fancy_regex/
compile.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
// Copyright 2016 The Fancy Regex Authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

//! Compilation of regexes to VM.

use std::usize;

use crate::analyze::Info;
use crate::vm::{Insn, Prog};
use crate::CompileError;
use crate::Error;
use crate::Expr;
use crate::LookAround;
use crate::LookAround::*;
use crate::RegexOptions;
use crate::Result;

// I'm thinking it probably doesn't make a lot of sense having this split
// out from Compiler.
struct VMBuilder {
    prog: Vec<Insn>,
    n_saves: usize,
}

impl VMBuilder {
    fn new(max_group: usize) -> VMBuilder {
        VMBuilder {
            prog: Vec::new(),
            n_saves: max_group * 2,
        }
    }

    fn build(self) -> Prog {
        Prog::new(self.prog, self.n_saves)
    }

    fn newsave(&mut self) -> usize {
        let result = self.n_saves;
        self.n_saves += 1;
        result
    }

    fn pc(&self) -> usize {
        self.prog.len()
    }

    // would "emit" be a better name?
    fn add(&mut self, insn: Insn) {
        self.prog.push(insn);
    }

    fn set_jmp_target(&mut self, jmp_pc: usize, target: usize) {
        match self.prog[jmp_pc] {
            Insn::Jmp(ref mut next) => *next = target,
            _ => panic!("mutating instruction other than Jmp"),
        }
    }

    fn set_split_target(&mut self, split_pc: usize, target: usize, second: bool) {
        match self.prog[split_pc] {
            Insn::Split(_, ref mut y) if second => *y = target,
            Insn::Split(ref mut x, _) => *x = target,
            _ => panic!("mutating instruction other than Split"),
        }
    }

    fn set_repeat_target(&mut self, repeat_pc: usize, target: usize) {
        match self.prog[repeat_pc] {
            Insn::RepeatGr { ref mut next, .. }
            | Insn::RepeatNg { ref mut next, .. }
            | Insn::RepeatEpsilonGr { ref mut next, .. }
            | Insn::RepeatEpsilonNg { ref mut next, .. } => *next = target,
            _ => panic!("mutating instruction other than Repeat"),
        }
    }
}

struct Compiler {
    b: VMBuilder,
    options: RegexOptions,
}

impl Compiler {
    fn new(max_group: usize) -> Compiler {
        Compiler {
            b: VMBuilder::new(max_group),
            options: Default::default(),
        }
    }

    fn visit(&mut self, info: &Info<'_>, hard: bool) -> Result<()> {
        if !hard && !info.hard {
            // easy case, delegate entire subexpr
            return self.compile_delegate(info);
        }
        match *info.expr {
            Expr::Empty => (),
            Expr::Literal { ref val, casei } => {
                if !casei {
                    self.b.add(Insn::Lit(val.clone()));
                } else {
                    self.compile_delegate(info)?;
                }
            }
            Expr::Any { newline: true } => {
                self.b.add(Insn::Any);
            }
            Expr::Any { newline: false } => {
                self.b.add(Insn::AnyNoNL);
            }
            Expr::Concat(_) => {
                self.compile_concat(info, hard)?;
            }
            Expr::Alt(_) => {
                let count = info.children.len();
                self.compile_alt(count, |compiler, i| compiler.visit(&info.children[i], hard))?;
            }
            Expr::Group(_) => {
                let group = info.start_group;
                self.b.add(Insn::Save(group * 2));
                self.visit(&info.children[0], hard)?;
                self.b.add(Insn::Save(group * 2 + 1));
            }
            Expr::Repeat { lo, hi, greedy, .. } => {
                self.compile_repeat(info, lo, hi, greedy, hard)?;
            }
            Expr::LookAround(_, la) => {
                self.compile_lookaround(info, la)?;
            }
            Expr::Backref(group) => {
                self.b.add(Insn::Backref(group * 2));
            }
            Expr::BackrefExistsCondition(group) => {
                self.b.add(Insn::BackrefExistsCondition(group));
            }
            Expr::AtomicGroup(_) => {
                // TODO optimization: atomic insns are not needed if the
                // child doesn't do any backtracking.
                self.b.add(Insn::BeginAtomic);
                self.visit(&info.children[0], false)?;
                self.b.add(Insn::EndAtomic);
            }
            Expr::Delegate { .. }
            | Expr::StartText
            | Expr::EndText
            | Expr::StartLine
            | Expr::EndLine => {
                // TODO: might want to have more specialized impls
                self.compile_delegate(info)?;
            }
            Expr::KeepOut => {
                self.b.add(Insn::Save(0));
            }
            Expr::ContinueFromPreviousMatchEnd => {
                self.b.add(Insn::ContinueFromPreviousMatchEnd);
            }
            Expr::Conditional { .. } => {
                self.compile_conditional(|compiler, i| compiler.visit(&info.children[i], hard))?;
            }
        }
        Ok(())
    }

