1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Apache Arrow encodings and utils for persist data
use std::ptr::NonNull;
use std::sync::Arc;
use std::sync::LazyLock;
use arrow::array::{make_array, Array, ArrayData, ArrayRef, AsArray};
use arrow::buffer::{BooleanBuffer, Buffer, NullBuffer};
use arrow::datatypes::{DataType, Field, Schema, ToByteSlice};
use mz_dyncfg::Config;
use mz_ore::iter::IteratorExt;
use crate::indexed::columnar::{ColumnarRecords, ColumnarRecordsStructuredExt};
use crate::metrics::ColumnarMetrics;
/// The Arrow schema we use to encode ((K, V), T, D) tuples.
///
/// Both Time and Diff are presented externally to persist users as a type
/// parameter that implements [mz_persist_types::Codec64]. Our columnar format
/// intentionally stores them both as i64 columns (as opposed to something like
/// a fixed width binary column) because this allows us additional compression
/// options.
///
/// Also note that we intentionally use an i64 over a u64 for Time. Over the
/// range `[0, i64::MAX]`, the bytes are the same and we've talked at various
/// times about changing Time in mz to an i64. Both millis since unix epoch and
/// nanos since unix epoch easily fit into this range (the latter until some
/// time after year 2200). Using a i64 might be a pessimization for a
/// non-realtime mz source with u64 timestamps in the range `(i64::MAX,
/// u64::MAX]`, but realtime sources are overwhelmingly the common case.
pub static SCHEMA_ARROW_RS_KVTD: LazyLock<Arc<Schema>> = LazyLock::new(|| {
let schema = Schema::new(vec![
Field::new("k", DataType::Binary, false),
Field::new("v", DataType::Binary, false),
Field::new("t", DataType::Int64, false),
Field::new("d", DataType::Int64, false),
]);
Arc::new(schema)
});
/// Converts a [`ColumnarRecords`] into `(K, V, T, D)` [`arrow`] columns.
pub fn encode_arrow_batch_kvtd(x: &ColumnarRecords) -> Vec<arrow::array::ArrayRef> {
let key = x.key_data.clone();
let val = x.val_data.clone();
let ts = x.timestamps.clone();
let diff = x.diffs.clone();
vec![Arc::new(key), Arc::new(val), Arc::new(ts), Arc::new(diff)]
}
/// Converts a [`ColumnarRecords`] and [`ColumnarRecordsStructuredExt`] pair
/// (aka [`BlobTraceUpdates::Both`]) into [`arrow::array::Array`]s with columns
/// [(K, V, T, D, K_S, V_S)].
///
/// [`BlobTraceUpdates::Both`]: crate::indexed::encoding::BlobTraceUpdates::Both
pub fn encode_arrow_batch_kvtd_ks_vs(
records: &ColumnarRecords,
structured: &ColumnarRecordsStructuredExt,
) -> (Vec<Arc<Field>>, Vec<Arc<dyn Array>>) {
let mut fields: Vec<_> = (*SCHEMA_ARROW_RS_KVTD).fields().iter().cloned().collect();
let mut arrays = encode_arrow_batch_kvtd(records);
{
let key_array = &structured.key;
let key_field = Field::new("k_s", key_array.data_type().clone(), false);
fields.push(Arc::new(key_field));
arrays.push(Arc::clone(key_array));
}
{
let val_array = &structured.val;
let val_field = Field::new("v_s", val_array.data_type().clone(), false);
fields.push(Arc::new(val_field));
arrays.push(Arc::clone(val_array));
}
(fields, arrays)
}
pub(crate) const ENABLE_ARROW_LGALLOC_CC_SIZES: Config<bool> = Config::new(
"persist_enable_arrow_lgalloc_cc_sizes",
true,
"An incident flag to disable copying decoded arrow data into lgalloc on cc sized clusters.",
);
pub(crate) const ENABLE_ARROW_LGALLOC_NONCC_SIZES: Config<bool> = Config::new(
"persist_enable_arrow_lgalloc_noncc_sizes",
false,
"A feature flag to enable copying decoded arrow data into lgalloc on non-cc sized clusters.",
);
fn realloc_data(data: ArrayData, nullable: bool, metrics: &ColumnarMetrics) -> ArrayData {
// NB: Arrow generally aligns buffers very coarsely: see arrow::alloc::ALIGNMENT.
// However, lgalloc aligns buffers even more coarsely - to the page boundary -
// so we never expect alignment issues in practice. If that changes, build()
// will return an error below, as it does for all invalid data.
let buffers = data
.buffers()
.iter()
.map(|b| realloc_buffer(b, metrics))
.collect();
let child_data = {
let field_iter = mz_persist_types::arrow::fields_for_type(data.data_type()).iter();
let child_iter = data.child_data().iter();
field_iter
.zip(child_iter)
.map(|(f, d)| realloc_data(d.clone(), f.is_nullable(), metrics))
.collect()
};
let nulls = if nullable {
data.nulls().map(|n| {
let buffer = realloc_buffer(n.buffer(), metrics);
NullBuffer::new(BooleanBuffer::new(buffer, n.offset(), n.len()))
})
} else {
if data.nulls().is_some() {
// This is a workaround for: https://github.com/apache/arrow-rs/issues/6510
// It should always be safe to drop the null buffer for a non-nullable field, since
// any nulls cannot possibly represent real data and thus must be masked off at
// some higher level. We always realloc data we get back from parquet, so this is
// a convenient and efficient place to do the rewrite.
