1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Transformations for relation expressions.
//!
//! This crate contains traits, types, and methods suitable for transforming
//! `MirRelationExpr` types in ways that preserve semantics and improve performance.
//! The core trait is `Transform`, and many implementors of this trait can be
//! boxed and iterated over. Some common transformation patterns are wrapped
//! as `Transform` implementors themselves.
//!
//! The crate also contains the beginnings of whole-dataflow optimization,
//! which uses the same analyses but spanning multiple dataflow elements.
#![warn(missing_docs)]
#![warn(missing_debug_implementations)]
use std::collections::BTreeMap;
use std::error::Error;
use std::sync::Arc;
use std::{fmt, iter};
use mz_expr::{MirRelationExpr, MirScalarExpr};
use mz_ore::id_gen::IdGen;
use mz_ore::stack::RecursionLimitError;
use mz_repr::optimize::OptimizerFeatures;
use mz_repr::GlobalId;
use tracing::error;
pub mod analysis;
pub mod canonicalization;
pub mod canonicalize_mfp;
pub mod column_knowledge;
pub mod compound;
pub mod cse;
pub mod dataflow;
pub mod demand;
pub mod equivalence_propagation;
pub mod fold_constants;
pub mod fusion;
pub mod join_implementation;
pub mod literal_constraints;
pub mod literal_lifting;
pub mod monotonic;
pub mod movement;
pub mod non_null_requirements;
pub mod nonnullable;
pub mod normalize_lets;
pub mod normalize_ops;
pub mod notice;
pub mod ordering;
pub mod predicate_pushdown;
pub mod reduce_elision;
pub mod reduction_pushdown;
pub mod redundant_join;
pub mod semijoin_idempotence;
pub mod threshold_elision;
pub mod typecheck;
pub mod union_cancel;
use crate::dataflow::DataflowMetainfo;
use crate::typecheck::SharedContext;
pub use dataflow::optimize_dataflow;
use mz_ore::{soft_assert_or_log, soft_panic_or_log};
/// Compute the conjunction of a variadic number of expressions.
#[macro_export]
macro_rules! all {
($x:expr) => ($x);
($($x:expr,)+) => ( $($x)&&+ )
}
/// Compute the disjunction of a variadic number of expressions.
#[macro_export]
macro_rules! any {
($x:expr) => ($x);
($($x:expr,)+) => ( $($x)||+ )
}
/// Arguments that get threaded through all transforms, plus a `DataflowMetainfo` that can be
/// manipulated by the transforms.
#[derive(Debug)]
pub struct TransformCtx<'a> {
/// The global ID for this query (if it exists).
pub global_id: Option<GlobalId>,
/// The indexes accessible.
pub indexes: &'a dyn IndexOracle,
/// Statistical estimates.
pub stats: &'a dyn StatisticsOracle,
/// Features passed to the enclosing `Optimizer`.
pub features: &'a OptimizerFeatures,
/// Typechecking context.
pub typecheck_ctx: &'a SharedContext,
/// Transforms can use this field to communicate information outside the result plans.
pub df_meta: &'a mut DataflowMetainfo,
}
const FOLD_CONSTANTS_LIMIT: usize = 10000;
impl<'a> TransformCtx<'a> {
/// Generates a [`TransformCtx`] instance for the local MIR optimization
/// stage.
///
/// Used to call [`Optimizer::optimize`] on a
/// [`Optimizer::logical_optimizer`] in order to transform a stand-alone
/// [`MirRelationExpr`].
pub fn local(
features: &'a OptimizerFeatures,
typecheck_ctx: &'a typecheck::SharedContext,
df_meta: &'a mut DataflowMetainfo,
) -> Self {
Self {
indexes: &EmptyIndexOracle,
stats: &EmptyStatisticsOracle,
global_id: None,
features,
typecheck_ctx,
df_meta,
}
}
/// Generates a [`TransformCtx`] instance for the global MIR optimization
/// stage.