    fn compile_alt<F>(&mut self, count: usize, mut handle_alternative: F) -> Result<()>
    where
        F: FnMut(&mut Compiler, usize) -> Result<()>,
    {
        let mut jmps = Vec::new();
        let mut last_pc = usize::MAX;
        for i in 0..count {
            let has_next = i != count - 1;
            let pc = self.b.pc();
            if has_next {
                self.b.add(Insn::Split(pc + 1, usize::MAX));
            }
            if last_pc != usize::MAX {
                self.b.set_split_target(last_pc, pc, true);
            }
            last_pc = pc;

            handle_alternative(self, i)?;

            if has_next {
                // All except the last branch need to jump over instructions of
                // other branches. The last branch can just continue to the next
                // instruction.
                let pc = self.b.pc();
                jmps.push(pc);
                self.b.add(Insn::Jmp(0));
            }
        }
        let next_pc = self.b.pc();
        for jmp_pc in jmps {
            self.b.set_jmp_target(jmp_pc, next_pc);
        }
        Ok(())
    }

    fn compile_conditional<F>(&mut self, mut handle_child: F) -> Result<()>
    where
        F: FnMut(&mut Compiler, usize) -> Result<()>,
    {
        // here we use atomic group functionality to be able to remove the program counter
        // relating to the split instruction's second position if the conditional succeeds
        // This is to ensure that if the condition succeeds, but the "true" branch from the
        // conditional fails, that it wouldn't jump to the "false" branch.
        self.b.add(Insn::BeginAtomic);

        let split_pc = self.b.pc();
        // add the split instruction - we will update it's second pc later
        self.b.add(Insn::Split(split_pc + 1, usize::MAX));

        // add the conditional expression
        handle_child(self, 0)?;

        // mark it as successful to remove the state we added as a split earlier
        self.b.add(Insn::EndAtomic);

        // add the truth branch
        handle_child(self, 1)?;
        // add an instruction to jump over the false branch - we will update the jump target later
        let jump_over_false_pc = self.b.pc();
        self.b.add(Insn::Jmp(0));

        // add the false branch, update the split target
        self.b.set_split_target(split_pc, self.b.pc(), true);
        handle_child(self, 2)?;

        // update the jump target for jumping over the false branch
        self.b.set_jmp_target(jump_over_false_pc, self.b.pc());

        Ok(())
    }

    fn compile_concat(&mut self, info: &Info<'_>, hard: bool) -> Result<()> {
        // First: determine a prefix which is constant size and not hard.
        let prefix_end = info
            .children
            .iter()
            .take_while(|c| c.const_size && !c.hard)
            .count();

        // If incoming difficulty is not hard, the suffix after the last
        // hard child can be done with NFA.
        let suffix_len = if !hard {
            info.children[prefix_end..]
                .iter()
                .rev()
                .take_while(|c| !c.hard)
                .count()
        } else {
            // Even for hard, we can delegate a const-sized suffix
            info.children[prefix_end..]
                .iter()
                .rev()
                .take_while(|c| c.const_size && !c.hard)
                .count()
        };
        let suffix_begin = info.children.len() - suffix_len;

        self.compile_delegates(&info.children[..prefix_end])?;

        for child in info.children[prefix_end..suffix_begin].iter() {
            self.visit(child, true)?;
        }

