bitvec/ptr/
span.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
#![doc = include_str!("../../doc/ptr/span.md")]

use core::{
	any,
	fmt::{
		self,
		Binary,
		Debug,
		Display,
		Formatter,
		Pointer,
	},
	marker::PhantomData,
	mem,
	ptr::{
		self,
		NonNull,
	},
};

use tap::Pipe;
use wyz::{
	comu::{
		Address,
		Const,
		Mut,
		Mutability,
		NullPtrError,
		Reference,
		Referential,
	},
	fmt::FmtForward,
};

use super::{
	BitPtr,
	BitPtrError,
	BitPtrRange,
	MisalignError,
};
use crate::{
	index::{
		BitEnd,
		BitIdx,
	},
	mem::{
		bits_of,
		BitRegister,
	},
	order::{
		BitOrder,
		Lsb0,
	},
	slice::BitSlice,
	store::BitStore,
};

#[doc = include_str!("../../doc/ptr/BitSpan.md")]
pub(crate) struct BitSpan<M = Const, T = usize, O = Lsb0>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	/// The element address in which the base bit lives.
	ptr: NonNull<()>,
	/// The length of the span, in bits. This must be typed as `()` because it
	/// cannot be directly dereferenced, and will not have valid values for
	/// `NonNull<T>`.
	len: usize,
	/// The bit-ordering within elements used to translate indices to real bits.
	_or: PhantomData<O>,
	/// This is functionally an element-slice pointer.
	_ty: PhantomData<Address<M, [T]>>,
}

impl<M, T, O> BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	/// The canonical empty span. This always uses the dangling address for `T`.
	pub(crate) const EMPTY: Self = Self {
		ptr: NonNull::<T>::dangling().cast::<()>(),
		len: 0,
		_or: PhantomData,
		_ty: PhantomData,
	};
	/// The number of least-significant bits in `.len` needed to hold the low
	/// bits of the head `BitIdx` cursor.
	///
	/// This is always 3 until Rust adds a target architecture whose bytes are
	/// not 8 bits.
	pub(crate) const LEN_HEAD_BITS: usize = 3;
	/// Marks the bits of `.len` that store some of the `.head()` logical field.
	pub(crate) const LEN_HEAD_MASK: usize = 0b111;
	/// Marks the bits of `.ptr` that store the `.addr()` logical field.
	pub(crate) const PTR_ADDR_MASK: usize = !0 << Self::PTR_HEAD_BITS;
	/// The number of least-significant bits in `.ptr` needed to hold the high
	/// bits of the head `BitIdx` cursor.
	pub(crate) const PTR_HEAD_BITS: usize =
		<T::Mem as BitRegister>::INDX as usize - Self::LEN_HEAD_BITS;
	/// Marks the bits of `.ptr` that store some of the `.head()` logical field.
	pub(crate) const PTR_HEAD_MASK: usize = !Self::PTR_ADDR_MASK;
	/// The inclusive-maximum number of bits that a `BitSpan` can cover. This
	/// value is therefore one higher than the maximum *index* that can be used
	/// to select a bit within a span.
	pub(crate) const REGION_MAX_BITS: usize = !0 >> Self::LEN_HEAD_BITS;
	/// The inclusive-maximum number of memory elements that a bit-span can
	/// cover.
	///
	/// This is the number of elements required to store `REGION_MAX_BITS` bits,
	/// plus one because a region could begin away from the zeroth bit and thus
	/// continue into the next element at the end.
	///
	/// Since the region is ⅛th the domain of a `usize` counter already, this
	/// number is guaranteed to be well below the limits of both arithmetic and
	/// Rust’s own ceiling constraints on memory region descriptors.
	pub(crate) const REGION_MAX_ELTS: usize =
		crate::mem::elts::<T::Mem>(Self::REGION_MAX_BITS) + 1;
}

/// Constructors.
impl<M, T, O> BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	/// Constructs an empty `BitSpan` at an allocated address.
	///
	/// This is used when the region has no contents, but the pointer
	/// information must be retained and cannot be canonicalized.
	///
	/// ## Parameters
	///
	/// - `addr`: Some address of a `T` allocation. It must be valid in the
	///   caller’s memory regime.
	///
	/// ## Returns
	///
	/// A zero-length `BitSpan` based at `addr`.
	#[cfg(feature = "alloc")]
	pub(crate) fn uninhabited(addr: Address<M, T>) -> Self {
		Self {
			ptr: addr.into_inner().cast::<()>(),
			..Self::EMPTY
		}
	}

