnitSchema};
use prost::Message;
use crate::operator::DataSubscribe;
use crate::txn_cache::TxnsCache;
use crate::txn_write::{Txn, TxnApply};
use crate::txns::{Tidy, TxnsHandle};
use super::*;
impl<K, V, T, D, O, C> TxnsHandle<K, V, T, D, O, C>
where
K: Debug + Codec + Clone,
V: Debug + Codec + Clone,
T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
D: Debug + Semigroup + Ord + Codec64 + Send + Sync + Clone,
O: Opaque + Debug + Codec64,
C: TxnsCodec,
{
/// Returns a new, empty test transaction that can involve the data shards
/// registered with this handle.
pub(crate) fn begin_test(&self) -> TestTxn<K, V, T, D> {
TestTxn::new()
}
}
/// A [`Txn`] wrapper that exposes extra functionality for tests.
#[derive(Debug)]
pub struct TestTxn<K, V, T, D> {
txn: Txn<K, V, T, D>,
/// A copy of every write to use in tests.
writes: BTreeMap<ShardId, Vec<(K, V, D)>>,
}
impl<K, V, T, D> TestTxn<K, V, T, D>
where
K: Debug + Codec + Clone,
V: Debug + Codec + Clone,
T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
D: Debug + Semigroup + Ord + Codec64 + Send + Sync + Clone,
{
pub(crate) fn new() -> Self {
Self {
txn: Txn::new(),
writes: BTreeMap::default(),
}
}
pub(crate) async fn write(&mut self, data_id: &ShardId, key: K, val: V, diff: D) {
self.writes
.entry(*data_id)
.or_default()
.push((key.clone(), val.clone(), diff.clone()));
self.txn.write(data_id, key, val, diff).await
}
pub(crate) async fn commit_at<O, C>(
&mut self,
handle: &mut TxnsHandle<K, V, T, D, O, C>,
commit_ts: T,
) -> Result<TxnApply<T>, T>
where
O: Opaque + Debug + Codec64,
C: TxnsCodec,
{
self.txn.commit_at(handle, commit_ts).await
}
pub(crate) fn merge(&mut self, other: Self) {
for (data_id, writes) in other.writes {
self.writes.entry(data_id).or_default().extend(writes);
}
self.txn.merge(other.txn)
}
pub(crate) fn tidy(&mut self, tidy: Tidy) {
self.txn.tidy(tidy)
}
#[allow(dead_code)]
fn take_tidy(&mut self) -> Tidy {
self.txn.take_tidy()
}
}
/// A test helper for collecting committed writes and later comparing them
/// to reads for correctness.
#[derive(Debug, Clone)]
pub struct CommitLog {
client: PersistClient,
txns_id: ShardId,
writes: Arc<Mutex<Vec<(ShardId, String, u64, i64)>>>,
tx: Sender<(ShardId, String, u64, i64)>,
rx: Receiver<(ShardId, String, u64, i64)>,
}
impl CommitLog {
pub fn new(client: PersistClient, txns_id: ShardId) -> Self {
let (tx, rx) = crossbeam_channel::unbounded();
CommitLog {
client,
txns_id,
writes: Arc::new(Mutex::new(Vec::new())),
tx,
rx,
}
}
pub fn record(&self, update: (ShardId, String, u64, i64)) {
let () = self.tx.send(update).unwrap();
}
pub fn record_txn(&self, commit_ts: u64, txn: &TestTxn<String, (), u64, i64>) {
for (data_id, writes) in txn.writes.iter() {
for (k, (), d) in writes.iter() {
self.record((*data_id, k.clone(), commit_ts, *d));
}
}
}
#[track_caller]
pub fn assert_eq(
&self,
data_id: ShardId,
as_of: u64,
until: u64,
actual: impl IntoIterator<Item = (String, u64, i64)>,
) {
// First read everything off the channel.
let mut expected = {
let mut writes = self.writes.lock().unwrap();
loop {
match self.rx.try_recv() {
Ok(x) => writes.push(x),
Err(TryRecvError::Empty) | Err(TryRecvError::Disconnected) => break,
}
}
writes
.iter()
.flat_map(|(id, key, ts, diff)| {
if id != &data_id {
return None;
}
let mut ts = *ts;
if ts < as_of {
ts = as_of;
}
if until <= ts {
None
} else {
Some((key.clone(), ts, *diff))
}
})
.collect()
};
consolidate_updates(&mut expected);
let mut actual = actual.into_iter().filter(|(_, t, _)| t < &until).collect();
consolidate_updates(&mut actual);
// NB: Extra spaces after actual are so it lines up with expected.
tracing::debug!(
"{:.9} as_of={} until={} actual ={:?}",
data_id,
as_of,
until,
actual
);
tracing::debug!(
"{:.9} as_of={} until={} expected={:?}",
data_id,
as_of,
until,
expected
);
assert_eq!(actual, expected)
}
#[allow(ungated_async_fn_track_caller)]
#[track_caller]
pub async fn assert_snapshot(&self, data_id: ShardId, as_of: u64) {
let mut cache: TxnsCache<u64, TxnsCodecDefault> =
TxnsCache::open(&self.client, self.txns_id, Some(data_id)).await;
let _ = cache.update_gt(&as_of).await;
let snapshot = cache.data_snapshot(data_id, as_of);
let mut data_read = self
.client
.open_leased_reader(
data_id,
Arc::new(StringSchema),
Arc::new(UnitSchema),
Diagnostics::from_purpose("assert snapshot"),
true,
)
.await
.expect("reader creation shouldn't panic");
let snapshot = snapshot
.snapshot_and_fetch(&mut data_read)
.await
.expect("snapshot shouldn't panic");
data_read.expire().await;
let snapshot: Vec<_> = snapshot
.into_iter()
.map(|((k, v), t, d)| {
let (k, ()) = (k.unwrap(), v.unwrap());
(k, t, d)
})
.collect();
// Check that a subscribe would produce the same result.
