1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Code for iterating through one or more parts, including streaming consolidation.
use anyhow::anyhow;
use arrow::array::{Array, AsArray};
use std::cmp::{Ordering, Reverse};
use std::collections::binary_heap::PeekMut;
use std::collections::{BinaryHeap, VecDeque};
use std::fmt::Debug;
use std::marker::PhantomData;
use std::mem;
use std::sync::Arc;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::trace::Description;
use futures_util::stream::FuturesUnordered;
use futures_util::StreamExt;
use itertools::Itertools;
use mz_ore::iter::IteratorExt;
use mz_ore::task::JoinHandle;
use mz_persist::indexed::columnar::{ColumnarRecords, ColumnarRecordsStructuredExt};
use mz_persist::indexed::encoding::BlobTraceUpdates;
use mz_persist::location::Blob;
use mz_persist::metrics::ColumnarMetrics;
use mz_persist_types::arrow::{ArrayBound, ArrayIdx, ArrayOrd};
use mz_persist_types::{Codec, Codec64};
use semver::Version;
use timely::progress::Timestamp;
use tracing::{debug_span, Instrument};
use crate::fetch::{EncodedPart, FetchBatchFilter};
use crate::internal::encoding::Schemas;
use crate::internal::metrics::{ReadMetrics, ShardMetrics};
use crate::internal::paths::WriterKey;
use crate::internal::state::{HollowRun, RunMeta, RunOrder, RunPart};
use crate::metrics::Metrics;
use crate::ShardId;
/// Versions prior to this had bugs in consolidation, or used a different sort. However,
/// we can assume that consolidated parts at this version or higher were consolidated
/// according to the current definition.
pub const MINIMUM_CONSOLIDATED_VERSION: Version = Version::new(0, 67, 0);
/// The data needed to fetch a batch part, bundled up to make it easy
/// to send between threads.
#[derive(Debug, Clone)]
pub(crate) struct FetchData<T> {
run_meta: RunMeta,
part_desc: Description<T>,
part: RunPart<T>,
structured_lower: Option<ArrayBound>,
}
pub(crate) trait RowSort<T, D> {
type Updates: Debug;
type KV<'a>: Ord + Copy + Debug;
fn desired_sort(data: &FetchData<T>) -> bool;
fn kv_lower(part: &FetchData<T>) -> Option<Self::KV<'_>>;
fn updates_from_blob(&self, updates: BlobTraceUpdates) -> Self::Updates;
fn len(updates: &Self::Updates) -> usize;
fn kv_size(kv: Self::KV<'_>) -> usize;
fn get(updates: &Self::Updates, index: usize) -> Option<(Self::KV<'_>, T, D)>;
fn interleave_updates<'a>(
updates: &[&'a Self::Updates],
elements: impl IntoIterator<Item = (Indices, Self::KV<'a>, T, D)>,
) -> Self::Updates;
fn updates_to_blob(&self, updates: Self::Updates) -> BlobTraceUpdates;
}
fn interleave_updates<T: Codec64, D: Codec64>(
updates: &[&BlobTraceUpdates],
elements: impl IntoIterator<Item = (Indices, T, D)>,
) -> BlobTraceUpdates {
let mut arrays: Vec<&dyn Array> = Vec::with_capacity(updates.len());
let (indices, timestamps, diffs) = elements
.into_iter()
.map(|(idx, t, d)| {
(
idx,
i64::from_le_bytes(T::encode(&t)),
i64::from_le_bytes(D::encode(&d)),
)
})
.multiunzip::<(Vec<_>, Vec<_>, Vec<_>)>();
let mut interleave = |get_array: fn(&BlobTraceUpdates) -> &dyn Array| {
for part in updates {
arrays.push(get_array(part));
}
let out =
::arrow::compute::interleave(arrays.as_slice(), &indices).expect("valid references");
arrays.clear();
out
};
let keys = interleave(|u| u.records().keys()).as_binary().clone();
let vals = interleave(|u| u.records().vals()).as_binary().clone();
let records = ColumnarRecords::new(keys, vals, timestamps.into(), diffs.into());
let has_ext = updates.iter().all(|e| e.structured().is_some());
// The structured impl will migrate structured data using the write schemas, but we don't have
// those available here. Instead, drop the structured data on the floor; if we need it, it will
// be re-created from our codec data later in the pipeline.
let types_match = updates
.iter()
.flat_map(|e| e.structured())
.map(|e| (e.key.data_type(), e.val.data_type()))
.all_equal();
if has_ext && types_match {
let key = interleave(|u| &u.structured().unwrap().key);
let val = interleave(|u| &u.structured().unwrap().val);
BlobTraceUpdates::Both(records, ColumnarRecordsStructuredExt { key, val })
} else {
BlobTraceUpdates::Row(records)
}
}
/// Sort parts ordered by the codec-encoded key and value columns.