///
/// Used to call [`dataflow::optimize_dataflow`].
pub fn global(
indexes: &'a dyn IndexOracle,
stats: &'a dyn StatisticsOracle,
features: &'a OptimizerFeatures,
typecheck_ctx: &'a SharedContext,
df_meta: &'a mut DataflowMetainfo,
) -> Self {
Self {
indexes,
stats,
global_id: None,
features,
df_meta,
typecheck_ctx,
}
}
fn typecheck(&self) -> SharedContext {
Arc::clone(self.typecheck_ctx)
}
fn set_global_id(&mut self, global_id: GlobalId) {
self.global_id = Some(global_id);
}
fn reset_global_id(&mut self) {
self.global_id = None;
}
}
/// Types capable of transforming relation expressions.
pub trait Transform: std::fmt::Debug {
/// Transform a relation into a functionally equivalent relation.
fn transform(
&self,
relation: &mut MirRelationExpr,
ctx: &mut TransformCtx,
) -> Result<(), TransformError>;
/// A string describing the transform.
///
/// This is useful mainly when iterating through many `Box<Transform>`
/// and one wants to judge progress before some defect occurs.
fn debug(&self) -> String {
format!("{:?}", self)
}
}
/// Errors that can occur during a transformation.
#[derive(Debug, Clone)]
pub enum TransformError {
/// An unstructured error.
Internal(String),
/// A reference to an apparently unbound identifier.
IdentifierMissing(mz_expr::LocalId),
/// Notify the caller to panic with the given message.
///
/// This is used to bypass catch_unwind-wrapped calls of the optimizer and
/// support `SELECT mz_unsafe.mz_panic(<literal>)` statements as a mechanism to kill
/// environmentd in various tests.
CallerShouldPanic(String),
}
impl fmt::Display for TransformError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
TransformError::Internal(msg) => write!(f, "internal transform error: {}", msg),
TransformError::IdentifierMissing(i) => {
write!(f, "apparently unbound identifier: {:?}", i)
}
TransformError::CallerShouldPanic(msg) => {
write!(f, "caller should panic with message: {}", msg)
}
}
}
}
impl Error for TransformError {}
impl From<RecursionLimitError> for TransformError {
fn from(error: RecursionLimitError) -> Self {
TransformError::Internal(error.to_string())
}
}
/// A trait for a type that can answer questions about what indexes exist.
pub trait IndexOracle: fmt::Debug {
/// Returns an iterator over the indexes that exist on the identified
/// collection.
///
/// Each index is described by the list of key expressions. If no indexes
/// exist for the identified collection, or if the identified collection
/// is unknown, the returned iterator will be empty.
///
// NOTE(benesch): The allocation here is unfortunate, but on the other hand
// you need only allocate when you actually look for an index. Can we do
// better somehow? Making the entire optimizer generic over this iterator
// type doesn't presently seem worthwhile.
fn indexes_on(
&self,
id: GlobalId,
) -> Box<dyn Iterator<Item = (GlobalId, &[MirScalarExpr])> + '_>;
}
/// An [`IndexOracle`] that knows about no indexes.
#[derive(Debug)]
pub struct EmptyIndexOracle;
impl IndexOracle for EmptyIndexOracle {
fn indexes_on(
&self,
_id: GlobalId,
) -> Box<dyn Iterator<Item = (GlobalId, &[MirScalarExpr])> + '_> {
Box::new(iter::empty())
}
}
/// A trait for a type that can estimate statistics about a given `GlobalId`
pub trait StatisticsOracle: fmt::Debug + Send {
/// Returns a cardinality estimate for the given identifier
///
/// Returning `None` means "no estimate"; returning `Some(0)` means estimating that the shard backing `id` is empty
fn cardinality_estimate(&self, id: GlobalId) -> Option<usize>;
/// Returns a map from identifiers to sizes
fn as_map(&self) -> BTreeMap<GlobalId, usize>;
}
/// A [`StatisticsOracle`] that knows nothing and can give no estimates.
