oorandom/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
//! A tiny, robust PRNG implementation.
//!
//! More specifically, it implements a single GOOD PRNG algorithm,
//! which is currently a permuted congruential generator.  It has two
//! implementations, one that returns `u32` and one that returns
//! `u64`.  It also has functions that return floats or integer
//! ranges.  And that's it.  What more do you need?
//!
//! For more info on PCG generators, see http://www.pcg-random.org/
//!
//! This was designed as a minimalist utility for video games.  No
//! promises are made about its quality, and if you use it for
//! cryptography you will get what you deserve.
//!
//! Works with `#![no_std]`, has no global state, no dependencies
//! apart from some in the unit tests, and is generally neato.

#![forbid(unsafe_code)]
#![forbid(missing_docs)]
#![forbid(missing_debug_implementations)]
#![forbid(unused_results)]
#![no_std]
use core::ops::Range;

/// A PRNG producing a 32-bit output.
///
/// The current implementation is `PCG-XSH-RR`.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Rand32 {
    state: u64,
    inc: u64,
}

impl Rand32 {
    /// The default value for `increment`.
    /// This is basically arbitrary, it comes from the
    /// PCG reference C implementation:
    /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L284
    pub const DEFAULT_INC: u64 = 1442695040888963407;

    /// This is the number that you have to Really Get Right.
    ///
    /// The value used here is from the PCG C implementation:
    /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L278
    pub(crate) const MULTIPLIER: u64 = 6364136223846793005;

    /// Creates a new PRNG with the given seed and a default increment.
    pub fn new(seed: u64) -> Self {
        Self::new_inc(seed, Self::DEFAULT_INC)
    }

    /// Creates a new PRNG.  The two inputs, `seed` and `increment`,
    /// determine what you get; `increment` basically selects which
    /// sequence of all those possible the PRNG will produce, and the
    /// `seed` selects where in that sequence you start.
    ///
    /// Both are arbitrary; increment must be an odd number but this
    /// handles that for you
    pub fn new_inc(seed: u64, increment: u64) -> Self {
        let mut rng = Self {
            state: 0,
            inc: increment.wrapping_shl(1) | 1,
        };
        // This initialization song-and-dance is a little odd,
        // but seems to be just how things go.
        let _ = rng.rand_u32();
        rng.state = rng.state.wrapping_add(seed);
        let _ = rng.rand_u32();
        rng
    }

    /// Returns the internal state of the PRNG.  This allows
    /// you to save a PRNG and create a new one that will resume
    /// from the same spot in the sequence.
    pub fn state(&self) -> (u64, u64) {
        (self.state, self.inc)
    }

    /// Creates a new PRNG from a saved state from `Rand32::state()`.
    /// This is NOT quite the same as `new_inc()` because `new_inc()` does
    /// a little extra setup work to initialize the state.
    pub fn from_state(state: (u64, u64)) -> Self {
        let (state, inc) = state;
        Self { state, inc }
    }

    /// Produces a random `u32` in the range `[0, u32::MAX]`.
    pub fn rand_u32(&mut self) -> u32 {
        let oldstate: u64 = self.state;
        self.state = oldstate
            .wrapping_mul(Self::MULTIPLIER)
            .wrapping_add(self.inc);
        let xorshifted: u32 = (((oldstate >> 18) ^ oldstate) >> 27) as u32;
        let rot: u32 = (oldstate >> 59) as u32;
        xorshifted.rotate_right(rot)
    }

    /// Produces a random `i32` in the range `[i32::MIN, i32::MAX]`.
    pub fn rand_i32(&mut self) -> i32 {
        self.rand_u32() as i32
    }

    /// Produces a random `f32` in the range `[0.0, 1.0)`.
    pub fn rand_float(&mut self) -> f32 {
        // This impl was taken more or less from `rand`, see
        // <https://docs.rs/rand/0.7.0/src/rand/distributions/float.rs.html#104-117>
        // There MAY be better ways to do this, see:
        // https://mumble.net/~campbell/2014/04/28/uniform-random-float
        // https://mumble.net/~campbell/2014/04/28/random_real.c
        // https://github.com/Lokathor/randomize/issues/34
        const TOTAL_BITS: u32 = 32;
        const PRECISION: u32 = core::f32::MANTISSA_DIGITS + 1;
        const MANTISSA_SCALE: f32 = 1.0 / ((1u32 << PRECISION) as f32);
        let mut u = self.rand_u32();
        u >>= TOTAL_BITS - PRECISION;
        u as f32 * MANTISSA_SCALE
    }