#[derive(Debug)]
pub struct CodecSort<T, D>(PhantomData<fn(T, D)>);
impl<T, D> Default for CodecSort<T, D> {
fn default() -> Self {
Self(Default::default())
}
}
impl<T: Codec64, D: Codec64> RowSort<T, D> for CodecSort<T, D> {
type Updates = BlobTraceUpdates;
type KV<'a> = (&'a [u8], &'a [u8]);
fn desired_sort(data: &FetchData<T>) -> bool {
match &data.run_meta.order {
Some(RunOrder::Codec) => true,
Some(_) => false,
None => {
// Returns false iff we were using a different ordering for data or timestamps
// when the part was created. This means parts or runs may not be ordered according to
// our modern definition, even if the metadata indicates they've been compacted before.
let min_version = WriterKey::for_version(&MINIMUM_CONSOLIDATED_VERSION);
match data.part.writer_key() {
// Old hollow parts may have used a different sort
Some(key) => key >= min_version,
// Inline parts are all recent enough to have been sorted using the latest ordering,
// if they're sorted at all.
None => true,
}
}
}
}
fn kv_lower(data: &FetchData<T>) -> Option<Self::KV<'_>> {
Some((data.part.key_lower(), &[]))
}
fn updates_from_blob(&self, updates: BlobTraceUpdates) -> Self::Updates {
updates
}
fn len(updates: &Self::Updates) -> usize {
updates.records().len()
}
fn kv_size((key, value): Self::KV<'_>) -> usize {
// Arrow offsets are 32-bit integers, so count the raw byte len plus 64 bits of metadata.
8 + key.len() + value.len()
}
fn get(updates: &Self::Updates, index: usize) -> Option<(Self::KV<'_>, T, D)> {
let ((k, v), t, d) = updates.records().get(index)?;
Some(((k, v), T::decode(t), D::decode(d)))
}
fn interleave_updates<'a>(
updates: &[&'a Self::Updates],
elements: impl IntoIterator<Item = (Indices, Self::KV<'a>, T, D)>,
) -> Self::Updates {
interleave_updates(
updates,
elements.into_iter().map(|(idx, _kv, t, d)| (idx, t, d)),
)
}
fn updates_to_blob(&self, updates: Self::Updates) -> BlobTraceUpdates {
updates
}
}
/// An opaque update set for use by StructuredSort.
#[derive(Clone, Debug)]
pub struct StructuredUpdates {
key_ord: ArrayOrd,
val_ord: ArrayOrd,
/// Invariant: the structured data is always present.
data: BlobTraceUpdates,
}
/// Sort parts ordered by the codec-encoded key and value columns.
#[derive(Debug)]
pub struct StructuredSort<K: Codec, V: Codec, T, D> {
schemas: Schemas<K, V>,
_time_diff: PhantomData<fn(T, D)>,
}
impl<K: Codec, V: Codec, T, D> StructuredSort<K, V, T, D> {
/// A sort for structured data with the given schema.
pub fn new(schemas: Schemas<K, V>) -> Self {
Self {
schemas,
_time_diff: Default::default(),
}
}
}
impl<K: Codec, V: Codec, T: Codec64, D: Codec64> RowSort<T, D> for StructuredSort<K, V, T, D> {
type Updates = StructuredUpdates;
type KV<'a> = (ArrayIdx<'a>, Option<ArrayIdx<'a>>);
fn desired_sort(data: &FetchData<T>) -> bool {
data.run_meta.order == Some(RunOrder::Structured)
}
fn kv_lower(data: &FetchData<T>) -> Option<Self::KV<'_>> {
let key_idx = data.structured_lower.as_ref().map(|l| l.get())?;
Some((key_idx, None))
}
fn updates_from_blob(&self, mut updates: BlobTraceUpdates) -> Self::Updates {
let structured = updates
.get_or_make_structured::<K, V>(self.schemas.key.as_ref(), self.schemas.val.as_ref());
let key_ord = ArrayOrd::new(structured.key.as_ref());
let val_ord = ArrayOrd::new(structured.val.as_ref());
StructuredUpdates {
key_ord,
val_ord,
data: updates,
}
}
fn len(updates: &Self::Updates) -> usize {
updates.data.records().len()
}
fn kv_size((key, value): Self::KV<'_>) -> usize {
key.goodbytes() + value.map_or(0, |v| v.goodbytes())
}
fn get(updates: &Self::Updates, index: usize) -> Option<(Self::KV<'_>, T, D)> {
let (_, t, d) = updates.data.records().get(index)?;
Some((
(updates.key_ord.at(index), Some(updates.val_ord.at(index))),
T::decode(t),
D::decode(d),
))
}
fn interleave_updates<'a>(
updates: &[&'a Self::Updates],
elements: impl IntoIterator<Item = (Indices, Self::KV<'a>, T, D)>,
) -> Self::Updates {
let updates: Vec<_> = updates.iter().map(|u| &u.data).collect();
let interleaved = interleave_updates(
&updates,
elements.into_iter().map(|(idx, _, t, d)| (idx, t, d)),
);
let structured = interleaved
.structured()
.expect("structured data is always present on StructuredUpdates");
let key_ord = ArrayOrd::new(structured.key.as_ref());
let val_ord = ArrayOrd::new(structured.val.as_ref());
StructuredUpdates {
key_ord,
val_ord,
data: interleaved,
}
}
fn updates_to_blob(&self, updates: Self::Updates) -> BlobTraceUpdates {
updates.data
}
}
type FetchResult<T> = Result<EncodedPart<T>, HollowRun<T>>;
impl<T: Codec64 + Timestamp + Lattice> FetchData<T> {
async fn fetch(
self,
shard_id: ShardId,
blob: &dyn Blob,
metrics: &Metrics,
shard_metrics: &ShardMetrics,
read_metrics: &ReadMetrics,
) -> anyhow::Result<FetchResult<T>> {
match self.part {
RunPart::Single(part) => {
let part = EncodedPart::fetch(
&shard_id,
&*blob,
metrics,
shard_metrics,
read_metrics,
&self.part_desc,
&part,
)
.await
.map_err(|blob_key| anyhow!("missing unleased key {blob_key}"))?;
Ok(Ok(part))
}
RunPart::Many(run_ref) => {
let runs = run_ref
.get(shard_id, blob, metrics)
.await
.ok_or_else(|| anyhow!("missing run ref {}", run_ref.key))?;
Ok(Err(runs))
}
}
}
}
/// Indices into a part. For most parts, all we need is a single index to the current entry...