	/// Creates a new bit-span from its logical components.
	///
	/// ## Parameters
	///
	/// - `addr`: The base address of the memory region in which the bit-span
	///   resides.
	/// - `head`: The index of the initial bit within `*addr`.
	/// - `bits`: The number of bits contained in the bit-span.
	///
	/// ## Returns
	///
	/// This fails in the following conditions:
	///
	/// - `bits` is greater than `REGION_MAX_BITS`
	/// - `addr` is not aligned to `T`.
	/// - `addr + elts(bits)` wraps around the address space
	///
	/// The `Address` type already enforces the non-null requirement.
	pub(crate) fn new(
		addr: Address<M, T>,
		head: BitIdx<T::Mem>,
		bits: usize,
	) -> Result<Self, BitSpanError<T>> {
		if bits > Self::REGION_MAX_BITS {
			return Err(BitSpanError::TooLong(bits));
		}
		let base = BitPtr::<M, T, O>::new(addr, head)?;
		let last = base.wrapping_add(bits);
		if last < base {
			return Err(BitSpanError::TooHigh(addr.to_const()));
		}

		Ok(unsafe { Self::new_unchecked(addr, head, bits) })
	}

	/// Creates a new bit-span from its components, without any validity checks.
	///
	/// ## Safety
	///
	/// The caller must ensure that the arguments satisfy all the requirements
	/// outlined in [`::new()`]. The easiest way to ensure this is to only use
	/// this function to construct bit-spans from values extracted from
	/// bit-spans previously constructed through `::new()`.
	///
	/// This function **only** performs the value encoding. Invalid lengths will
	/// truncate, and invalid addresses may cause memory unsafety.
	///
	/// [`::new()`]: Self::new
	pub(crate) unsafe fn new_unchecked(
		addr: Address<M, T>,
		head: BitIdx<T::Mem>,
		bits: usize,
	) -> Self {
		let addr = addr.to_const().cast::<u8>();

		let head = head.into_inner() as usize;
		let ptr_data = addr as usize & Self::PTR_ADDR_MASK;
		let ptr_head = head >> Self::LEN_HEAD_BITS;

		let len_head = head & Self::LEN_HEAD_MASK;
		let len_bits = bits << Self::LEN_HEAD_BITS;

		/* See <https://github.com/bitvecto-rs/bitvec/issues/135#issuecomment-986357842>.
		 * This attempts to retain inbound provenance information and may help
		 * Miri better understand pointer operations this module performs.
		 *
		 * This performs `a + (p - a)` in `addr`’s provenance zone, which is
		 * numerically equivalent to `p` but does not require conjuring a new,
		 * uninformed, pointer value.
		 */
		let ptr_raw = ptr_data | ptr_head;
		let ptr = addr.wrapping_add(ptr_raw.wrapping_sub(addr as usize));

		Self {
			ptr: NonNull::new_unchecked(ptr.cast::<()>() as *mut ()),
			len: len_bits | len_head,
			..Self::EMPTY
		}
	}
}

/// Encoded fields.
impl<M, T, O> BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	/// Gets the base element address of the referent region.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The address of the starting element of the memory region. This address
	/// is weakly typed so that it can be cast by call sites to the most useful
	/// access type.
	pub(crate) fn address(&self) -> Address<M, T> {
		Address::new(unsafe {
			NonNull::new_unchecked(
				(self.ptr.as_ptr() as usize & Self::PTR_ADDR_MASK) as *mut T,
			)
		})
	}

	/// Overwrites the data pointer with a new address. This method does not
	/// perform safety checks on the new pointer.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `ptr`: The new address of the `BitSpan`’s domain.
	///
	/// # Safety
	///
	/// None. The invariants of [`::new`] must be checked at the caller.
	///
	/// [`::new`]: Self::new
	#[cfg(feature = "alloc")]
	pub(crate) unsafe fn set_address(&mut self, addr: Address<M, T>) {
		let mut addr_value = addr.to_const() as usize;
		addr_value &= Self::PTR_ADDR_MASK;
		addr_value |= self.ptr.as_ptr() as usize & Self::PTR_HEAD_MASK;
		self.ptr = NonNull::new_unchecked(addr_value as *mut ())
	}