        self.compile_delegates(&info.children[suffix_begin..])
    }

    fn compile_repeat(
        &mut self,
        info: &Info<'_>,
        lo: usize,
        hi: usize,
        greedy: bool,
        hard: bool,
    ) -> Result<()> {
        let child = &info.children[0];
        if lo == 0 && hi == 1 {
            // e?
            let pc = self.b.pc();
            self.b.add(Insn::Split(pc + 1, pc + 1));
            // TODO: do we want to do an epsilon check here? If we do
            // it here and in Alt, we might be able to make a good
            // bound on stack depth
            self.visit(child, hard)?;
            let next_pc = self.b.pc();
            self.b.set_split_target(pc, next_pc, greedy);
            return Ok(());
        }
        let hard = hard | info.hard;
        if hi == usize::MAX && child.min_size == 0 {
            // Use RepeatEpsilon instructions to prevent empty repeat
            let repeat = self.b.newsave();
            let check = self.b.newsave();
            self.b.add(Insn::Save0(repeat));
            let pc = self.b.pc();
            if greedy {
                self.b.add(Insn::RepeatEpsilonGr {
                    lo,
                    next: usize::MAX,
                    repeat,
                    check,
                });
            } else {
                self.b.add(Insn::RepeatEpsilonNg {
                    lo,
                    next: usize::MAX,
                    repeat,
                    check,
                });
            }
            self.visit(child, hard)?;
            self.b.add(Insn::Jmp(pc));
            let next_pc = self.b.pc();
            self.b.set_repeat_target(pc, next_pc);
        } else if lo == 0 && hi == usize::MAX {
            // e*
            let pc = self.b.pc();
            self.b.add(Insn::Split(pc + 1, pc + 1));
            self.visit(child, hard)?;
            self.b.add(Insn::Jmp(pc));
            let next_pc = self.b.pc();
            self.b.set_split_target(pc, next_pc, greedy);
        } else if lo == 1 && hi == usize::MAX {
            // e+
            let pc = self.b.pc();
            self.visit(child, hard)?;
            let next = self.b.pc() + 1;
            let (x, y) = if greedy { (pc, next) } else { (next, pc) };
            self.b.add(Insn::Split(x, y));
        } else {
            let repeat = self.b.newsave();
            self.b.add(Insn::Save0(repeat));
            let pc = self.b.pc();
            if greedy {
                self.b.add(Insn::RepeatGr {
                    lo,
                    hi,
                    next: usize::MAX,
                    repeat,
                });
            } else {
                self.b.add(Insn::RepeatNg {
                    lo,
                    hi,
                    next: usize::MAX,
                    repeat,
                });
            }
            self.visit(child, hard)?;
            self.b.add(Insn::Jmp(pc));
            let next_pc = self.b.pc();
            self.b.set_repeat_target(pc, next_pc);
        }
        Ok(())
    }

    fn compile_lookaround(&mut self, info: &Info<'_>, la: LookAround) -> Result<()> {
        let inner = &info.children[0];
        match la {
            LookBehind => {
                if let Info {
                    const_size: false,
                    expr: &Expr::Alt(_),
                    ..
                } = inner
                {
                    // Make const size by transforming `(?<=a|bb)` to `(?<=a)|(?<=bb)`
                    let alternatives = &inner.children;
                    self.compile_alt(alternatives.len(), |compiler, i| {
                        let alternative = &alternatives[i];
                        compiler.compile_positive_lookaround(alternative, la)
                    })
                } else {
                    self.compile_positive_lookaround(inner, la)
                }
            }
            LookBehindNeg => {
                if let Info {
                    const_size: false,
                    expr: &Expr::Alt(_),
                    ..
                } = inner
                {
                    // Make const size by transforming `(?<!a|bb)` to `(?<!a)(?<!bb)`
                    let alternatives = &inner.children;
                    for alternative in alternatives {
                        self.compile_negative_lookaround(alternative, la)?;
                    }
                    Ok(())
                } else {
                    self.compile_negative_lookaround(inner, la)
                }
            }
            LookAhead => self.compile_positive_lookaround(inner, la),
            LookAheadNeg => self.compile_negative_lookaround(inner, la),
        }
    }

    fn compile_positive_lookaround(&mut self, inner: &Info<'_>, la: LookAround) -> Result<()> {
        let save = self.b.newsave();
        self.b.add(Insn::Save(save));
        self.compile_lookaround_inner(inner, la)?;
        self.b.add(Insn::Restore(save));
        Ok(())
    }

    fn compile_negative_lookaround(&mut self, inner: &Info<'_>, la: LookAround) -> Result<()> {
        let pc = self.b.pc();
        self.b.add(Insn::Split(pc + 1, usize::MAX));
        self.compile_lookaround_inner(inner, la)?;
        self.b.add(Insn::FailNegativeLookAround);
        let next_pc = self.b.pc();
        self.b.set_split_target(pc, next_pc, true);
        Ok(())
    }

    fn compile_lookaround_inner(&mut self, inner: &Info<'_>, la: LookAround) -> Result<()> {
        if la == LookBehind || la == LookBehindNeg {
            if !inner.const_size {
                return Err(Error::CompileError(CompileError::LookBehindNotConst));
            }
            self.b.add(Insn::GoBack(inner.min_size));
        }
        self.visit(inner, false)
    }

    fn compile_delegates(&mut self, infos: &[Info<'_>]) -> Result<()> {
        if infos.is_empty() {
            return Ok(());
        }
        // TODO: might want to do something similar for case insensitive literals
        // (have is_literal return an additional bool for casei)
        if infos.iter().all(|e| e.is_literal()) {
            let mut val = String::new();
            for info in infos {
                info.push_literal(&mut val);
            }
            self.b.add(Insn::Lit(val));
            return Ok(());
        }