#[derive(Debug)]
pub struct EmptyStatisticsOracle;
impl StatisticsOracle for EmptyStatisticsOracle {
fn cardinality_estimate(&self, _: GlobalId) -> Option<usize> {
None
}
fn as_map(&self) -> BTreeMap<GlobalId, usize> {
BTreeMap::new()
}
}
/// A sequence of transformations iterated some number of times.
#[derive(Debug)]
pub struct Fixpoint {
name: &'static str,
transforms: Vec<Box<dyn Transform>>,
limit: usize,
}
impl Fixpoint {
/// Run a single iteration of the [`Fixpoint`] transform by iterating
/// through all transforms.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = iter_name)
)]
fn apply_transforms(
&self,
relation: &mut MirRelationExpr,
ctx: &mut TransformCtx,
iter_name: String,
) -> Result<(), TransformError> {
for transform in self.transforms.iter() {
transform.transform(relation, ctx)?;
}
mz_repr::explain::trace_plan(relation);
Ok(())
}
}
impl Transform for Fixpoint {
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = self.name)
)]
fn transform(
&self,
relation: &mut MirRelationExpr,
ctx: &mut TransformCtx,
) -> Result<(), TransformError> {
// The number of iterations for a relation to settle depends on the
// number of nodes in the relation. Instead of picking an arbitrary
// hard limit on the number of iterations, we use a soft limit and
// check whether the relation has become simpler after reaching it.
// If so, we perform another pass of transforms. Otherwise, there is
// a bug somewhere that prevents the relation from settling on a
// stable shape.
let mut iter_no = 0;
let mut seen = BTreeMap::new();
seen.insert(relation.hash_to_u64(), iter_no);
let original = relation.clone();
loop {
let prev_size = relation.size();
for i in iter_no..iter_no + self.limit {
let prev = relation.clone();
self.apply_transforms(relation, ctx, format!("{i:04}"))?;
if *relation == prev {
if prev_size > 100000 {
tracing::warn!(%prev_size, "Very big MIR plan");
}
mz_repr::explain::trace_plan(relation);
return Ok(());
}
let seen_i = seen.insert(relation.hash_to_u64(), i);
if let Some(seen_i) = seen_i {
// Let's see whether this is just a hash collision, or a real loop: Run the
// whole thing from the beginning up until `seen_i`, and compare all the plans
// to the current plan from the outer `for`.
// (It would not be enough to compare only the plan at `seen_i`, because
// then we could miss a real loop if there is also a hash collision somewhere
// in the middle of the loop, because then we'd compare the last plan of the
// loop not with its actual match, but with the colliding plan.)
let mut again = original.clone();
// The `+2` is because:
// - one `+1` is to finally get to the plan at `seen_i`,
// - another `+1` is because we are comparing to `relation` only _before_
// calling `apply_transforms`.
for j in 0..(seen_i + 2) {
if again == *relation {
// We really got into an infinite loop (e.g., we are oscillating between
// two plans). This is not catastrophic, because we can just say we are
// done now, but it would be great to eventually find a way to prevent
// these loops from happening in the first place. We have several
// relevant issues, see
// https://github.com/MaterializeInc/materialize/issues/27954#issuecomment-2200172227
mz_repr::explain::trace_plan(relation);
soft_panic_or_log!(
"Fixpoint `{}` detected a loop of length {} after {} iterations",
self.name,
i - seen_i,
i
);
return Ok(());
}
self.apply_transforms(
&mut again,
ctx,
format!("collision detection {j:04}"),
)?;
}
// If we got here, then this was just a hash collision! Just continue as if
// nothing happened.
}
}
let current_size = relation.size();
iter_no += self.limit;
if current_size < prev_size {
tracing::warn!(
"Fixpoint {} ran for {} iterations \
without reaching a fixpoint but reduced the relation size; \
current_size ({}) < prev_size ({}); \
continuing for {} more iterations",
self.name,
iter_no,
current_size,
prev_size,
self.limit
);
} else {
// We failed to reach a fixed point, or find a sufficiently short cycle.