	/// Gets the starting bit index of the referent region.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A [`BitIdx`] of the first live bit in the element at the
	/// [`self.address()`] address.
	///
	/// [`BitIdx`]: crate::index::BitIdx
	/// [`self.address()`]: Self::address
	pub(crate) fn head(&self) -> BitIdx<T::Mem> {
		let ptr = self.ptr.as_ptr() as usize;
		let ptr_head = (ptr & Self::PTR_HEAD_MASK) << Self::LEN_HEAD_BITS;
		let len_head = self.len & Self::LEN_HEAD_MASK;
		unsafe { BitIdx::new_unchecked((ptr_head | len_head) as u8) }
	}

	/// Writes a new `head` value into the pointer, with no other effects.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `head`: A new starting index.
	///
	/// # Effects
	///
	/// `head` is written into the `.head` logical field, without affecting
	/// `.addr` or `.bits`.
	#[cfg(feature = "alloc")]
	pub(crate) unsafe fn set_head(&mut self, head: BitIdx<T::Mem>) {
		let head = head.into_inner() as usize;
		let mut ptr = self.ptr.as_ptr() as usize;

		ptr &= Self::PTR_ADDR_MASK;
		ptr |= head >> Self::LEN_HEAD_BITS;
		self.ptr = NonNull::new_unchecked(ptr as *mut ());

		self.len &= !Self::LEN_HEAD_MASK;
		self.len |= head & Self::LEN_HEAD_MASK;
	}

	/// Gets the number of live bits in the described region.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A count of how many live bits the region pointer describes.
	pub(crate) fn len(&self) -> usize {
		self.len >> Self::LEN_HEAD_BITS
	}

	/// Sets the `.bits` logical member to a new value.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `len`: A new bit length. This must not be greater than
	///   [`REGION_MAX_BITS`].
	///
	/// # Effects
	///
	/// The `new_len` value is written directly into the `.bits` logical field.
	///
	/// [`REGION_MAX_BITS`]: Self::REGION_MAX_BITS
	pub(crate) unsafe fn set_len(&mut self, new_len: usize) {
		if cfg!(debug_assertions) {
			*self = Self::new(self.address(), self.head(), new_len).unwrap();
		}
		else {
			self.len &= Self::LEN_HEAD_MASK;
			self.len |= new_len << Self::LEN_HEAD_BITS;
		}
	}

	/// Gets the three logical components of the pointer.
	///
	/// The encoding is not public API, and direct field access is never
	/// supported.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// - `.0`: The base address of the referent memory region.
	/// - `.1`: The index of the first live bit in the first element of the
	///   region.
	/// - `.2`: The number of live bits in the region.
	pub(crate) fn raw_parts(&self) -> (Address<M, T>, BitIdx<T::Mem>, usize) {
		(self.address(), self.head(), self.len())
	}
}

/// Virtual fields.
impl<M, T, O> BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	/// Computes the number of elements, starting at [`self.address()`], that
	/// the region touches.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The count of all elements, starting at [`self.address()`], that contain
	/// live bits included in the referent region.
	///
	/// [`self.address()`]: Self::address
	pub(crate) fn elements(&self) -> usize {
		crate::mem::elts::<T>(self.len() + self.head().into_inner() as usize)
	}

	/// Computes the tail index for the first dead bit after the live bits.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A `BitEnd` that is the index of the first dead bit after the last live
	/// bit in the last element. This will almost always be in the range `1 ..=
	/// T::Mem::BITS`.
	///
	/// It will be zero only when `self` is empty.
	pub(crate) fn tail(&self) -> BitEnd<T::Mem> {
		let (head, len) = (self.head(), self.len());
		let (_, tail) = head.span(len);
		tail
	}
}

/// Conversions.
impl<M, T, O> BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	/// Casts the span to another element type.
	///
	/// This does not alter the encoded value of the pointer! It only
	/// reinterprets the element type, and the encoded value may shift
	/// significantly in the result type. Use with caution.
	pub(crate) fn cast<U>(self) -> BitSpan<M, U, O>
	where U: BitStore {
		let Self { ptr, len, .. } = self;
		BitSpan {
			ptr,
			len,
			..BitSpan::EMPTY
		}
	}