        let mut delegate_builder = DelegateBuilder::new();
        for info in infos {
            delegate_builder.push(info);
        }
        let delegate = delegate_builder.build(&self.options)?;

        self.b.add(delegate);
        Ok(())
    }

    fn compile_delegate(&mut self, info: &Info) -> Result<()> {
        let insn = if info.is_literal() {
            let mut val = String::new();
            info.push_literal(&mut val);
            Insn::Lit(val)
        } else {
            DelegateBuilder::new().push(info).build(&self.options)?
        };
        self.b.add(insn);
        Ok(())
    }
}

pub(crate) fn compile_inner(inner_re: &str, options: &RegexOptions) -> Result<regex::Regex> {
    let mut builder = regex::RegexBuilder::new(inner_re);
    if let Some(size_limit) = options.delegate_size_limit {
        builder.size_limit(size_limit);
    }
    if let Some(dfa_size_limit) = options.delegate_dfa_size_limit {
        builder.dfa_size_limit(dfa_size_limit);
    }

    builder
        .build()
        .map_err(CompileError::InnerError)
        .map_err(Error::CompileError)
}

/// Compile the analyzed expressions into a program.
pub fn compile(info: &Info<'_>) -> Result<Prog> {
    let mut c = Compiler::new(info.end_group);
    c.visit(info, false)?;
    c.b.add(Insn::End);
    Ok(c.b.build())
}

struct DelegateBuilder {
    re: String,
    min_size: usize,
    const_size: bool,
    looks_left: bool,
    start_group: Option<usize>,
    end_group: usize,
}

impl DelegateBuilder {
    fn new() -> Self {
        Self {
            re: "^".to_string(),
            min_size: 0,
            const_size: true,
            looks_left: false,
            start_group: None,
            end_group: 0,
        }
    }

    fn push(&mut self, info: &Info<'_>) -> &mut DelegateBuilder {
        // TODO: might want to detect case of a group with no captures
        //  inside, so we can run find() instead of captures()

        self.looks_left |= info.looks_left && self.min_size == 0;
        self.min_size += info.min_size;
        self.const_size &= info.const_size;
        if self.start_group.is_none() {
            self.start_group = Some(info.start_group);
        }
        self.end_group = info.end_group;

        // Add expression. The precedence argument has to be 1 here to
        // ensure correct grouping in these cases:
        //
        // If we have multiple expressions, we are building a concat.
        // Without grouping, we'd turn ["a", "b|c"] into "^ab|c". But we
        // want "^a(?:b|c)".
        //
        // Even with a single expression, because we add `^` at the
        // beginning, we need a group. Otherwise `["a|b"]` would be turned
        // into `"^a|b"` instead of `"^(?:a|b)"`.
        info.expr.to_str(&mut self.re, 1);
        self
    }

    fn build(&self, options: &RegexOptions) -> Result<Insn> {
        let start_group = self.start_group.expect("Expected at least one expression");
        let end_group = self.end_group;

        let compiled = compile_inner(&self.re, options)?;
        if self.looks_left {
            // The "s" flag is for allowing `.` to match `\n`
            let inner1 = ["^(?s:.)", &self.re[1..]].concat();
            let compiled1 = compile_inner(&inner1, options)?;
            Ok(Insn::Delegate {
                inner: Box::new(compiled),
                inner1: Some(Box::new(compiled1)),
                start_group,
                end_group,
            })
        } else if self.const_size && start_group == end_group {
            let size = self.min_size;
            Ok(Insn::DelegateSized(Box::new(compiled), size))
        } else {
            Ok(Insn::Delegate {
                inner: Box::new(compiled),
                inner1: None,
                start_group,
                end_group,
            })
        }
    }
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::analyze::analyze;
    use crate::parse::ExprTree;
    use crate::vm::Insn::*;
    use bit_set::BitSet;
    use matches::assert_matches;