// This is not catastrophic, because we can just say we are done now,
// but it would be great to eventually find a way to prevent these loops from
// happening in the first place. We have several relevant issues, see
// https://github.com/MaterializeInc/materialize/issues/27954#issuecomment-2200172227
mz_repr::explain::trace_plan(relation);
soft_panic_or_log!(
"Fixpoint {} failed to reach a fixed point, or cycle of length at most {}",
self.name,
self.limit,
);
return Ok(());
}
}
}
}
/// Convenience macro for guarding transforms behind a feature flag.
///
/// If you have a code block like
///
/// ```ignore
/// vec![
/// Box::new(Foo::default()),
/// Box::new(Bar::default()),
/// Box::new(Baz::default()),
/// ]
/// ```
///
/// and you want to guard `Bar` behind a feature flag `enable_bar`, you can
/// write
///
/// ```ignore
/// transforms![
/// Box::new(Foo::default()),
/// Box::new(Bar::default()); if ctx.features.enable_bar,
/// Box::new(Baz::default()),
/// ]
/// ```
///
/// as a shorthand and in order to minimize your code diff.
#[allow(unused_macros)]
macro_rules! transforms {
// Internal rule. Matches lines with a guard: `$transform; if $cond`.
(@op fill $buf:ident with $transform:expr; if $cond:expr, $($transforms:tt)*) => {
if $cond {
$buf.push($transform);
}
transforms!(@op fill $buf with $($transforms)*);
};
// Internal rule. Matchesl lines without a guard: `$transform`.
(@op fill $buf:ident with $transform:expr, $($transforms:tt)*) => {
$buf.push($transform);
transforms!(@op fill $buf with $($transforms)*);
};
// Internal rule: matches the empty $transforms TokenTree (terminal case).
(@op fill $buf:ident with) => {
// do nothing
};
($($transforms:tt)*) => {{
let mut __buf = Vec::<Box<dyn Transform>>::new();
transforms!(@op fill __buf with $($transforms)*);
__buf
}};
}
/// A sequence of transformations that simplify the `MirRelationExpr`
#[derive(Debug)]
pub struct FuseAndCollapse {
transforms: Vec<Box<dyn Transform>>,
}
impl Default for FuseAndCollapse {
fn default() -> Self {
Self {
// TODO: The relative orders of the transforms have not been
// determined except where there are comments.
// TODO (#6542): All the transforms here except for `ProjectionLifting`
// and `RedundantJoin` can be implemented as free functions.
transforms: vec![
Box::new(canonicalization::ProjectionExtraction),
Box::new(movement::ProjectionLifting::default()),
Box::new(fusion::Fusion),
Box::new(canonicalization::FlatMapToMap),
Box::new(fusion::join::Join),
Box::new(normalize_lets::NormalizeLets::new(false)),
Box::new(fusion::reduce::Reduce),
Box::new(compound::UnionNegateFusion),
// This goes after union fusion so we can cancel out
// more branches at a time.
Box::new(union_cancel::UnionBranchCancellation),
// This should run before redundant join to ensure that key info
// is correct.
Box::new(normalize_lets::NormalizeLets::new(false)),
// Removes redundant inputs from joins.
// Note that this eliminates one redundant input per join,
// so it is necessary to run this section in a loop.
Box::new(redundant_join::RedundantJoin::default()),
// As a final logical action, convert any constant expression to a constant.
// Some optimizations fight against this, and we want to be sure to end as a
// `MirRelationExpr::Constant` if that is the case, so that subsequent use can
// clearly see this.
Box::new(fold_constants::FoldConstants {
limit: Some(FOLD_CONSTANTS_LIMIT),
}),
Box::new(canonicalization::ReduceScalars),
],
}
}
}
impl Transform for FuseAndCollapse {
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "fuse_and_collapse")
)]
fn transform(
&self,
relation: &mut MirRelationExpr,
ctx: &mut TransformCtx,
) -> Result<(), TransformError> {
for transform in self.transforms.iter() {
transform.transform(relation, ctx)?;
}
mz_repr::explain::trace_plan(&*relation);
Ok(())
}
}
/// Run the [`FuseAndCollapse`] transforms in a fixpoint.
pub fn fuse_and_collapse() -> Fixpoint {
Fixpoint {
name: "fuse_and_collapse",
limit: 100,
transforms: FuseAndCollapse::default().transforms,
}
}
/// Construct a normalizing transform that runs transforms that normalize the
/// structure of the tree until a fixpoint.
