1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use alloc::vec::Vec;
use std::fmt;
use std::iter::once;

use super::lazy_buffer::LazyBuffer;

/// An iterator adaptor that iterates through all the `k`-permutations of the
/// elements from an iterator.
///
/// See [`.permutations()`](crate::Itertools::permutations) for
/// more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Permutations<I: Iterator> {
    vals: LazyBuffer<I>,
    state: PermutationState,
}

impl<I> Clone for Permutations<I>
    where I: Clone + Iterator,
          I::Item: Clone,
{
    clone_fields!(vals, state);
}

#[derive(Clone, Debug)]
enum PermutationState {
    StartUnknownLen {
        k: usize,
    },
    OngoingUnknownLen {
        k: usize,
        min_n: usize,
    },
    Complete(CompleteState),
    Empty,
}

#[derive(Clone, Debug)]
enum CompleteState {
    Start {
        n: usize,
        k: usize,
    },
    Ongoing {
        indices: Vec<usize>,
        cycles: Vec<usize>,
    }
}

enum CompleteStateRemaining {
    Known(usize),
    Overflow,
}

impl<I> fmt::Debug for Permutations<I>
    where I: Iterator + fmt::Debug,
          I::Item: fmt::Debug,
{
    debug_fmt_fields!(Permutations, vals, state);
}

pub fn permutations<I: Iterator>(iter: I, k: usize) -> Permutations<I> {
    let mut vals = LazyBuffer::new(iter);

    if k == 0 {
        // Special case, yields single empty vec; `n` is irrelevant
        let state = PermutationState::Complete(CompleteState::Start { n: 0, k: 0 });

        return Permutations {
            vals,
            state
        };
    }

    let mut enough_vals = true;

    while vals.len() < k {
        if !vals.get_next() {
            enough_vals = false;
            break;
        }
    }

    let state = if enough_vals {
        PermutationState::StartUnknownLen { k }
    } else {
        PermutationState::Empty
    };

    Permutations {
        vals,
        state
    }
}

impl<I> Iterator for Permutations<I>
where
    I: Iterator,
    I::Item: Clone
{
    type Item = Vec<I::Item>;

    fn next(&mut self) -> Option<Self::Item> {
        self.advance();

        let &mut Permutations { ref vals, ref state } = self;

        match *state {
            PermutationState::StartUnknownLen { .. } => panic!("unexpected iterator state"),
            PermutationState::OngoingUnknownLen { k, min_n } => {
                let latest_idx = min_n - 1;
                let indices = (0..(k - 1)).chain(once(latest_idx));

                Some(indices.map(|i| vals[i].clone()).collect())
            }
            PermutationState::Complete(CompleteState::Ongoing { ref indices, ref cycles }) => {
                let k = cycles.len();
                Some(indices[0..k].iter().map(|&i| vals[i].clone()).collect())
            },
            PermutationState::Complete(CompleteState::Start { .. }) | PermutationState::Empty => None
        }
    }

    fn count(self) -> usize {
        fn from_complete(complete_state: CompleteState) -> usize {
            match complete_state.remaining() {
                CompleteStateRemaining::Known(count) => count,
                CompleteStateRemaining::Overflow => {
                    panic!("Iterator count greater than usize::MAX");
                }
            }
        }

        let Permutations { vals, state } = self;
        match state {
            PermutationState::StartUnknownLen { k } => {
                let n = vals.len() + vals.it.count();
                let complete_state = CompleteState::Start { n, k };

                from_complete(complete_state)
            }
            PermutationState::OngoingUnknownLen { k, min_n } => {
                let prev_iteration_count = min_n - k + 1;
                let n = vals.len() + vals.it.count();
                let complete_state = CompleteState::Start { n, k };

                from_complete(complete_state) - prev_iteration_count
            },
            PermutationState::Complete(state) => from_complete(state),
            PermutationState::Empty => 0
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match self.state {
            PermutationState::StartUnknownLen { .. } |
            PermutationState::OngoingUnknownLen { .. } => (0, None), // TODO can we improve this lower bound?
            PermutationState::Complete(ref state) => match state.remaining() {
                CompleteStateRemaining::Known(count) => (count, Some(count)),
                CompleteStateRemaining::Overflow => (::std::usize::MAX, None)
            }
            PermutationState::Empty => (0, Some(0))
        }
    }
}

impl<I> Permutations<I>
where
    I: Iterator,
    I::Item: Clone
{
    fn advance(&mut self) {
        let &mut Permutations { ref mut vals, ref mut state } = self;

        *state = match *state {
            PermutationState::StartUnknownLen { k } => {
                PermutationState::OngoingUnknownLen { k, min_n: k }
            }
            PermutationState::OngoingUnknownLen { k, min_n } => {
                if vals.get_next() {
                    PermutationState::OngoingUnknownLen { k, min_n: min_n + 1 }
                } else {
                    let n = min_n;
                    let prev_iteration_count = n - k + 1;
                    let mut complete_state = CompleteState::Start { n, k };

                    // Advance the complete-state iterator to the correct point
                    for _ in 0..(prev_iteration_count + 1) {
                        complete_state.advance();
                    }

                    PermutationState::Complete(complete_state)
                }
            }
            PermutationState::Complete(ref mut state) => {
                state.advance();

                return;
            }
            PermutationState::Empty => { return; }
        };
    }
}

impl CompleteState {
    fn advance(&mut self) {
        *self = match *self {
            CompleteState::Start { n, k } => {
                let indices = (0..n).collect();
                let cycles = ((n - k)..n).rev().collect();

                CompleteState::Ongoing {
                    cycles,
                    indices
                }
            },
            CompleteState::Ongoing { ref mut indices, ref mut cycles } => {
                let n = indices.len();
                let k = cycles.len();

                for i in (0..k).rev() {
                    if cycles[i] == 0 {
                        cycles[i] = n - i - 1;

                        let to_push = indices.remove(i);
                        indices.push(to_push);
                    } else {
                        let swap_index = n - cycles[i];
                        indices.swap(i, swap_index);

                        cycles[i] -= 1;
                        return;
                    }
                }

                CompleteState::Start { n, k }
            }
        }
    }

    fn remaining(&self) -> CompleteStateRemaining {
        use self::CompleteStateRemaining::{Known, Overflow};

        match *self {
            CompleteState::Start { n, k } => {
                if n < k {
                    return Known(0);
                }

                let count: Option<usize> = (n - k + 1..n + 1).fold(Some(1), |acc, i| {
                    acc.and_then(|acc| acc.checked_mul(i))
                });

                match count {
                    Some(count) => Known(count),
                    None => Overflow
                }
            }
            CompleteState::Ongoing { ref indices, ref cycles } => {
                let mut count: usize = 0;

                for (i, &c) in cycles.iter().enumerate() {
                    let radix = indices.len() - i;
                    let next_count = count.checked_mul(radix)
                        .and_then(|count| count.checked_add(c));

                    count = match next_count {
                        Some(count) => count,
                        None => { return Overflow; }
                    };
                }

                Known(count)
            }
        }
    }
}