/// but for parts that have never been consolidated, this would return entries in the "wrong"
/// order, and it's expensive to re-sort the columnar data. Instead, we sort a list of indices
/// and then use this helper to hand them out in the correct order.
#[derive(Debug, Ord, PartialOrd, Eq, PartialEq, Default)]
struct PartIndices {
sorted_indices: VecDeque<usize>,
next_index: usize,
}
impl PartIndices {
fn index(&self) -> usize {
self.sorted_indices
.front()
.copied()
.unwrap_or(self.next_index)
}
fn inc(&mut self) {
if self.sorted_indices.pop_front().is_none() {
self.next_index += 1;
}
}
}
#[derive(Debug)]
enum ConsolidationPart<T, D, Sort: RowSort<T, D> = CodecSort<T, D>> {
Queued {
data: FetchData<T>,
task: Option<JoinHandle<anyhow::Result<FetchResult<T>>>>,
},
Encoded {
part: Sort::Updates,
cursor: PartIndices,
},
}
impl<T: Timestamp + Codec64 + Lattice, D: Codec64, Sort: RowSort<T, D>>
ConsolidationPart<T, D, Sort>
{
pub(crate) fn from_encoded(
part: EncodedPart<T>,
force_reconsolidation: bool,
metrics: &ColumnarMetrics,
sort: &Sort,
) -> Self {
let reconsolidate = part.maybe_unconsolidated() || force_reconsolidation;
let updates: Sort::Updates = sort.updates_from_blob(part.normalize(metrics));
let cursor = if reconsolidate {
let len = Sort::len(&updates);
let mut indices: Vec<_> = (0..len).collect();
indices.sort_by_key(|i| Sort::get(&updates, *i).map(|(kv, t, _d)| (kv, t)));
PartIndices {
sorted_indices: indices.into(),
next_index: len,
}
} else {
PartIndices::default()
};
ConsolidationPart::Encoded {
part: updates,
cursor,
}
}
fn kvt_lower(&self) -> Option<(Sort::KV<'_>, T)> {
match self {
ConsolidationPart::Queued { data, .. } => Some((Sort::kv_lower(data)?, T::minimum())),
ConsolidationPart::Encoded { part, cursor } => {
let (kv, t, _d) = Sort::get(part, cursor.index())?;
Some((kv, t))
}
}
}
/// This requires a mutable pointer because the cursor may need to scan ahead to find the next
/// valid record.
pub(crate) fn is_empty(&self) -> bool {
match self {
ConsolidationPart::Encoded { part, cursor, .. } => cursor.index() >= Sort::len(part),
ConsolidationPart::Queued { .. } => false,
}
}
}
/// A tool for incrementally consolidating a persist shard.
///
/// The naive way to consolidate a Persist shard would be to fetch every part, then consolidate
/// the whole thing. We'd like to improve on that in two ways:
/// - Concurrency: we'd like to be able to start consolidating and returning results before every
/// part is fetched. (And continue fetching while we're doing other work.)
/// - Memory usage: we'd like to limit the number of parts we have in memory at once, dropping
/// parts that are fully consolidated and fetching parts just a little before they're needed.
///
/// This interface supports this by consolidating in multiple steps. Each call to [Self::next]
/// will do some housekeeping work -- prefetching needed parts, dropping any unneeded parts -- and
/// return an iterator over a consolidated subset of the data. To read an entire dataset, the
/// client should call `next` until it returns `None`, which signals all data has been returned...
/// but it's also free to abandon the instance at any time if it eg. only needs a few entries.
#[derive(Debug)]
pub(crate) struct Consolidator<T, D, Sort: RowSort<T, D> = CodecSort<T, D>> {
context: String,
shard_id: ShardId,
sort: Sort,
blob: Arc<dyn Blob>,
metrics: Arc<Metrics>,
shard_metrics: Arc<ShardMetrics>,
read_metrics: Arc<ReadMetrics>,
runs: Vec<VecDeque<(ConsolidationPart<T, D, Sort>, usize)>>,
filter: FetchBatchFilter<T>,
budget: usize,
// NB: this is the tricky part!
