plotters/coord/ranged1d/combinators/
linspace.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
use crate::coord::ranged1d::types::RangedCoordusize;
use crate::coord::ranged1d::{
    AsRangedCoord, DiscreteRanged, KeyPointHint, NoDefaultFormatting, Ranged, ValueFormatter,
};
use std::cmp::{Ordering, PartialOrd};
use std::marker::PhantomData;
use std::ops::{Add, Range, Sub};

/// The type marker used to denote the rounding method.
/// Since we are mapping any range to a discrete range thus not all values are
/// perfect mapped to the grid points. In this case, this type marker gives hints
/// for the linspace coord for how to treat the non-grid-point values.
pub trait LinspaceRoundingMethod<V> {
    /// Search for the value within the given values array and rounding method
    ///
    /// - `values`: The values we want to search
    /// - `target`: The target value
    /// - `returns`: The index if we found the matching item, otherwise none
    fn search(values: &[V], target: &V) -> Option<usize>;
}

/// This type marker means linspace do the exact match for searching
/// which means if there's no value strictly equals to the target, the coord spec
/// reports not found result.
#[derive(Clone)]
pub struct Exact<V>(PhantomData<V>);

impl<V: PartialOrd> LinspaceRoundingMethod<V> for Exact<V> {
    fn search(values: &[V], target: &V) -> Option<usize> {
        values.iter().position(|x| target == x)
    }
}

/// This type marker means we round up the value. Which means we try to find a
/// minimal value in the values array that is greater or equal to the target.
#[derive(Clone)]
pub struct Ceil<V>(PhantomData<V>);

impl<V: PartialOrd> LinspaceRoundingMethod<V> for Ceil<V> {
    fn search(values: &[V], target: &V) -> Option<usize> {
        let ascending = if values.len() < 2 {
            true
        } else {
            values[0].partial_cmp(&values[1]) == Some(Ordering::Less)
        };

        match values.binary_search_by(|probe| {
            if ascending {
                probe.partial_cmp(target).unwrap()
            } else {
                target.partial_cmp(probe).unwrap()
            }
        }) {
            Ok(idx) => Some(idx),
            Err(idx) => {
                let offset = if ascending { 0 } else { 1 };

                if idx < offset || idx >= values.len() + offset {
                    return None;
                }
                Some(idx - offset)
            }
        }
    }
}

/// This means we use the round down. Which means we try to find a
/// maximum value in the values array that is less or equal to the target.
#[derive(Clone)]
pub struct Floor<V>(PhantomData<V>);

impl<V: PartialOrd> LinspaceRoundingMethod<V> for Floor<V> {
    fn search(values: &[V], target: &V) -> Option<usize> {
        let ascending = if values.len() < 2 {
            true
        } else {
            values[0].partial_cmp(&values[1]) == Some(Ordering::Less)
        };

        match values.binary_search_by(|probe| {
            if ascending {
                probe.partial_cmp(target).unwrap()
            } else {
                target.partial_cmp(probe).unwrap()
            }
        }) {
            Ok(idx) => Some(idx),
            Err(idx) => {
                let offset = if ascending { 1 } else { 0 };

                if idx < offset || idx >= values.len() + offset {
                    return None;
                }
                Some(idx - offset)
            }
        }
    }
}

/// This means we use the rounding. Which means we try to find the closet
/// value in the array that matches the target
#[derive(Clone)]
pub struct Round<V, S>(PhantomData<(V, S)>);

impl<V, S> LinspaceRoundingMethod<V> for Round<V, S>
where
    V: Add<S, Output = V> + PartialOrd + Sub<V, Output = S> + Clone,
    S: PartialOrd + Clone,
{
    fn search(values: &[V], target: &V) -> Option<usize> {
        let ascending = if values.len() < 2 {
            true
        } else {
            values[0].partial_cmp(&values[1]) == Some(Ordering::Less)
        };

        match values.binary_search_by(|probe| {
            if ascending {
                probe.partial_cmp(target).unwrap()
            } else {
                target.partial_cmp(probe).unwrap()
            }
        }) {
            Ok(idx) => Some(idx),
            Err(idx) => {
                if idx == 0 {
                    return Some(0);
                }

                if idx == values.len() {
                    return Some(idx - 1);
                }

                let left_delta = if ascending {
                    target.clone() - values[idx - 1].clone()
                } else {
                    values[idx - 1].clone() - target.clone()
                };
                let right_delta = if ascending {
                    values[idx].clone() - target.clone()
                } else {
                    target.clone() - values[idx].clone()
                };

                if left_delta.partial_cmp(&right_delta) == Some(Ordering::Less) {
                    Some(idx - 1)
                } else {
                    Some(idx)
                }
            }
        }
    }
}