	/// Reäligns a bit-span to a different base memory type.
	///
	/// ## Original
	///
	/// [`slice::align_to`](https://doc.rust-lang.org/std/primitive.slice.html#method.align_to)
	///
	/// ## Safety
	///
	/// `U` must have the same type family as `T`. It is illegal to use this
	/// method to cast away alias safeties such as an atomic or `Cell` wrapper.
	pub(crate) unsafe fn align_to<U>(self) -> (Self, BitSpan<M, U, O>, Self)
	where U: BitStore {
		/* This function body implements the algorithm locally, rather than
		 * delegating to the standard library’s `<[T]>::align_to::<U>`
		 * function, because that requires use of memory references, and
		 * `BitSpan` does not require that its values be valid for
		 * dereference.
		 */
		let this = self.to_bitptr();
		//  Counter for how many bits remain in the span.
		let mut rem = self.len();
		//  The *byte* alignment of `U`.
		let align = mem::align_of::<U>();
		//  1. Get the number of bits between `self.head()` and the start of a
		//     `[U]` region.
		let step = this.align_offset(align);
		//  If this count is more than the available bits, quit.
		if step > rem {
			return (self, BitSpan::EMPTY, Self::EMPTY);
		}
		let left = this.span_unchecked(step);
		rem -= step;

		let mid_base =
			this.add(step).address().cast::<U>().pipe(|addr| {
				BitPtr::<M, U, O>::new_unchecked(addr, BitIdx::MIN)
			});
		let mid_elts = rem >> <U::Mem as BitRegister>::INDX;
		let excess = rem & <U::Mem as BitRegister>::MASK as usize;
		let step = rem - excess;
		let mid = mid_base.span_unchecked(step);

		let right_base =
			mid_base.address().add(mid_elts).cast::<T>().pipe(|addr| {
				BitPtr::<M, T, O>::new_unchecked(addr, BitIdx::MIN)
			});
		let right = right_base.span_unchecked(excess);

		(left, mid, right)
	}

	/// Casts a mutable bit-slice pointer into its structural representation.
	pub(crate) fn from_bitslice_ptr_mut(raw: *mut BitSlice<T, O>) -> Self {
		let BitSpan { ptr, len, .. } =
			BitSpan::from_bitslice_ptr(raw as *const BitSlice<T, O>);
		Self {
			ptr,
			len,
			..Self::EMPTY
		}
	}

	/// Converts the span descriptor into a raw `BitSlice` pointer.
	///
	/// This is a noöp.
	pub(crate) fn into_bitslice_ptr(self) -> *const BitSlice<T, O> {
		let Self { ptr, len, .. } = self;
		ptr::slice_from_raw_parts(ptr.as_ptr(), len) as *const BitSlice<T, O>
	}

	/// Converts the span descriptor into a shared `BitSlice` reference.
	///
	/// This is a noöp.
	///
	/// ## Safety
	///
	/// The span must describe memory that is safe to dereference, and to which
	/// no `&mut BitSlice` references exist.
	pub(crate) unsafe fn into_bitslice_ref<'a>(self) -> &'a BitSlice<T, O> {
		&*self.into_bitslice_ptr()
	}

	/// Produces a bit-pointer to the start of the span.
	///
	/// This is **not** a noöp: the base address and starting bit index are
	/// decoded into the bit-pointer structure.
	pub(crate) fn to_bitptr(self) -> BitPtr<M, T, O> {
		unsafe { BitPtr::new_unchecked(self.address(), self.head()) }
	}

	/// Produces a bit-pointer range to either end of the span.
	///
	/// This is **not** a noöp: all three logical fields are decoded in order to
	/// construct the range.
	pub(crate) fn to_bitptr_range(self) -> BitPtrRange<M, T, O> {
		let start = self.to_bitptr();
		let end = unsafe { start.add(self.len()) };
		BitPtrRange { start, end }
	}

	/// Converts the span descriptor into an `Address<>` generic pointer.
	///
	/// This is a noöp.
	pub(crate) fn to_bitslice_addr(self) -> Address<M, BitSlice<T, O>> {
		(self.into_bitslice_ptr() as *mut BitSlice<T, O>)
			.pipe(|ptr| unsafe { NonNull::new_unchecked(ptr) })
			.pipe(Address::new)
	}

	/// Converts the span descriptor into a `Reference<>` generic handle.
	///
	/// This is a noöp.
	pub(crate) fn to_bitslice<'a>(self) -> Reference<'a, M, BitSlice<T, O>>
	where Address<M, BitSlice<T, O>>: Referential<'a> {
		unsafe { self.to_bitslice_addr().to_ref() }
	}
}