    #[test]
    fn jumps_for_alternation() {
        let tree = ExprTree {
            expr: Expr::Alt(vec![
                Expr::Literal {
                    val: "a".into(),
                    casei: false,
                },
                Expr::Literal {
                    val: "b".into(),
                    casei: false,
                },
                Expr::Literal {
                    val: "c".into(),
                    casei: false,
                },
            ]),
            backrefs: BitSet::new(),
            named_groups: Default::default(),
        };
        let info = analyze(&tree).unwrap();

        let mut c = Compiler::new(0);
        // Force "hard" so that compiler doesn't just delegate
        c.visit(&info, true).unwrap();
        c.b.add(Insn::End);

        let prog = c.b.prog;

        assert_eq!(prog.len(), 8, "prog: {:?}", prog);
        assert_matches!(prog[0], Split(1, 3));
        assert_matches!(prog[1], Lit(ref l) if l == "a");
        assert_matches!(prog[2], Jmp(7));
        assert_matches!(prog[3], Split(4, 6));
        assert_matches!(prog[4], Lit(ref l) if l == "b");
        assert_matches!(prog[5], Jmp(7));
        assert_matches!(prog[6], Lit(ref l) if l == "c");
        assert_matches!(prog[7], End);
    }

    #[test]
    fn look_around_pattern_can_be_delegated() {
        let prog = compile_prog("(?=ab*)c");

        assert_eq!(prog.len(), 5, "prog: {:?}", prog);
        assert_matches!(prog[0], Save(0));
        assert_delegate(&prog[1], "^ab*");
        assert_matches!(prog[2], Restore(0));
        assert_matches!(prog[3], Lit(ref l) if l == "c");
        assert_matches!(prog[4], End);
    }

    #[test]
    fn easy_concat_can_delegate_end() {
        let prog = compile_prog("(?!x)(?:a|ab)x*");

        assert_eq!(prog.len(), 5, "prog: {:?}", prog);
        assert_matches!(prog[0], Split(1, 3));
        assert_matches!(prog[1], Lit(ref l) if l == "x");
        assert_matches!(prog[2], FailNegativeLookAround);
        assert_delegate(&prog[3], "^(?:a|ab)x*");
        assert_matches!(prog[4], End);
    }

    #[test]
    fn hard_concat_can_delegate_const_size_end() {
        let prog = compile_prog("(?:(?!x)(?:a|b)c)x*");

        assert_eq!(prog.len(), 6, "prog: {:?}", prog);
        assert_matches!(prog[0], Split(1, 3));
        assert_matches!(prog[1], Lit(ref l) if l == "x");
        assert_matches!(prog[2], FailNegativeLookAround);
        assert_delegate_sized(&prog[3], "^(?:a|b)c");
        assert_delegate(&prog[4], "^x*");
        assert_matches!(prog[5], End);
    }

    #[test]
    fn hard_concat_can_not_delegate_variable_end() {
        let prog = compile_prog("(?:(?!x)(?:a|ab))x*");

        assert_eq!(prog.len(), 9, "prog: {:?}", prog);
        assert_matches!(prog[0], Split(1, 3));
        assert_matches!(prog[1], Lit(ref l) if l == "x");
        assert_matches!(prog[2], FailNegativeLookAround);
        assert_matches!(prog[3], Split(4, 6));
        assert_matches!(prog[4], Lit(ref l) if l == "a");
        assert_matches!(prog[5], Jmp(7));
        assert_matches!(prog[6], Lit(ref l) if l == "ab");
        assert_delegate(&prog[7], "^x*");
        assert_matches!(prog[8], End);
    }

    #[test]
    fn conditional_expression_can_be_compiled() {
        let prog = compile_prog(r"(?(ab)c|d)");

        assert_eq!(prog.len(), 8, "prog: {:?}", prog);

        assert_matches!(prog[0], BeginAtomic);
        assert_matches!(prog[1], Split(2, 6));
        assert_matches!(prog[2], Lit(ref l) if l == "ab");
        assert_matches!(prog[3], EndAtomic);
        assert_matches!(prog[4], Lit(ref l) if l == "c");
        assert_matches!(prog[5], Jmp(7));
        assert_matches!(prog[6], Lit(ref l) if l == "d");
        assert_matches!(prog[7], End);
    }

    fn compile_prog(re: &str) -> Vec<Insn> {
        let tree = Expr::parse_tree(re).unwrap();
        let info = analyze(&tree).unwrap();
        let prog = compile(&info).unwrap();
        prog.body
    }

    fn assert_delegate(insn: &Insn, re: &str) {
        match insn {
            Insn::Delegate { inner, .. } => {
                assert_eq!(inner.as_str(), re);
            }
            _ => {
                panic!("Expected Insn::Delegate but was {:#?}", insn);
            }
        }
    }

    fn assert_delegate_sized(insn: &Insn, re: &str) {
        match insn {
            Insn::DelegateSized(inner, ..) => {
                assert_eq!(inner.as_str(), re);
            }
            _ => {
                panic!("Expected Insn::DelegateSized but was {:#?}", insn);
            }
        }
    }
}