///
/// Care needs to be taken to ensure that the fixpoint converges for every
/// possible input tree. If this is not the case, there are two possibilities:
/// 1. The rewrite loop runs enters an oscillating cycle.
/// 2. The expression grows without bound.
pub fn normalize() -> Fixpoint {
Fixpoint {
name: "normalize",
limit: 100,
transforms: vec![
Box::new(normalize_lets::NormalizeLets::new(false)),
Box::new(normalize_ops::NormalizeOps),
],
}
}
/// A naive optimizer for relation expressions.
///
/// The optimizer currently applies only peep-hole optimizations, from a limited
/// set that were sufficient to get some of TPC-H up and working. It is worth a
/// review at some point to improve the quality, coverage, and architecture of
/// the optimizations.
#[derive(Debug)]
pub struct Optimizer {
/// A logical name identifying this optimizer instance.
pub name: &'static str,
/// The list of transforms to apply to an input relation.
pub transforms: Vec<Box<dyn Transform>>,
}
impl Optimizer {
/// Builds a logical optimizer that only performs logical transformations.
#[deprecated = "Create an Optimize instance and call `optimize` instead."]
pub fn logical_optimizer(ctx: &mut TransformCtx) -> Self {
let transforms: Vec<Box<dyn Transform>> = vec![
Box::new(typecheck::Typecheck::new(ctx.typecheck()).strict_join_equivalences()),
// 1. Structure-agnostic cleanup
Box::new(normalize()),
Box::new(non_null_requirements::NonNullRequirements::default()),
// 2. Collapse constants, joins, unions, and lets as much as possible.
// TODO: lift filters/maps to maximize ability to collapse
// things down?
Box::new(fuse_and_collapse()),
// 3. Structure-aware cleanup that needs to happen before ColumnKnowledge
Box::new(threshold_elision::ThresholdElision),
// 4. Move predicate information up and down the tree.
// This also fixes the shape of joins in the plan.
Box::new(Fixpoint {
name: "fixpoint_logical_01",
limit: 100,
transforms: vec![
// Predicate pushdown sets the equivalence classes of joins.
Box::new(predicate_pushdown::PredicatePushdown::default()),
Box::new(equivalence_propagation::EquivalencePropagation::default()),
// Lifts the information `!isnull(col)`
Box::new(nonnullable::NonNullable),
// Lifts the information `col = literal`
// TODO (#6613): this also tries to lift `!isnull(col)` but
// less well than the previous transform. Eliminate
// redundancy between the two transforms.
Box::new(column_knowledge::ColumnKnowledge::default()),
// Lifts the information `col1 = col2`
Box::new(demand::Demand::default()),
Box::new(FuseAndCollapse::default()),
],
}),
// 5. Reduce/Join simplifications.
Box::new(Fixpoint {
name: "fixpoint_logical_02",
limit: 100,
transforms: vec![
Box::new(semijoin_idempotence::SemijoinIdempotence::default()),
// Pushes aggregations down
Box::new(reduction_pushdown::ReductionPushdown),
// Replaces reduces with maps when the group keys are
// unique with maps
Box::new(reduce_elision::ReduceElision),
// Converts `Cross Join {Constant(Literal) + Input}` to
// `Map {Cross Join (Input, Constant()), Literal}`.
// Join fusion will clean this up to `Map{Input, Literal}`
Box::new(literal_lifting::LiteralLifting::default()),
// Identifies common relation subexpressions.
Box::new(cse::relation_cse::RelationCSE::new(false)),
Box::new(FuseAndCollapse::default()),
],
}),
Box::new(
typecheck::Typecheck::new(ctx.typecheck())
.disallow_new_globals()
.strict_join_equivalences(),
),
];
Self {
name: "logical",
transforms,
}
}
/// Builds a physical optimizer.