// One hazard of streaming consolidation is that we may start consolidating a particular KVT,
// but not be able to finish, because some other part that might also contain the same KVT
// may not have been fetched yet. The `drop_stash` gives us somewhere
// to store the streaming iterator's work-in-progress state between runs.
drop_stash: Option<Sort::Updates>,
}
impl<T, D, Sort> Consolidator<T, D, Sort>
where
T: Timestamp + Codec64 + Lattice,
D: Codec64 + Semigroup + Ord,
Sort: RowSort<T, D>,
{
/// Create a new [Self] instance with the given prefetch budget. This budget is a "soft limit"
/// on the size of the parts that the consolidator will fetch... we'll try and stay below the
/// limit, but may burst above it if that's necessary to make progress.
pub fn new(
context: String,
shard_id: ShardId,
sort: Sort,
blob: Arc<dyn Blob>,
metrics: Arc<Metrics>,
shard_metrics: Arc<ShardMetrics>,
read_metrics: ReadMetrics,
filter: FetchBatchFilter<T>,
prefetch_budget_bytes: usize,
) -> Self {
Self {
context,
metrics,
shard_id,
sort,
blob,
read_metrics: Arc::new(read_metrics),
shard_metrics,
runs: vec![],
filter,
budget: prefetch_budget_bytes,
drop_stash: None,
}
}
}
impl<T, D, Sort> Consolidator<T, D, Sort>
where
T: Timestamp + Codec64 + Lattice + Sync,
D: Codec64 + Semigroup + Ord,
Sort: RowSort<T, D>,
{
/// Add another run of data to be consolidated.
///
/// To ensure consolidation, every tuple in this run should be larger than any tuple already
/// returned from the iterator. At the moment, this invariant is not checked. The simplest way
/// to ensure this is to enqueue every run before any calls to next.
// TODO(bkirwi): enforce this invariant, either by forcing all runs to be pre-registered or with an assert.
pub fn enqueue_run(
&mut self,
desc: &Description<T>,
run_meta: &RunMeta,
parts: impl IntoIterator<Item = RunPart<T>>,
) {
let run = parts
.into_iter()
.map(|part| {
let bytes = part.encoded_size_bytes();
let c_part = ConsolidationPart::Queued {
data: FetchData {
run_meta: run_meta.clone(),
part_desc: desc.clone(),
structured_lower: part.structured_key_lower(),
part,
},
task: None,
};
(c_part, bytes)
})
.collect();
self.push_run(run);
}
fn push_run(&mut self, run: VecDeque<(ConsolidationPart<T, D, Sort>, usize)>) {
// Normally unconsolidated parts are in their own run, but we can end up with unconsolidated
// runs if we change our sort order or have bugs, for example. Defend against this by
// splitting up a run if it contains possibly-unconsolidated parts.
let wrong_sort = run.iter().any(|(p, _)| match p {
ConsolidationPart::Queued { data, .. } => !Sort::desired_sort(data),
ConsolidationPart::Encoded { .. } => false,
});
if wrong_sort {
self.metrics.consolidation.wrong_sort.inc();
}
if run.len() > 1 && wrong_sort {
for part in run {
self.runs.push(VecDeque::from([part]));
}
} else {
self.runs.push(run);
}
}
/// Tidy up: discard any empty parts, and discard any runs that have no parts left.
fn trim(&mut self) {
self.runs.retain_mut(|run| {
while run.front_mut().map_or(false, |(part, _)| part.is_empty()) {
run.pop_front();
}
!run.is_empty()
});
// Some budget may have just been freed up: start prefetching.
self.start_prefetches();
}
/// Return an iterator over the next consolidated chunk of output, if there's any left.
///
/// Requirement: at least the first part of each run should be fetched and nonempty.
fn iter(&mut self) -> Option<ConsolidatingIter<T, D, Sort>> {
// If an incompletely-consolidated part has been stashed by the last iterator,
// push that into state as a new run.
// One might worry about the list of runs growing indefinitely, if we're adding a new
// run to the list every iteration... but since this part has the smallest tuples
// of any run, it should be fully processed by the next consolidation step.
if let Some(part) = self.drop_stash.take() {
self.runs.push(VecDeque::from_iter([(
ConsolidationPart::Encoded {
part,
cursor: PartIndices::default(),
},
0,
)]));
}
if self.runs.is_empty() {
return None;
}
let mut iter = ConsolidatingIter::new(&self.context, &self.filter, &mut self.drop_stash);
for run in &mut self.runs {
let last_in_run = run.len() < 2;
if let Some((part, _)) = run.front_mut() {
match part {
ConsolidationPart::Encoded { part, cursor } => {
iter.push(part, cursor, last_in_run);
}
other @ ConsolidationPart::Queued { .. } => {
// We don't want the iterator to return anything at or above this bound,
// since it might require data that we haven't fetched yet.
if let Some(bound) = other.kvt_lower() {
iter.push_upper(bound);
}
}
};
}
}
Some(iter)
}
/// We don't need to have fetched every part to make progress, but we do at least need
/// to have fetched _some_ parts: in particular, parts at the beginning of their runs
/// which may include the smallest remaining KVT.