let subscribe = self.subscribe(data_id, as_of, as_of + 1).await;
assert_eq!(
snapshot.iter().collect::<BTreeSet<_>>(),
subscribe.output().into_iter().collect::<BTreeSet<_>>()
);
// Check that the result is correct.
self.assert_eq(data_id, as_of, as_of + 1, snapshot);
}
#[allow(ungated_async_fn_track_caller)]
#[track_caller]
pub async fn assert_subscribe(&self, data_id: ShardId, as_of: u64, until: u64) {
let data_subscribe = self.subscribe(data_id, as_of, until).await;
self.assert_eq(data_id, as_of, until, data_subscribe.output().clone());
}
#[allow(ungated_async_fn_track_caller)]
#[track_caller]
pub async fn subscribe(&self, data_id: ShardId, as_of: u64, until: u64) -> DataSubscribe {
let mut data_subscribe = DataSubscribe::new(
"test",
self.client.clone(),
self.txns_id,
data_id,
as_of,
Antichain::new(),
true,
);
data_subscribe.step_past(until - 1).await;
data_subscribe
}
}
pub(crate) async fn writer(
client: &PersistClient,
data_id: ShardId,
) -> WriteHandle<String, (), u64, i64> {
client
.open_writer(
data_id,
Arc::new(StringSchema),
Arc::new(UnitSchema),
Diagnostics::for_tests(),
)
.await
.expect("codecs should not change")
}
pub(crate) async fn reader(
client: &PersistClient,
data_id: ShardId,
) -> ReadHandle<String, (), u64, i64> {
client
.open_leased_reader(
data_id,
Arc::new(StringSchema),
Arc::new(UnitSchema),
Diagnostics::for_tests(),
true,
)
.await
.expect("codecs should not change")
}
pub(crate) async fn write_directly(
ts: u64,
data_write: &mut WriteHandle<String, (), u64, i64>,
keys: &[&str],
log: &CommitLog,
) {
let data_id = data_write.shard_id();
let keys = keys.iter().map(|x| (*x).to_owned()).collect::<Vec<_>>();
let updates = keys.iter().map(|k| ((k, &()), &ts, 1)).collect::<Vec<_>>();
let mut current = data_write.shared_upper().into_option().unwrap();
loop {
let res = crate::small_caa(
|| format!("data {:.9} directly", data_id),
data_write,
&updates,
current,
ts + 1,
)
.await;
match res {
Ok(()) => {
for ((k, ()), t, d) in updates {
log.record((data_id, k.to_owned(), *t, d));
}
return;
}
Err(new_current) => current = new_current,
}
}
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn commit_log() {
let (d0, d1) = (ShardId::new(), ShardId::new());
let log0 = CommitLog::new(PersistClient::new_for_tests().await, ShardId::new());
// Send before cloning into another handle.
log0.record((d0, "0".into(), 0, 1));
// Send after cloning into another handle. Also push duplicate (which
// gets consolidated).
let log1 = log0.clone();
log0.record((d0, "2".into(), 2, 1));
log1.record((d0, "2".into(), 2, 1));
// Send retraction.
log0.record((d0, "3".into(), 3, 1));
log1.record((d0, "3".into(), 4, -1));
// Send out of order.
log0.record((d0, "1".into(), 1, 1));
// Send to a different shard.
log1.record((d1, "5".into(), 5, 1));
// Assert_eq with no advancement or truncation.
log0.assert_eq(
d0,
0,
6,
vec![
("0".into(), 0, 1),
("1".into(), 1, 1),
("2".into(), 2, 2),
("3".into(), 3, 1),
("3".into(), 4, -1),
],
);
log0.assert_eq(d1, 0, 6, vec![("5".into(), 5, 1)]);
// Assert_eq with advancement.
log0.assert_eq(
d0,
4,
6,
vec![("0".into(), 4, 1), ("1".into(), 4, 1), ("2".into(), 4, 2)],
);
// Assert_eq with truncation.
log0.assert_eq(
d0,
0,
3,
vec![("0".into(), 0, 1), ("1".into(), 1, 1), ("2".into(), 2, 2)],
);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn unique_batch_serialization() {
let client = PersistClient::new_for_tests().await;
let mut write = writer(&client, ShardId::new()).await;
let data = [(("foo".to_owned(), ()), 0, 1)];
let batch = write
.batch(&data, Antichain::from_elem(0), Antichain::from_elem(1))
.await
.unwrap();
// Pretend we somehow got two batches that happen to have the same
// serialization.
let b0_raw = batch.into_transmittable_batch();
let b1_raw = b0_raw.clone();
assert_eq!(b0_raw.encode_to_vec(), b1_raw.encode_to_vec());
// They don't if we wrap them in ProtoIdBatch.
let b0 = ProtoIdBatch::new(b0_raw.clone());
let b1 = ProtoIdBatch::new(b1_raw);
assert!(b0.encode_to_vec() != b1.encode_to_vec());
// The transmittable batch roundtrips.
let roundtrip = ProtoIdBatch::parse(&b0.encode_to_vec());
assert_eq!(roundtrip, b0_raw);
// We've started running things in all of staging, so we've got to be
// able to read the previous serialization (ProtoBatch directly) back.
let roundtrip = ProtoIdBatch::parse(&b0_raw.encode_to_vec());
assert_eq!(roundtrip, b0_raw);
}
}