    /// Produces a random within the given bounds.  Like any `Range`,
    /// it includes the lower bound and excludes the upper one.
    ///
    /// This should be faster than `Self::rand() % end + start`, but the
    /// real advantage is it's more convenient.  Requires that
    /// `range.end <= range.start`.
    pub fn rand_range(&mut self, range: Range<u32>) -> u32 {
        // This is harder to do well than it looks, it seems.  I don't
        // trust Lokathor's implementation 'cause I don't understand
        // it, so I went to numpy's, which points me to "Lemire's
        // rejection algorithm": http://arxiv.org/abs/1805.10941
        //
        // Algorithms 3, 4 and 5 in that paper all seem fine modulo
        // minor performance differences, so this is algorithm 5.
        // It uses numpy's implementation, `buffered_bounded_lemire_uint32()`

        debug_assert!(range.start < range.end);
        let range_starting_from_zero = 0..(range.end - range.start);

        let s: u32 = range_starting_from_zero.end;
        let mut m: u64 = u64::from(self.rand_u32()) * u64::from(s);
        let mut leftover: u32 = (m & 0xFFFF_FFFF) as u32;

        if leftover < s {
            // TODO: verify the wrapping_neg() here
            let threshold: u32 = s.wrapping_neg() % s;
            while leftover < threshold {
                m = u64::from(self.rand_u32()).wrapping_mul(u64::from(s));
                leftover = (m & 0xFFFF_FFFF) as u32;
            }
        }
        (m >> 32) as u32 + range.start
    }
}

/// A PRNG producing a 64-bit output.
///
/// The current implementation is `PCG-XSH-RR`.
// BUGGO: The recommended algorithm is PCG-XSL-RR?
// See https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L2405
// Not sure if it matters?
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Rand64 {
    state: u128,
    inc: u128,
}

impl Rand64 {
    /// The default value for `increment`.
    ///
    /// The value used here is from the PCG default C implementation: http://www.pcg-random.org/download.html
    pub const DEFAULT_INC: u128 = 0x2FE0E169_FFBD06E3_5BC307BD_4D2F814F;

    /// This is the number that you have to Really Get Right.
    ///
    /// The value used here is from the PCG C implementation:
    /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L288
    pub(crate) const MULTIPLIER: u128 = 47026247687942121848144207491837523525;

    /// Creates a new PRNG with the given seed and a default increment.
    pub fn new(seed: u128) -> Self {
        Self::new_inc(seed, Self::DEFAULT_INC)
    }

    /// Same as `Rand32::new_inc()`
    fn new_inc(seed: u128, increment: u128) -> Self {
        let mut rng = Self {
            state: 0,
            inc: increment.wrapping_shl(1) | 1,
        };
        let _ = rng.rand_u64();
        rng.state = rng.state.wrapping_add(seed);
        let _ = rng.rand_u64();
        rng
    }

    /// Returns the internal state of the PRNG.  This allows
    /// you to save a PRNG and create a new one that will resume
    /// from the same spot in the sequence.
    pub fn state(&self) -> (u128, u128) {
        (self.state, self.inc)
    }

    /// Creates a new PRNG from a saved state from `Rand32::state()`.
    /// This is NOT quite the same as `new_inc()` because `new_inc()` does
    /// a little extra setup work to initialize the state.
    pub fn from_state(state: (u128, u128)) -> Self {
        let (state, inc) = state;
        Self { state, inc }
    }

    /// Produces a random `u64` in the range`[0, u64::MAX]`.
    pub fn rand_u64(&mut self) -> u64 {
        let oldstate: u128 = self.state;
        self.state = oldstate
            .wrapping_mul(Self::MULTIPLIER)
            .wrapping_add(self.inc);
        let xorshifted: u64 = (((oldstate >> 29) ^ oldstate) >> 58) as u64;
        let rot: u32 = (oldstate >> 122) as u32;
        xorshifted.rotate_right(rot)
    }

    /// Produces a random `i64` in the range `[i64::MIN, i64::MAX]`.
    pub fn rand_i64(&mut self) -> i64 {
        self.rand_u64() as i64
    }

    /// Produces a random `f64` in the range `[0.0, 1.0)`.
    pub fn rand_float(&mut self) -> f64 {
        const TOTAL_BITS: u32 = 64;
        const PRECISION: u32 = core::f64::MANTISSA_DIGITS + 1;
        const MANTISSA_SCALE: f64 = 1.0 / ((1u64 << PRECISION) as f64);
        let mut u = self.rand_u64();
        u >>= TOTAL_BITS - PRECISION;
        u as f64 * MANTISSA_SCALE
    }