///
/// Performs logical transformations followed by all physical ones.
/// This is meant to be used for optimizing each view within a dataflow
/// once view inlining has already happened, right before dataflow
/// rendering.
pub fn physical_optimizer(ctx: &mut TransformCtx) -> Self {
// Implementation transformations
let transforms: Vec<Box<dyn Transform>> = vec![
Box::new(
typecheck::Typecheck::new(ctx.typecheck())
.disallow_new_globals()
.strict_join_equivalences(),
),
// Considerations for the relationship between JoinImplementation and other transforms:
// - there should be a run of LiteralConstraints before JoinImplementation lifts away
// the Filters from the Gets;
// - there should be no RelationCSE between this LiteralConstraints and
// JoinImplementation, because that could move an IndexedFilter behind a Get.
// - The last RelationCSE before JoinImplementation should be with inline_mfp = true.
// - Currently, JoinImplementation can't be before LiteralLifting because the latter
// sometimes creates `Unimplemented` joins (despite LiteralLifting already having been
// run in the logical optimizer).
// - Not running ColumnKnowledge in the same fixpoint loop with JoinImplementation
// is slightly hurting our plans. However, I'd say we should fix these problems by
// making ColumnKnowledge (and/or JoinImplementation) smarter (#18051), rather than
// having them in the same fixpoint loop. If they would be in the same fixpoint loop,
// then we either run the risk of ColumnKnowledge invalidating a join plan (#17993),
// or we would have to run JoinImplementation an unbounded number of times, which is
// also not good #16076.
// (The same is true for FoldConstants, Demand, and LiteralLifting to a lesser
// extent.)
//
// Also note that FoldConstants and LiteralLifting are not confluent. They can
// oscillate between e.g.:
// Constant
// - (4)
// and
// Map (4)
// Constant
// - ()
Box::new(Fixpoint {
name: "fixpoint_physical_01",
limit: 100,
transforms: vec![
Box::new(column_knowledge::ColumnKnowledge::default()),
Box::new(fold_constants::FoldConstants {
limit: Some(FOLD_CONSTANTS_LIMIT),
}),
Box::new(canonicalization::ReduceScalars),
Box::new(demand::Demand::default()),
Box::new(literal_lifting::LiteralLifting::default()),
],
}),
Box::new(literal_constraints::LiteralConstraints),
Box::new(Fixpoint {
name: "fixpoint_join_impl",
limit: 100,
transforms: vec![Box::new(join_implementation::JoinImplementation::default())],
}),
Box::new(canonicalize_mfp::CanonicalizeMfp),
// Identifies common relation subexpressions.
Box::new(cse::relation_cse::RelationCSE::new(false)),
Box::new(fold_constants::FoldConstants {
limit: Some(FOLD_CONSTANTS_LIMIT),
}),
Box::new(canonicalization::ReduceScalars),
// Remove threshold operators which have no effect.
// Must be done at the very end of the physical pass, because before
// that (at least at the moment) we cannot be sure that all trees
// are simplified equally well so they are structurally almost
// identical. Check the `threshold_elision.slt` tests that fail if
// you remove this transform for examples.
Box::new(threshold_elision::ThresholdElision),
// We need this to ensure that `CollectIndexRequests` gets a normalized plan.
// (For example, `FoldConstants` can break the normalized form by removing all
// references to a Let, see https://github.com/MaterializeInc/materialize/issues/21175)
Box::new(normalize_lets::NormalizeLets::new(false)),
Box::new(typecheck::Typecheck::new(ctx.typecheck()).disallow_new_globals()),
];
Self {
name: "physical",
transforms,
}
}
/// Contains the logical optimizations that should run after cross-view
/// transformations run.
///
/// Set `allow_new_globals` when you will use these as the first passes.
/// The first instance of the typechecker in an optimizer pipeline should
/// allow new globals (or it will crash when it encounters them).
pub fn logical_cleanup_pass(ctx: &mut TransformCtx, allow_new_globals: bool) -> Self {
let mut typechecker = typecheck::Typecheck::new(ctx.typecheck()).strict_join_equivalences();
if !allow_new_globals {
typechecker = typechecker.disallow_new_globals();
}
let transforms: Vec<Box<dyn Transform>> = vec![
Box::new(typechecker),
// Delete unnecessary maps.