/// The coordinate combinator that transform a continous coordinate to a discrete coordinate
/// to a discrete coordinate by a giving step.
///
/// For example, range `0f32..100f32` is a continuous coordinate, thus this prevent us having a
/// histogram on it since Plotters doesn't know how to segment the range into buckets.
/// In this case, to get a histogram, we need to split the original range to a
/// set of discrete buckets (for example, 0.5 per bucket).
///
/// The linspace decorate abstracting this method. For example, we can have a discrete coordinate:
/// `(0f32..100f32).step(0.5)`.
///
/// Linspace also supports different types of bucket matching method - This configuration alters the behavior of
/// [DiscreteCoord::index_of](../trait.DiscreteCoord.html#tymethod.index_of) for Linspace coord spec
/// - **Flooring**, the value falls into the nearst bucket smaller than it. See [Linspace::use_floor](struct.Linspace.html#method.use_floor)
/// - **Round**,   the value falls into the nearst bucket. See [Linearspace::use_round](struct.Linspace.html#method.use_round)
/// - **Ceiling**, the value falls into the nearst bucket larger than itself. See [Linspace::use_ceil](struct.Linspace.html#method.use_ceil)
/// - **Exact Matchting**, the value must be exactly same as the butcket value.  See [Linspace::use_exact](struct.Linspace.html#method.use_exact)
#[derive(Clone)]
pub struct Linspace<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>>
where
    T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone,
{
    step: S,
    inner: T,
    grid_value: Vec<T::ValueType>,
    _phatom: PhantomData<R>,
}

impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> Linspace<T, S, R>
where
    T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone,
{
    fn compute_grid_values(&mut self) {
        let range = self.inner.range();

        match (
            range.start.partial_cmp(&range.end),
            (range.start.clone() + self.step.clone()).partial_cmp(&range.end),
        ) {
            (Some(a), Some(b)) if a != b || a == Ordering::Equal || b == Ordering::Equal => (),
            (Some(a), Some(_)) => {
                let mut current = range.start;
                while current.partial_cmp(&range.end) == Some(a) {
                    self.grid_value.push(current.clone());
                    current = current + self.step.clone();
                }
            }
            _ => (),
        }
    }

    /// Set the linspace use the round up method for value matching
    ///
    /// - **returns**: The newly created linspace that uses new matching method
    pub fn use_ceil(self) -> Linspace<T, S, Ceil<T::ValueType>> {
        Linspace {
            step: self.step,
            inner: self.inner,
            grid_value: self.grid_value,
            _phatom: PhantomData,
        }
    }

    /// Set the linspace use the round down method for value matching
    ///
    /// - **returns**: The newly created linspace that uses new matching method
    pub fn use_floor(self) -> Linspace<T, S, Floor<T::ValueType>> {
        Linspace {
            step: self.step,
            inner: self.inner,
            grid_value: self.grid_value,
            _phatom: PhantomData,
        }
    }

    /// Set the linspace use the best match method for value matching
    ///
    /// - **returns**: The newly created linspace that uses new matching method
    pub fn use_round(self) -> Linspace<T, S, Round<T::ValueType, S>>
    where
        T::ValueType: Sub<T::ValueType, Output = S>,
        S: PartialOrd,
    {
        Linspace {
            step: self.step,
            inner: self.inner,
            grid_value: self.grid_value,
            _phatom: PhantomData,
        }
    }

    /// Set the linspace use the exact match method for value matching
    ///
    /// - **returns**: The newly created linspace that uses new matching method
    pub fn use_exact(self) -> Linspace<T, S, Exact<T::ValueType>>
    where
        T::ValueType: Sub<T::ValueType, Output = S>,
        S: PartialOrd,
    {
        Linspace {
            step: self.step,
            inner: self.inner,
            grid_value: self.grid_value,
            _phatom: PhantomData,
        }
    }
}

impl<T, R, S, RM> ValueFormatter<T> for Linspace<R, S, RM>
where
    R: Ranged<ValueType = T> + ValueFormatter<T>,
    RM: LinspaceRoundingMethod<T>,
    T: Add<S, Output = T> + PartialOrd + Clone,
    S: Clone,
{
    fn format(value: &T) -> String {
        R::format(value)
    }
}

impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> Ranged for Linspace<T, S, R>
where
    T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone,
{
    type FormatOption = NoDefaultFormatting;
    type ValueType = T::ValueType;

    fn range(&self) -> Range<T::ValueType> {
        self.inner.range()
    }

    fn map(&self, value: &T::ValueType, limit: (i32, i32)) -> i32 {
        self.inner.map(value, limit)
    }

    fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<T::ValueType> {
        if self.grid_value.is_empty() {
            return vec![];
        }
        let idx_range: RangedCoordusize = (0..(self.grid_value.len() - 1)).into();

        idx_range
            .key_points(hint)
            .into_iter()
            .map(|x| self.grid_value[x].clone())
            .collect()
    }
}

impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> DiscreteRanged
    for Linspace<T, S, R>
where
    T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone,
{
    fn size(&self) -> usize {
        self.grid_value.len()
    }