// Why does this help? Parquet decoding can generate nulls in non-nullable fields
// that are only masked by eg. a grandparent, not the direct parent... but some arrow
// code expects the parent to mask any nulls in its non-nullable children. Dropping
// the buffer here prevents those validations from failing. (Top-level arrays are always
// marked nullable, but since they don't have parents that's not a problem either.)
metrics.parquet.elided_null_buffers.inc();
}
None
};
// Note that `build` only performs shallow validations, but since we rebuild the array
// recursively we will have performed the equivalent of `ArrayData::validation_full` on
// the output.
data.into_builder()
.buffers(buffers)
.child_data(child_data)
.nulls(nulls)
.build()
.expect("reconstructing valid arrow array")
}
/// Re-allocate the backing storage for a specific array using lgalloc, if it's configured.
/// (And hopefully-temporarily work around a parquet decoding issue upstream.)
pub fn realloc_array<A: Array + From<ArrayData>>(array: &A, metrics: &ColumnarMetrics) -> A {
let data = array.to_data();
// Top-level arrays are always nullable.
let data = realloc_data(data, true, metrics);
A::from(data)
}
/// Re-allocate the backing storage for an array ref using lgalloc, if it's configured.
/// (And hopefully-temporarily work around a parquet decoding issue upstream.)
pub fn realloc_any(array: ArrayRef, metrics: &ColumnarMetrics) -> ArrayRef {
let data = array.into_data();
// Top-level arrays are always nullable.
let data = realloc_data(data, true, metrics);
make_array(data)
}
fn realloc_buffer(buffer: &Buffer, metrics: &ColumnarMetrics) -> Buffer {
let use_lgbytes_mmap = if metrics.is_cc_active {
ENABLE_ARROW_LGALLOC_CC_SIZES.get(&metrics.cfg)
} else {
ENABLE_ARROW_LGALLOC_NONCC_SIZES.get(&metrics.cfg)
};
let region = if use_lgbytes_mmap {
metrics
.lgbytes_arrow
.try_mmap_region(buffer.as_slice())
.ok()
} else {
None
};
let Some(region) = region else {
return buffer.clone();
};
let bytes: &[u8] = region.as_ref().to_byte_slice();
let ptr: NonNull<[u8]> = bytes.into();
// This is fine: see [[NonNull::as_non_null_ptr]] for an unstable version of this usage.
let ptr: NonNull<u8> = ptr.cast();
// SAFETY: `ptr` is valid for `len` bytes, and kept alive as long as `region` lives.
unsafe { Buffer::from_custom_allocation(ptr, bytes.len(), Arc::new(region)) }
}
/// Converts an [`arrow`] [(K, V, T, D)] [`RecordBatch`] into a [`ColumnarRecords`].
///
/// [`RecordBatch`]: `arrow::array::RecordBatch`
pub fn decode_arrow_batch_kvtd(
columns: &[Arc<dyn Array>],
metrics: &ColumnarMetrics,
) -> Result<ColumnarRecords, String> {
let (key_col, val_col, ts_col, diff_col) = match &columns {
x @ &[k, v, t, d] => {
// The columns need to all have the same logical length.
if !x.iter().map(|col| col.len()).all_equal() {
return Err(format!(
"columns don't all have equal length {k_len}, {v_len}, {t_len}, {d_len}",
k_len = k.len(),
v_len = v.len(),
t_len = t.len(),
d_len = d.len()
));
}
(k, v, t, d)
}
_ => return Err(format!("expected 4 columns got {}", columns.len())),
};
let key = key_col
.as_binary_opt::<i32>()
.ok_or_else(|| "key column is wrong type".to_string())?;
let val = val_col
.as_binary_opt::<i32>()
.ok_or_else(|| "val column is wrong type".to_string())?;
let time = ts_col
.as_primitive_opt::<arrow::datatypes::Int64Type>()
.ok_or_else(|| "time column is wrong type".to_string())?;
let diff = diff_col
.as_primitive_opt::<arrow::datatypes::Int64Type>()
.ok_or_else(|| "diff column is wrong type".to_string())?;
let len = key.len();
let ret = ColumnarRecords {
len,
key_data: realloc_array(key, metrics),
val_data: realloc_array(val, metrics),
timestamps: realloc_array(time, metrics),
diffs: realloc_array(diff, metrics),
};
ret.borrow().validate()?;
Ok(ret)
}
/// Converts an arrow [(K, V, T, D)] Chunk into a ColumnarRecords.
pub fn decode_arrow_batch_kvtd_ks_vs(
cols: &[Arc<dyn Array>],
key_col: Arc<dyn Array>,
val_col: Arc<dyn Array>,
metrics: &ColumnarMetrics,
) -> Result<(ColumnarRecords, ColumnarRecordsStructuredExt), String> {
let same_length = cols
.iter()
.map(|col| col.as_ref())
.chain([&*key_col])
.chain([&*val_col])
.map(|col| col.len())
.all_equal();
if !same_length {
return Err("not all columns (included structured) have the same length".to_string());
}
// We always have (K, V, T, D) columns.
let primary_records = decode_arrow_batch_kvtd(cols, metrics)?;
let structured_ext = ColumnarRecordsStructuredExt {
key: key_col,
val: val_col,
};
Ok((primary_records, structured_ext))
}