/// Conversions.
impl<T, O> BitSpan<Const, T, O>
where
	T: BitStore,
	O: BitOrder,
{
	/// Creates a `Const` span descriptor from a `const` bit-slice pointer.
	pub(crate) fn from_bitslice_ptr(raw: *const BitSlice<T, O>) -> Self {
		let slice_nn = match NonNull::new(raw as *const [()] as *mut [()]) {
			Some(nn) => nn,
			None => return Self::EMPTY,
		};
		let ptr = slice_nn.cast::<()>();
		let len = unsafe { slice_nn.as_ref() }.len();
		Self {
			ptr,
			len,
			..Self::EMPTY
		}
	}
}

/// Conversions.
impl<T, O> BitSpan<Mut, T, O>
where
	T: BitStore,
	O: BitOrder,
{
	/// Converts the span descriptor into a raw mutable `BitSlice` pointer.
	///
	/// This is a noöp.
	pub(crate) fn into_bitslice_ptr_mut(self) -> *mut BitSlice<T, O> {
		self.into_bitslice_ptr() as *mut BitSlice<T, O>
	}

	/// Converts the span descriptor into an exclusive `BitSlice` reference.
	///
	/// This is a noöp.
	///
	/// ## Safety
	///
	/// The span must describe memory that is safe to dereference. In addition,
	/// no other `BitSlice` reference of any kind (`&` or `&mut`) may exist.
	pub(crate) unsafe fn into_bitslice_mut<'a>(self) -> &'a mut BitSlice<T, O> {
		&mut *self.into_bitslice_ptr_mut()
	}
}

/// Utilities.
impl<M, T, O> BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	/// Checks if a requested length can be encoded into the `BitSpan`.
	///
	/// This is `len <= Self::REGION_MAX_BITS`.
	#[cfg(feature = "alloc")]
	pub(crate) fn len_encodable(len: usize) -> bool {
		len <= Self::REGION_MAX_BITS
	}

	/// Renders the pointer structure into a formatter for use during
	/// higher-level type [`Debug`] implementations.
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `fmt`: The formatter into which the pointer is rendered.
	/// - `name`: The suffix of the structure rendering its pointer. The `Bit`
	///   prefix is applied to the object type name in this format.
	/// - `fields`: Any additional fields in the object’s debug info to be
	///   rendered.
	///
	/// # Returns
	///
	/// The result of formatting the pointer into the receiver.
	///
	/// # Behavior
	///
	/// This function writes `Bit{name}<{ord}, {type}> {{ {fields } }}` into the
	/// `fmt` formatter, where `{fields}` includes the address, head index, and
	/// bit length of the pointer, as well as any additional fields provided by
	/// the caller.
	///
	/// Higher types in the crate should use this function to drive their
	/// [`Debug`] implementations, and then use [`BitSlice`]’s list formatters
	/// to display their buffer contents.
	///
	/// [`BitSlice`]: crate::slice::BitSlice
	/// [`Debug`]: core::fmt::Debug
	pub(crate) fn render<'a>(
		&'a self,
		fmt: &'a mut Formatter,
		name: &'a str,
		fields: impl IntoIterator<Item = &'a (&'a str, &'a dyn Debug)>,
	) -> fmt::Result {
		write!(
			fmt,
			"Bit{}<{}, {}>",
			name,
			any::type_name::<T::Mem>(),
			any::type_name::<O>(),
		)?;
		let mut builder = fmt.debug_struct("");
		builder
			.field("addr", &self.address().fmt_pointer())
			.field("head", &self.head().fmt_binary())
			.field("bits", &self.len());
		for (name, value) in fields {
			builder.field(name, value);
		}
		builder.finish()
	}
}