///
/// Returns success when we've successfully fetched enough parts to be able to make progress.
async fn unblock_progress(&mut self) -> anyhow::Result<()> {
if self.runs.is_empty() {
return Ok(());
}
self.runs
.sort_by(|a, b| a[0].0.kvt_lower().cmp(&b[0].0.kvt_lower()));
let first_larger = {
let run = &self.runs[0];
let min_lower = run[0].0.kvt_lower();
self.runs
.iter()
.position(|q| q[0].0.kvt_lower() > min_lower)
.unwrap_or(self.runs.len())
};
let mut ready_futures: FuturesUnordered<_> = self.runs[0..first_larger]
.iter_mut()
.map(|run| async {
// It's possible for there to be multiple layers of indirection between us and the first available encoded part:
// if the first part is a `HollowRuns`, we'll need to fetch both that and the first part in the run to have data
// to consolidate. So: we loop, and bail out of the loop when either the first part in the run is available or we
// hit some unrecoverable error.
loop {
let (mut part, size) = run.pop_front().expect("trimmed run should be nonempty");
let ConsolidationPart::Queued { data, task } = &mut part else {
run.push_front((part, size));
return Ok(true);
};
let is_prefetched = task.as_ref().map_or(false, |t| t.is_finished());
if is_prefetched {
self.metrics.compaction.parts_prefetched.inc();
} else {
self.metrics.compaction.parts_waited.inc()
}
self.metrics.consolidation.parts_fetched.inc();
let wrong_sort = !Sort::desired_sort(data);
let fetch_result: anyhow::Result<FetchResult<T>> = match task.take() {
Some(handle) => handle
.await
.unwrap_or_else(|join_err| Err(anyhow!(join_err))),
None => {
data.clone()
.fetch(
self.shard_id,
&*self.blob,
&*self.metrics,
&*self.shard_metrics,
&self.read_metrics,
)
.await
}
};
match fetch_result {
Err(err) => {
run.push_front((part, size));
return Err(err);
}
Ok(Err(run_part)) => {
// Since we're pushing these onto the _front_ of the queue, we need to
// iterate in reverse order.
for part in run_part.parts.into_iter().rev() {
let structured_lower = part.structured_key_lower();
let size = part.max_part_bytes();
run.push_front((
ConsolidationPart::Queued {
data: FetchData {
run_meta: data.run_meta.clone(),
part_desc: data.part_desc.clone(),
part,
structured_lower,
},
task: None,
},
size,
));
}
}
Ok(Ok(part)) => {
run.push_front((
ConsolidationPart::from_encoded(
part,
wrong_sort,
&self.metrics.columnar,
&self.sort,
),
size,
));
}
}
}
})
.collect();
// Wait for all the needed parts to be fetched, and assert that there's at least one.
let mut total_ready = 0;
while let Some(awaited) = ready_futures.next().await {
if awaited? {
total_ready += 1;
}
}
assert!(
total_ready > 0,
"at least one part should be fetched and ready to go"
);
Ok(())
}
/// Wait until data is available, then return an iterator over the next
/// consolidated chunk of output. If this method returns `None`, that all the data has been
/// exhausted and the full consolidated dataset has been returned.
pub(crate) async fn next(
&mut self,
) -> anyhow::Result<Option<impl Iterator<Item = (Sort::KV<'_>, T, D)>>> {
self.trim();
self.unblock_progress().await?;
Ok(self.iter().map(|i| i.map(|(_idx, kv, t, d)| (kv, t, d))))
}
/// Wait until data is available, then return an iterator over the next
/// consolidated chunk of output. If this method returns `None`, that all the data has been
/// exhausted and the full consolidated dataset has been returned.
pub(crate) async fn next_chunk(
&mut self,
max_len: usize,
max_bytes: usize,
) -> anyhow::Result<Option<BlobTraceUpdates>> {
self.trim();
self.unblock_progress().await?;
let Some(mut iter) = self.iter() else {
return Ok(None);
};
let parts = iter.parts.clone();
// Keep a running estimate of the size left in the budget, returning None once
// budget is 0.
// Note that we can't use take_while here - that method drops the first non-matching
// element, but we want to leave any data that we don't return in state for future
// calls to `next`/`next_chunk`.
let mut budget = max_bytes;
let iter = std::iter::from_fn(move || {
if budget == 0 {
return None;
}
let update @ (_, kv, _, _) = iter.next()?;
// Budget for the K/V size plus two 8-byte Codec64 values.
budget = budget.saturating_sub(Sort::kv_size(kv) + 16);
Some(update)
});
let updates = Sort::interleave_updates(&parts, iter.take(max_len));
let updates = self.sort.updates_to_blob(updates);
Ok(Some(updates))
}
/// The size of the data that we _might_ be holding concurrently in memory. While this is
/// normally kept less than the budget, it may burst over it temporarily, since we need at
/// least one part in every run to continue making progress.
fn live_bytes(&self) -> usize {
self.runs
.iter()
.flat_map(|run| {
run.iter().map(|(part, size)| match part {
ConsolidationPart::Queued { task: None, .. } => 0,
ConsolidationPart::Queued { task: Some(_), .. }
| ConsolidationPart::Encoded { .. } => *size,
})
})
.sum()
}
/// Returns None if the budget was exhausted, or Some(remaining_bytes) if it is not.
pub(crate) fn start_prefetches(&mut self) -> Option<usize> {
let mut prefetch_budget_bytes = self.budget;
let mut check_budget = |size| {
// Subtract the amount from the budget, returning None if the budget is exhausted.
prefetch_budget_bytes
.checked_sub(size)
.map(|remaining| prefetch_budget_bytes = remaining)
};
// First account for how much budget has already been used
let live_bytes = self.live_bytes();
check_budget(live_bytes)?;
// Iterate through parts in a certain order (attempting to match the
// order in which they'll be fetched), prefetching until we run out of
// budget.
