differential_dataflow/operators/
join.rs

1//! Match pairs of records based on a key.
2//!
3//! The various `join` implementations require that the units of each collection can be multiplied, and that
4//! the multiplication distributes over addition. That is, we will repeatedly evaluate (a + b) * c as (a * c)
5//! + (b * c), and if this is not equal to the former term, little is known about the actual output.
6use std::cmp::Ordering;
7
8use timely::{Accountable, ContainerBuilder};
9use timely::container::PushInto;
10use timely::order::PartialOrder;
11use timely::progress::Timestamp;
12use timely::dataflow::{Scope, StreamCore};
13use timely::dataflow::operators::generic::{Operator, OutputBuilderSession, Session};
14use timely::dataflow::channels::pact::Pipeline;
15use timely::dataflow::operators::Capability;
16
17use crate::hashable::Hashable;
18use crate::{Data, ExchangeData, VecCollection};
19use crate::difference::{Semigroup, Abelian, Multiply};
20use crate::lattice::Lattice;
21use crate::operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf};
22use crate::trace::{BatchReader, Cursor};
23use crate::operators::ValueHistory;
24
25use crate::trace::TraceReader;
26
27/// Join implementations for `(key,val)` data.
28pub trait Join<G: Scope, K: Data, V: Data, R: Semigroup> {
29
30    /// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and yields pairs `(key, (val1, val2))`.
31    ///
32    /// The [`join_map`](Join::join_map) method may be more convenient for non-trivial processing pipelines.
33    ///
34    /// # Examples
35    ///
36    /// ```
37    /// use differential_dataflow::input::Input;
38    /// use differential_dataflow::operators::Join;
39    ///
40    /// ::timely::example(|scope| {
41    ///
42    ///     let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
43    ///     let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
44    ///     let z = scope.new_collection_from(vec![(0, (1, 'a')), (1, (3, 'b'))]).1;
45    ///
46    ///     x.join(&y)
47    ///      .assert_eq(&z);
48    /// });
49    /// ```
50    fn join<V2, R2>(&self, other: &VecCollection<G, (K,V2), R2>) -> VecCollection<G, (K,(V,V2)), <R as Multiply<R2>>::Output>
51    where
52        K: ExchangeData,
53        V2: ExchangeData,
54        R2: ExchangeData+Semigroup,
55        R: Multiply<R2, Output: Semigroup+'static>,
56    {
57        self.join_map(other, |k,v,v2| (k.clone(),(v.clone(),v2.clone())))
58    }
59
60    /// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and then applies a function.
61    ///
62    /// # Examples
63    ///
64    /// ```
65    /// use differential_dataflow::input::Input;
66    /// use differential_dataflow::operators::Join;
67    ///
68    /// ::timely::example(|scope| {
69    ///
70    ///     let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
71    ///     let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
72    ///     let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
73    ///
74    ///     x.join_map(&y, |_key, &a, &b| (a,b))
75    ///      .assert_eq(&z);
76    /// });
77    /// ```
78    fn join_map<V2, R2, D, L>(&self, other: &VecCollection<G, (K,V2), R2>, logic: L) -> VecCollection<G, D, <R as Multiply<R2>>::Output>
79    where K: ExchangeData, V2: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2, Output: Semigroup+'static>, D: Data, L: FnMut(&K, &V, &V2)->D+'static;
80
81    /// Matches pairs `(key, val)` and `key` based on `key`, producing the former with frequencies multiplied.
82    ///
83    /// When the second collection contains frequencies that are either zero or one this is the more traditional
84    /// relational semijoin. When the second collection may contain multiplicities, this operation may scale up
85    /// the counts of the records in the first input.