    /// Produces a random within the given bounds.  Like any `Range`,
    /// it includes the lower bound and excludes the upper one.
    ///
    /// This should be faster than `Self::rand() % end + start`, but the
    /// real advantage is it's more convenient.  Requires that
    /// `range.end <= range.start`.
    pub fn rand_range(&mut self, range: Range<u64>) -> u64 {
        // Same as `Rand32::rand_range()`
        debug_assert!(range.start < range.end);
        let range_starting_from_zero = 0..(range.end - range.start);

        let s: u64 = range_starting_from_zero.end;
        let mut m: u128 = u128::from(self.rand_u64()) * u128::from(s);
        let mut leftover: u64 = (m & 0xFFFFFFFF_FFFFFFFF) as u64;

        if leftover < s {
            // TODO: Verify the wrapping_negate() here
            let threshold: u64 = s.wrapping_neg() % s;
            while leftover < threshold {
                m = u128::from(self.rand_u64()) * u128::from(s);
                leftover = (m & 0xFFFFFFFF_FFFFFFFF) as u64;
            }
        }
        (m.wrapping_shr(64)) as u64
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use randomize::{self, PCG32, PCG64};

    #[test]
    fn test_rand32_vs_randomize() {
        // Generate some random numbers and validate them against
        // a known-good generator.
        {
            let seed = 54321;
            let mut r1 = Rand32::new(seed);
            let mut r2 = PCG32::seed(seed, Rand32::DEFAULT_INC);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u32(), r2.next_u32());
            }
        }

        {
            let seed = 3141592653;
            let inc = 0xDEADBEEF;
            let mut r1 = Rand32::new_inc(seed, inc);
            let mut r2 = PCG32::seed(seed, inc);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u32(), r2.next_u32());
            }
        }
    }

    #[test]
    fn test_rand64_vs_randomize() {
        // Generate some random numbers and validate them against
        // a known-good generator.
        {
            let seed = 54321;
            let mut r1 = Rand64::new(seed);
            let mut r2 = PCG64::seed(seed, Rand64::DEFAULT_INC);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u64(), r2.next_u64());
            }
        }

        {
            let seed = 3141592653;
            let inc = 0xDEADBEEF;
            let mut r1 = Rand64::new_inc(seed, inc);
            let mut r2 = PCG64::seed(seed, inc);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u64(), r2.next_u64());
            }
        }
    }

    #[test]
    fn test_float32() {
        {
            let seed = 2718281828;
            let mut r1 = Rand32::new(seed);
            let mut r2 = PCG32::seed(seed, Rand32::DEFAULT_INC);
            for _ in 0..1000 {
                // First just make sure they both work with randomize's
                // f32 conversion function -- sanity checks.
                let i1 = r1.rand_u32();
                let i2 = r2.next_u32();
                assert_eq!(i1, i2);
                let f1 = randomize::f32_half_open_right(i1);
                let f2 = randomize::f32_half_open_right(i2);
                // We can directly compare floats 'cause we do no math, it's
                // literally the same bitwise algorithm with the same inputs.
                assert_eq!(f1, f2);

                // Make sure result is in [0.0, 1.0)
                assert!(f1 >= 0.0);
                assert!(f1 < 1.0);
            }

            /*
            TODO: Randomize changed its int-to-float conversion functions and now they don't
            match ours.
                        for _ in 0..1000 {
                            // Now make sure our own float conversion function works.
                            let f1 = r1.rand_float();
                            //let f2 = randomize::f32_half_open_right(r2.next_u32());
                            let f2 = randomize::f32_open(r2.next_u32());
                            assert_eq!(f1, f2);
                            assert!(f1 >= 0.0);
                            assert!(f1 < 1.0);
                        }
                         */
        }
    }

    #[test]
    fn test_float64() {
        {
            let seed = 2718281828;
            let mut r1 = Rand64::new(seed);
            let mut r2 = PCG64::seed(seed, Rand64::DEFAULT_INC);
            for _ in 0..1000 {
                // First just make sure they both work with randomize's
                // f64 conversion function -- sanity checks.
                let i1 = r1.rand_u64();
                let i2 = r2.next_u64();
                assert_eq!(i1, i2);
                let f1 = randomize::f64_half_open_right(i1);
                let f2 = randomize::f64_half_open_right(i2);
                // We can directly compare floats 'cause we do no math, it's
                // literally the same bitwise algorithm with the same inputs.
                assert_eq!(f1, f2);

                // Make sure result is in [0.0, 1.0)
                assert!(f1 >= 0.0);
                assert!(f1 < 1.0);
            }