//
// The order used here is the first part of each run, then the second, etc.
// There's a bunch of heuristics we could use here, but we'd get it exactly
// correct if we stored on HollowBatchPart the actual kv bounds of data
// contained in each part and go in sorted order of that. This information
// would also be useful for pushing MFP down into persist reads, so it seems
// like we might want to do it at some point. As a result, don't think too
// hard about this heuristic at first.
let max_run_len = self.runs.iter().map(|x| x.len()).max().unwrap_or_default();
for idx in 0..max_run_len {
for run in self.runs.iter_mut() {
if let Some((c_part, size)) = run.get_mut(idx) {
let (data, task) = match c_part {
ConsolidationPart::Queued { data, task } if task.is_none() => {
check_budget(*size)?;
(data, task)
}
_ => continue,
};
let span = debug_span!("compaction::prefetch");
let data = data.clone();
let handle = mz_ore::task::spawn(|| "persist::compaction::prefetch", {
let shard_id = self.shard_id;
let blob = Arc::clone(&self.blob);
let metrics = Arc::clone(&self.metrics);
let shard_metrics = Arc::clone(&self.shard_metrics);
let read_metrics = Arc::clone(&self.read_metrics);
async move {
data.fetch(shard_id, &*blob, &*metrics, &*shard_metrics, &*read_metrics)
.instrument(span)
.await
}
});
*task = Some(handle);
}
}
}
Some(prefetch_budget_bytes)
}
}
impl<T, D, Sort: RowSort<T, D>> Drop for Consolidator<T, D, Sort> {
fn drop(&mut self) {
for run in &self.runs {
for (part, _) in run {
match part {
ConsolidationPart::Queued { task: None, .. } => {
self.metrics.consolidation.parts_skipped.inc();
}
ConsolidationPart::Queued { task: Some(_), .. } => {
self.metrics.consolidation.parts_wasted.inc();
}
_ => {}
}
}
}
}
}
/// A pair of indices, referencing a specific row in a specific part.
/// In the consolidating iterator, this is used to track the coordinates of some part that
/// holds a particular K and V.
type Indices = (usize, usize);
/// This is used as a max-heap entry: the ordering of the fields is important!
#[derive(Debug, Ord, PartialOrd, Eq, PartialEq)]
struct PartRef<'a, KV, T: Timestamp, D> {
/// The smallest KVT that might be emitted from this run in the future.
/// This is reverse-sorted: Nones will sort largest (and be popped first on the heap)
/// and smaller keys will be popped before larger keys.
next_kvt: Reverse<Option<(KV, T, D)>>,
/// The index of the corresponding part within the [ConsolidatingIter]'s list of parts.
part_index: usize,
/// The index of the next row within that part.
/// This is a mutable pointer to long-lived state; we must only advance this index once
/// we've rolled any rows before this index into our state.
row_index: &'a mut PartIndices,
/// Whether / not the iterator for the part is the last in its run, or whether there may be
/// iterators for the same part in the future.
last_in_run: bool,
_phantom: PhantomData<D>,
}
impl<'a, KV: Ord, T: Timestamp + Codec64 + Lattice, D: Codec64 + Semigroup> PartRef<'a, KV, T, D> {
fn update_peek<Sort: RowSort<T, D, KV<'a> = KV>>(
&mut self,
part: &'a Sort::Updates,
filter: &FetchBatchFilter<T>,
) {
let mut peek = Sort::get(part, self.row_index.index());
while let Some((_kv, t, _d)) = &mut peek {
let keep = filter.filter_ts(t);
if keep {
break;
} else {
self.row_index.inc();
peek = Sort::get(part, self.row_index.index());
}
}
self.next_kvt = Reverse(peek);
}
fn pop<Sort: RowSort<T, D, KV<'a> = KV>>(
&mut self,
from: &[&'a Sort::Updates],
filter: &FetchBatchFilter<T>,
) -> Option<(Indices, Sort::KV<'a>, T, D)> {
let part = &from[self.part_index];
let Reverse(popped) = mem::take(&mut self.next_kvt);
let indices = (self.part_index, self.row_index.index());
self.row_index.inc();
self.update_peek::<Sort>(part, filter);
let (kv, t, d) = popped?;
Some((indices, kv, t, d))
}
}
#[derive(Debug)]
pub(crate) struct ConsolidatingIter<'a, T, D, Sort = CodecSort<T, D>>
where
T: Timestamp + Codec64,
D: Codec64,
Sort: RowSort<T, D>,
{
context: &'a str,
filter: &'a FetchBatchFilter<T>,
parts: Vec<&'a Sort::Updates>,
heap: BinaryHeap<PartRef<'a, Sort::KV<'a>, T, D>>,
upper_bound: Option<(Sort::KV<'a>, T)>,
state: Option<(Indices, Sort::KV<'a>, T, D)>,
drop_stash: &'a mut Option<Sort::Updates>,
}
impl<'a, T, D, Sort> ConsolidatingIter<'a, T, D, Sort>
where
T: Timestamp + Codec64 + Lattice,
D: Codec64 + Semigroup + Ord,
Sort: RowSort<T, D>,
{
fn new(
context: &'a str,
filter: &'a FetchBatchFilter<T>,
drop_stash: &'a mut Option<Sort::Updates>,
) -> Self {
Self {
context,
filter,
parts: vec![],
heap: BinaryHeap::new(),
upper_bound: None,
state: None,
drop_stash,
}
}
fn push(&mut self, iter: &'a Sort::Updates, index: &'a mut PartIndices, last_in_run: bool) {
let mut part_ref = PartRef {
next_kvt: Reverse(None),
part_index: self.parts.len(),
row_index: index,
last_in_run,
_phantom: Default::default(),
};
part_ref.update_peek::<Sort>(iter, self.filter);
self.parts.push(iter);
self.heap.push(part_ref);
}
/// Set an upper bound based on the stats from an unfetched part. If there's already
/// an upper bound set, keep the most conservative / smallest one.