#[cfg(not(tarpaulin_include))]
impl<M, T, O> Clone for BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	#[inline]
	fn clone(&self) -> Self {
		*self
	}
}

impl<M1, M2, O, T1, T2> PartialEq<BitSpan<M2, T2, O>> for BitSpan<M1, T1, O>
where
	M1: Mutability,
	M2: Mutability,
	O: BitOrder,
	T1: BitStore,
	T2: BitStore,
{
	#[inline]
	fn eq(&self, other: &BitSpan<M2, T2, O>) -> bool {
		let (addr_a, head_a, bits_a) = self.raw_parts();
		let (addr_b, head_b, bits_b) = other.raw_parts();
		bits_of::<T1::Mem>() == bits_of::<T2::Mem>()
			&& addr_a.to_const() as usize == addr_b.to_const() as usize
			&& head_a.into_inner() == head_b.into_inner()
			&& bits_a == bits_b
	}
}

impl<T, O> From<&BitSlice<T, O>> for BitSpan<Const, T, O>
where
	T: BitStore,
	O: BitOrder,
{
	#[inline]
	fn from(bits: &BitSlice<T, O>) -> Self {
		Self::from_bitslice_ptr(bits)
	}
}

impl<T, O> From<&mut BitSlice<T, O>> for BitSpan<Mut, T, O>
where
	T: BitStore,
	O: BitOrder,
{
	#[inline]
	fn from(bits: &mut BitSlice<T, O>) -> Self {
		Self::from_bitslice_ptr_mut(bits)
	}
}

#[cfg(not(tarpaulin_include))]
impl<M, T, O> Default for BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	#[inline]
	fn default() -> Self {
		Self::EMPTY
	}
}

impl<M, T, O> Debug for BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		self.render(fmt, "Span", None)
	}
}

impl<M, T, O> Pointer for BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Pointer::fmt(&self.address(), fmt)?;
		fmt.write_str("(")?;
		Binary::fmt(&self.head(), fmt)?;
		fmt.write_str(")[")?;
		Display::fmt(&self.len(), fmt)?;
		fmt.write_str("]")
	}
}

impl<M, T, O> Copy for BitSpan<M, T, O>
where
	M: Mutability,
	T: BitStore,
	O: BitOrder,
{
}

/// An error produced when creating `BitSpan` encoded references.
#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum BitSpanError<T>
where T: BitStore
{
	/// A null pointer was provided.
	Null(NullPtrError),
	/// The base element pointer is not aligned.
	Misaligned(MisalignError<T>),
	/// The requested length exceeds the `BitSpan` length ceiling.
	TooLong(usize),
	/// The requested address is too high, and wraps to zero.
	TooHigh(*const T),
}

#[cfg(not(tarpaulin_include))]
impl<T> From<BitPtrError<T>> for BitSpanError<T>
where T: BitStore
{
	#[inline]
	fn from(err: BitPtrError<T>) -> Self {
		match err {
			BitPtrError::Null(err) => Self::Null(err),
			BitPtrError::Misaligned(err) => Self::Misaligned(err),
		}
	}
}

#[cfg(not(tarpaulin_include))]
impl<T> From<MisalignError<T>> for BitSpanError<T>
where T: BitStore
{
	#[inline]
	fn from(err: MisalignError<T>) -> Self {
		Self::Misaligned(err)
	}
}

#[cfg(not(tarpaulin_include))]
impl<T> Debug for BitSpanError<T>
where T: BitStore
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "BitSpanError<{}>::", any::type_name::<T::Mem>())?;
		match self {
			Self::Null(err) => fmt.debug_tuple("Null").field(&err).finish(),
			Self::Misaligned(err) => {
				fmt.debug_tuple("Misaligned").field(&err).finish()
			},
			Self::TooLong(len) => fmt.debug_tuple("TooLong").field(len).finish(),
			Self::TooHigh(addr) => {
				fmt.debug_tuple("TooHigh").field(addr).finish()
			},
		}
	}
}

#[cfg(not(tarpaulin_include))]
impl<T> Display for BitSpanError<T>
where T: BitStore
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		match self {
			Self::Null(err) => Display::fmt(err, fmt),
			Self::Misaligned(err) => Display::fmt(err, fmt),
			Self::TooLong(len) => write!(
				fmt,
				"Length {} is too long to encode in a bit-slice, which can \
				 only accept {} bits",
				len,
				BitSpan::<Const, T, Lsb0>::REGION_MAX_BITS,
			),
			Self::TooHigh(addr) => write!(
				fmt,
				"Address {:p} is too high, and produces a span that wraps \
				 around to the zero address.",
				addr,
			),
		}
	}
}

unsafe impl<T> Send for BitSpanError<T> where T: BitStore {}

unsafe impl<T> Sync for BitSpanError<T> where T: BitStore {}

#[cfg(feature = "std")]
impl<T> std::error::Error for BitSpanError<T> where T: BitStore {}