    fn index_of(&self, value: &T::ValueType) -> Option<usize> {
        R::search(self.grid_value.as_ref(), value)
    }

    fn from_index(&self, idx: usize) -> Option<T::ValueType> {
        self.grid_value.get(idx).map(Clone::clone)
    }
}

pub trait IntoLinspace: AsRangedCoord {
    /// Set the step value, make a linspace coordinate from the given range.
    /// By default the matching method use the exact match
    ///
    /// - `val`: The step value
    /// - **returns*: The newly created linspace
    fn step<S: Clone>(self, val: S) -> Linspace<Self::CoordDescType, S, Exact<Self::Value>>
    where
        Self::Value: Add<S, Output = Self::Value> + PartialOrd + Clone,
    {
        let mut ret = Linspace {
            step: val,
            inner: self.into(),
            grid_value: vec![],
            _phatom: PhantomData,
        };

        ret.compute_grid_values();

        ret
    }
}

impl<T: AsRangedCoord> IntoLinspace for T {}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_float_linspace() {
        let coord = (0.0f64..100.0f64).step(0.1);

        assert_eq!(coord.map(&23.12, (0, 10000)), 2312);
        assert_eq!(coord.range(), 0.0..100.0);
        assert_eq!(coord.key_points(100000).len(), 1001);
        assert_eq!(coord.size(), 1001);
        assert_eq!(coord.index_of(&coord.from_index(230).unwrap()), Some(230));
        assert!((coord.from_index(230).unwrap() - 23.0).abs() < 1e-5);
    }

    #[test]
    fn test_rounding_methods() {
        let coord = (0.0f64..100.0f64).step(1.0);

        assert_eq!(coord.index_of(&1.0), Some(1));
        assert_eq!(coord.index_of(&1.2), None);

        let coord = coord.use_floor();
        assert_eq!(coord.index_of(&1.0), Some(1));
        assert_eq!(coord.index_of(&1.2), Some(1));
        assert_eq!(coord.index_of(&23.9), Some(23));
        assert_eq!(coord.index_of(&10000.0), Some(99));
        assert_eq!(coord.index_of(&-1.0), None);

        let coord = coord.use_ceil();
        assert_eq!(coord.index_of(&1.0), Some(1));
        assert_eq!(coord.index_of(&1.2), Some(2));
        assert_eq!(coord.index_of(&23.9), Some(24));
        assert_eq!(coord.index_of(&10000.0), None);
        assert_eq!(coord.index_of(&-1.0), Some(0));

        let coord = coord.use_round();
        assert_eq!(coord.index_of(&1.0), Some(1));
        assert_eq!(coord.index_of(&1.2), Some(1));
        assert_eq!(coord.index_of(&1.7), Some(2));
        assert_eq!(coord.index_of(&23.9), Some(24));
        assert_eq!(coord.index_of(&10000.0), Some(99));
        assert_eq!(coord.index_of(&-1.0), Some(0));

        let coord = (0.0f64..-100.0f64).step(-1.0);

        assert_eq!(coord.index_of(&-1.0), Some(1));
        assert_eq!(coord.index_of(&-1.2), None);

        let coord = coord.use_floor();
        assert_eq!(coord.index_of(&-1.0), Some(1));
        assert_eq!(coord.index_of(&-1.2), Some(2));
        assert_eq!(coord.index_of(&-23.9), Some(24));
        assert_eq!(coord.index_of(&-10000.0), None);
        assert_eq!(coord.index_of(&1.0), Some(0));

        let coord = coord.use_ceil();
        assert_eq!(coord.index_of(&-1.0), Some(1));
        assert_eq!(coord.index_of(&-1.2), Some(1));
        assert_eq!(coord.index_of(&-23.9), Some(23));
        assert_eq!(coord.index_of(&-10000.0), Some(99));
        assert_eq!(coord.index_of(&1.0), None);

        let coord = coord.use_round();
        assert_eq!(coord.index_of(&-1.0), Some(1));
        assert_eq!(coord.index_of(&-1.2), Some(1));
        assert_eq!(coord.index_of(&-1.7), Some(2));
        assert_eq!(coord.index_of(&-23.9), Some(24));
        assert_eq!(coord.index_of(&-10000.0), Some(99));
        assert_eq!(coord.index_of(&1.0), Some(0));
    }

    #[cfg(feature = "chrono")]
    #[test]
    fn test_duration_linspace() {
        use chrono::Duration;
        let coord = (Duration::seconds(0)..Duration::seconds(100)).step(Duration::milliseconds(1));

        assert_eq!(coord.size(), 100_000);
        assert_eq!(coord.index_of(&coord.from_index(230).unwrap()), Some(230));
        assert_eq!(coord.key_points(10000000).len(), 100_000);
        assert_eq!(coord.range(), Duration::seconds(0)..Duration::seconds(100));
        assert_eq!(coord.map(&Duration::seconds(25), (0, 100_000)), 25000);
    }
}