fn push_upper(&mut self, upper: (Sort::KV<'a>, T)) {
let update_bound = self
.upper_bound
.as_ref()
.map_or(true, |existing| *existing > upper);
if update_bound {
self.upper_bound = Some(upper);
}
}
/// Attempt to consolidate as much into the current state as possible.
fn consolidate(&mut self) -> Option<(Indices, Sort::KV<'a>, T, D)> {
loop {
let Some(mut part) = self.heap.peek_mut() else {
break;
};
if let Some((kv1, t1, _)) = part.next_kvt.0.as_ref() {
if let Some((idx0, kv0, t0, d0)) = &mut self.state {
let consolidates = match (*kv0, &*t0).cmp(&(*kv1, t1)) {
Ordering::Less => false,
Ordering::Equal => true,
Ordering::Greater => {
// Don't want to log the entire KV, but it's interesting to know
// whether it's KVs going backwards or 'just' timestamps.
panic!(
"data arrived at the consolidator out of order ({}, kvs equal? {}, {t0:?}, {t1:?})",
self.context,
(*kv0) == (*kv1)
);
}
};
if consolidates {
let (idx1, _, _, d1) = part
.pop::<Sort>(&self.parts, self.filter)
.expect("popping from a non-empty iterator");
d0.plus_equals(&d1);
*idx0 = idx1;
} else {
break;
}
} else {
// Don't start consolidating a new KVT that's past our provided upper bound,
// since that data may also live in some unfetched part.
if let Some((kv0, t0)) = &self.upper_bound {
if (kv0, t0) <= (kv1, t1) {
return None;
}
}
self.state = part.pop::<Sort>(&self.parts, self.filter);
}
} else {
if part.last_in_run {
PeekMut::pop(part);
} else {
// There may be more instances of the KVT in a later part of the same run;
// exit without returning the current state.
return None;
}
}
}
self.state.take()
}
}
impl<'a, T, D, Sort> Iterator for ConsolidatingIter<'a, T, D, Sort>
where
T: Timestamp + Codec64 + Lattice,
D: Codec64 + Semigroup + Ord,
Sort: RowSort<T, D>,
{
type Item = (Indices, Sort::KV<'a>, T, D);
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.consolidate() {
Some((_, _, _, d)) if d.is_zero() => continue,
other => break other,
}
}
}
}
impl<'a, T, D, Sort> Drop for ConsolidatingIter<'a, T, D, Sort>
where
T: Timestamp + Codec64,
D: Codec64,
Sort: RowSort<T, D>,
{
fn drop(&mut self) {
// Make sure to stash any incomplete state in a place where we'll pick it up on the next run.
// See the comment on `Consolidator` for more on why this is necessary.
if let Some(update) = self.state.take() {
let part = Sort::interleave_updates(&self.parts, [update]);
*self.drop_stash = Some(part);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::Arc;
use differential_dataflow::consolidation::consolidate_updates;
use differential_dataflow::trace::Description;
use mz_ore::metrics::MetricsRegistry;
use mz_persist::indexed::columnar::ColumnarRecordsBuilder;
use mz_persist::indexed::encoding::{BlobTraceBatchPart, BlobTraceUpdates};
use mz_persist::location::Blob;
use mz_persist::mem::{MemBlob, MemBlobConfig};
use proptest::collection::vec;
use proptest::prelude::*;
use timely::progress::Antichain;
use crate::cfg::PersistConfig;
use crate::internal::paths::PartialBatchKey;
use crate::internal::state::{BatchPart, HollowBatchPart};
use crate::metrics::Metrics;
use crate::ShardId;
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // too slow
fn consolidation() {
// Check that output consolidated via this logic matches output consolidated via timely's!
type Part = Vec<((Vec<u8>, Vec<u8>), u64, i64)>;
fn check(metrics: &Arc<Metrics>, parts: Vec<(Part, usize)>) {
let original = {
let mut rows = parts
.iter()
.flat_map(|(p, _)| p.clone())
.collect::<Vec<_>>();
consolidate_updates(&mut rows);
rows
};
let filter = FetchBatchFilter::Compaction {
since: Antichain::from_elem(0),
};
let desc = Description::new(
Antichain::from_elem(0),
Antichain::new(),
Antichain::from_elem(0),
);
let streaming = {
// Toy compaction loop!
let mut consolidator = Consolidator {
context: "test".to_string(),
shard_id: ShardId::new(),
sort: CodecSort::default(),
blob: Arc::new(MemBlob::open(MemBlobConfig::default())),
metrics: Arc::clone(metrics),
shard_metrics: metrics.shards.shard(&ShardId::new(), "test"),
read_metrics: Arc::new(metrics.read.snapshot.clone()),
// Generated runs of data that are sorted, but not necessarily consolidated.