            /*
            TODO: Randomize changed its int-to-float conversion functions and now they don't
            match ours.
                        for _ in 0..1000 {
                            // Now make sure our own float conversion function works.
                            let f1 = r1.rand_float();
                            //let f2 = randomize::f32_half_open_right(r2.next_u32());
                            let f2 = randomize::f32_open(r2.next_u32());
                            assert_eq!(f1, f2);
                            assert!(f1 >= 0.0);
                            assert!(f1 < 1.0);
                        }
                         */
        }
    }

    #[test]
    fn test_randrange() {
        // Make sure ranges are valid and in the given range
        let seed = 2342_4223;
        let mut r1 = Rand32::new(seed);
        for _ in 0..1000 {
            // Generate our bounds at random
            let a = r1.rand_u32();
            let b = r1.rand_u32();
            if a == b {
                continue;
            }
            let (low, high) = if a < b { (a, b) } else { (b, a) };

            // Get a number in that range
            let in_range = r1.rand_range(low..high);
            assert!(in_range >= low);
            assert!(in_range < high);
        }
    }

    #[test]
    fn test_rand32_vs_rand() {
        use rand_core::RngCore;
        use rand_pcg;
        {
            let seed = 54321;
            let mut r1 = Rand32::new(seed);
            let mut r2 = rand_pcg::Pcg32::new(seed, Rand32::DEFAULT_INC);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u32(), r2.next_u32());
            }
        }

        {
            let seed = 3141592653;
            let inc = 0xDEADBEEF;
            let mut r1 = Rand32::new_inc(seed, inc);
            let mut r2 = rand_pcg::Pcg32::new(seed, inc);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u32(), r2.next_u32());
            }
        }
    }

    // This doesn't work 'cause for 64-bit output `rand` uses
    // PCG-XSL-RR
    // and we use
    // PCG-XSH-RR
    /*
        #[test]
        fn test_rand64_vs_rand() {
            use rand_pcg;
            use rand_core::RngCore;
            {
                let seed = 54321;
                let mut r1 = Rand64::new(seed);
                let mut r2 = rand_pcg::Pcg64::new(seed, Rand64::DEFAULT_INC);
                for _ in 0..1000 {
                    assert_eq!(r1.rand(), r2.next_u64());
                }
            }

            {
                let seed = 3141592653;
                let inc = 0xDEADBEEF;
                let mut r1 = Rand64::new_inc(seed, inc);
                let mut r2 = rand_pcg::Pcg64::new(seed, inc);
                for _ in 0..1000 {
                    assert_eq!(r1.rand(), r2.next_u64());
                }
            }
        }
    */

    // Test vs. random-fast-rng, which I will call rfr
    // rfr's float conversion uses yet a different algorithm
    // than ours, so we can't really check that.
    #[test]
    fn test_rand32_vs_rfr() {
        use random_fast_rng as rfr;
        use rfr::Random;
        {
            let seed = 54321;
            let mut r1 = Rand32::new(seed);
            let mut r2 = rfr::FastRng::seed(seed, Rand32::DEFAULT_INC);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u32(), r2.get_u32());
            }
        }

        {
            let seed = 3141592653;
            let inc = 0xDEADBEEF;
            let mut r1 = Rand32::new_inc(seed, inc);
            let mut r2 = rfr::FastRng::seed(seed, inc);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u32(), r2.get_u32());
            }
        }
    }

    /// Make sure that saving a RNG state and restoring
    /// it works.
    /// See https://todo.sr.ht/~icefox/oorandom/1
    #[test]
    fn test_save_restore() {
        {
            let seed = 54321;
            let mut r1 = Rand32::new(seed);
            let s1 = r1.state();
            let mut r2 = Rand32::from_state(s1);
            assert_eq!(r1, r2);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u32(), r2.rand_u32());
            }
        }

        {
            let seed = 3141592653;
            let inc = 0xDEADBEEF;
            let mut r1 = Rand32::new_inc(seed, inc);
            let s1 = r1.state();
            let mut r2 = Rand32::from_state(s1);
            assert_eq!(r1, r2);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u32(), r2.rand_u32());
            }
        }

        {
            let seed = 54321;
            let mut r1 = Rand64::new(seed);
            let s1 = r1.state();
            let mut r2 = Rand64::from_state(s1);
            assert_eq!(r1, r2);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u64(), r2.rand_u64());
            }
        }

        {
            let seed = 3141592653;
            let inc = 0xDEADBEEF;
            let mut r1 = Rand64::new_inc(seed, inc);
            let s1 = r1.state();
            let mut r2 = Rand64::from_state(s1);
            assert_eq!(r1, r2);
            for _ in 0..1000 {
                assert_eq!(r1.rand_u64(), r2.rand_u64());
            }
        }
    }
}