Box::new(fusion::Fusion),
Box::new(Fixpoint {
name: "fixpoint_logical_cleanup_pass_01",
limit: 100,
transforms: vec![
Box::new(canonicalize_mfp::CanonicalizeMfp),
// Remove threshold operators which have no effect.
Box::new(threshold_elision::ThresholdElision),
// Projection pushdown may unblock fusing joins and unions.
Box::new(fusion::join::Join),
// Predicate pushdown required to tidy after join fusion.
Box::new(predicate_pushdown::PredicatePushdown::default()),
Box::new(redundant_join::RedundantJoin::default()),
// Redundant join produces projects that need to be fused.
Box::new(fusion::Fusion),
Box::new(compound::UnionNegateFusion),
// This goes after union fusion so we can cancel out
// more branches at a time.
Box::new(union_cancel::UnionBranchCancellation),
// The last RelationCSE before JoinImplementation should be with
// inline_mfp = true.
Box::new(cse::relation_cse::RelationCSE::new(true)),
Box::new(fold_constants::FoldConstants {
limit: Some(FOLD_CONSTANTS_LIMIT),
}),
Box::new(canonicalization::ReduceScalars),
],
}),
Box::new(
typecheck::Typecheck::new(ctx.typecheck())
.disallow_new_globals()
.strict_join_equivalences(),
),
];
Self {
name: "logical_cleanup",
transforms,
}
}
/// Builds a tiny optimizer, which is only suitable for optimizing fast-path queries.
pub fn fast_path_optimizer(_ctx: &mut TransformCtx) -> Self {
let transforms: Vec<Box<dyn Transform>> = vec![
Box::new(canonicalization::ReduceScalars),
Box::new(literal_constraints::LiteralConstraints),
Box::new(canonicalize_mfp::CanonicalizeMfp),
// We might have arrived at a constant, e.g., due to contradicting literal constraints.
Box::new(fold_constants::FoldConstants {
limit: Some(FOLD_CONSTANTS_LIMIT),
}),
];
Self {
name: "fast_path_optimizer",
transforms,
}
}
/// Optimizes the supplied relation expression.
///
/// These optimizations are performed with no information about available arrangements,
/// which makes them suitable for pre-optimization before dataflow deployment.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = self.name)
)]
pub fn optimize(
&self,
mut relation: MirRelationExpr,
ctx: &mut TransformCtx,
) -> Result<mz_expr::OptimizedMirRelationExpr, TransformError> {
let transform_result = self.transform(&mut relation, ctx);
// Make sure we are not swallowing any notice.
// TODO: we should actually wire up notices that come from here. This is not urgent, because
// currently notices can only come from the physical MIR optimizer (specifically,
// `LiteralConstraints`), and callers of this method are running the logical MIR optimizer.
soft_assert_or_log!(
ctx.df_meta.optimizer_notices.is_empty(),
"logical MIR optimization unexpectedly produced notices"
);
match transform_result {
Ok(_) => {
mz_repr::explain::trace_plan(&relation);
Ok(mz_expr::OptimizedMirRelationExpr(relation))
}
Err(e) => {
// Without this, the dropping of `relation` (which happens automatically when
// returning from this function) might run into a stack overflow, see
// https://github.com/MaterializeInc/materialize/issues/14141
relation.destroy_carefully();
error!("Optimizer::optimize(): {}", e);
Err(e)
}
}
}
/// Optimizes the supplied relation expression in place, using available arrangements.
///
/// This method should only be called with non-empty `indexes` when optimizing a dataflow,
/// as the optimizations may lock in the use of arrangements that may cease to exist.
fn transform(
&self,
relation: &mut MirRelationExpr,
args: &mut TransformCtx,
) -> Result<(), TransformError> {
for transform in self.transforms.iter() {
transform.transform(relation, args)?;
}
Ok(())
}
}