// This is because timestamp-advancement may cause us to have duplicate KVTs,
// including those that span runs.
runs: parts
.into_iter()
.map(|(mut part, cut)| {
part.sort();
let part_2 = part.split_off(cut.min(part.len()));
[part, part_2]
.into_iter()
.map(|part| {
let mut records = ColumnarRecordsBuilder::default();
for ((k, v), t, d) in &part {
assert!(records.push((
(k, v),
u64::encode(t),
i64::encode(d)
)));
}
let part = EncodedPart::new(
metrics.read.snapshot.clone(),
desc.clone(),
"part",
None,
BlobTraceBatchPart {
desc: desc.clone(),
index: 0,
updates: BlobTraceUpdates::Row(
records.finish(&metrics.columnar),
),
},
);
(
ConsolidationPart::from_encoded(
part,
true,
&metrics.columnar,
&CodecSort::default(),
),
0,
)
})
.collect::<VecDeque<_>>()
})
.collect::<Vec<_>>(),
filter,
budget: 0,
drop_stash: None,
};
let mut out = vec![];
loop {
consolidator.trim();
let Some(iter) = consolidator.iter() else {
break;
};
out.extend(iter.map(|(_, (k, v), t, d)| ((k.to_vec(), v.to_vec()), t, d)));
}
out
};
assert_eq!(original, streaming);
}
let metrics = Arc::new(Metrics::new(
&PersistConfig::new_for_tests(),
&MetricsRegistry::new(),
));
// Restricting the ranges to help make sure we have frequent collisions
let key_gen = (0..4usize).prop_map(|i| i.to_string().into_bytes()).boxed();
let part_gen = vec(
((key_gen.clone(), key_gen.clone()), 0..10u64, -3..=3i64),
0..10,
);
let run_gen = vec((part_gen, 0..10usize), 0..5);
proptest!(|(state in run_gen)| {
check(&metrics, state)
});
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn prefetches() {
fn check(budget: usize, runs: Vec<Vec<usize>>, prefetch_all: bool) {
let desc = Description::new(
Antichain::from_elem(0u64),
Antichain::new(),
Antichain::from_elem(0u64),
);
let total_size: usize = runs.iter().flat_map(|run| run.iter().map(|p| *p)).sum();
let shard_id = ShardId::new();
let blob: Arc<dyn Blob> = Arc::new(MemBlob::open(MemBlobConfig::default()));
let metrics = Arc::new(Metrics::new(
&PersistConfig::new_for_tests(),
&MetricsRegistry::new(),
));
let shard_metrics = metrics.shards.shard(&shard_id, "");
let mut consolidator: Consolidator<u64, i64> = Consolidator::new(
"test".to_string(),
shard_id,
CodecSort::default(),
blob,
Arc::clone(&metrics),
shard_metrics,
metrics.read.batch_fetcher.clone(),
FetchBatchFilter::Compaction {
since: desc.since().clone(),
},
budget,
);
for run in runs {
let parts: Vec<_> = run
.into_iter()
.map(|encoded_size_bytes| {
RunPart::Single(BatchPart::Hollow(HollowBatchPart {
key: PartialBatchKey(
"n0000000/p00000000-0000-0000-0000-000000000000".into(),
),
encoded_size_bytes,
key_lower: vec![],
structured_key_lower: None,
stats: None,
ts_rewrite: None,
diffs_sum: None,
format: None,
schema_id: None,
deprecated_schema_id: None,
}))
})
.collect();
consolidator.enqueue_run(&desc, &RunMeta::default(), parts)
}
// No matter what, the budget should be respected.
let remaining = consolidator.start_prefetches();
let live_bytes = consolidator.live_bytes();
assert!(live_bytes <= budget, "budget should be respected");
match remaining {
None => assert!(live_bytes < total_size, "not all parts fetched"),
Some(remaining) => assert_eq!(
live_bytes + remaining,
budget,
"remaining should match budget"
),
}
if prefetch_all {
// If we up the budget to match the total size, we should prefetch everything.
consolidator.budget = total_size;
assert_eq!(consolidator.start_prefetches(), Some(0));
} else {
// Let the consolidator drop without fetching everything to check the Drop
// impl works when not all parts are prefetched.
}
}
let run_gen = vec(vec(0..20usize, 0..5usize), 0..5usize);
proptest!(|(budget in 0..20usize, state in run_gen, prefetch_all in any::<bool>())| {
check(budget, state, prefetch_all)
});
}
}