86    ///
87    /// # Examples
88    ///
89    /// ```
90    /// use differential_dataflow::input::Input;
91    /// use differential_dataflow::operators::Join;
92    ///
93    /// ::timely::example(|scope| {
94    ///
95    ///     let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
96    ///     let y = scope.new_collection_from(vec![0, 2]).1;
97    ///     let z = scope.new_collection_from(vec![(0, 1)]).1;
98    ///
99    ///     x.semijoin(&y)
100    ///      .assert_eq(&z);
101    /// });
102    /// ```
103    fn semijoin<R2>(&self, other: &VecCollection<G, K, R2>) -> VecCollection<G, (K, V), <R as Multiply<R2>>::Output>
104    where K: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2, Output: Semigroup+'static>;
105
106    /// Subtracts the semijoin with `other` from `self`.
107    ///
108    /// In the case that `other` has multiplicities zero or one this results
109    /// in a relational antijoin, in which we discard input records whose key
110    /// is present in `other`. If the multiplicities could be other than zero
111    /// or one, the semantic interpretation of this operator is less clear.
112    ///
113    /// In almost all cases, you should ensure that `other` has multiplicities
114    /// that are zero or one, perhaps by using the `distinct` operator.
115    ///
116    /// # Examples
117    ///
118    /// ```
119    /// use differential_dataflow::input::Input;
120    /// use differential_dataflow::operators::Join;
121    ///
122    /// ::timely::example(|scope| {
123    ///
124    ///     let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
125    ///     let y = scope.new_collection_from(vec![0, 2]).1;
126    ///     let z = scope.new_collection_from(vec![(1, 3)]).1;
127    ///
128    ///     x.antijoin(&y)
129    ///      .assert_eq(&z);
130    /// });
131    /// ```
132    fn antijoin<R2>(&self, other: &VecCollection<G, K, R2>) -> VecCollection<G, (K, V), R>
133    where K: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2, Output = R>, R: Abelian+'static;
134}
135
136impl<G, K, V, R> Join<G, K, V, R> for VecCollection<G, (K, V), R>
137where
138    G: Scope<Timestamp: Lattice+Ord>,
139    K: ExchangeData+Hashable,
140    V: ExchangeData,
141    R: ExchangeData+Semigroup,
142{
143    fn join_map<V2: ExchangeData, R2: ExchangeData+Semigroup, D: Data, L>(&self, other: &VecCollection<G, (K, V2), R2>, mut logic: L) -> VecCollection<G, D, <R as Multiply<R2>>::Output>
144    where R: Multiply<R2, Output: Semigroup+'static>, L: FnMut(&K, &V, &V2)->D+'static {
145        let arranged1 = self.arrange_by_key();
146        let arranged2 = other.arrange_by_key();
147        arranged1.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
148    }
149
150    fn semijoin<R2: ExchangeData+Semigroup>(&self, other: &VecCollection<G, K, R2>) -> VecCollection<G, (K, V), <R as Multiply<R2>>::Output>
151    where R: Multiply<R2, Output: Semigroup+'static> {
152        let arranged1 = self.arrange_by_key();
153        let arranged2 = other.arrange_by_self();
154        arranged1.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
155    }
156
157    fn antijoin<R2: ExchangeData+Semigroup>(&self, other: &VecCollection<G, K, R2>) -> VecCollection<G, (K, V), R>
158    where R: Multiply<R2, Output=R>, R: Abelian+'static {
159        self.concat(&self.semijoin(other).negate())
160    }
161}
162
163impl<G, K, V, Tr> Join<G, K, V, Tr::Diff> for Arranged<G, Tr>
164where
165    G: Scope<Timestamp=Tr::Time>,
166    Tr: for<'a> TraceReader<Key<'a> = &'a K, Val<'a> = &'a V>+Clone+'static,
167    K: ExchangeData+Hashable,
168    V: Data + 'static,
169{
170    fn join_map<V2: ExchangeData, R2: ExchangeData+Semigroup, D: Data, L>(&self, other: &VecCollection<G, (K, V2), R2>, mut logic: L) -> VecCollection<G, D, <Tr::Diff as Multiply<R2>>::Output>
171    where
172        Tr::Diff: Multiply<R2, Output: Semigroup+'static>,
173        L: for<'a> FnMut(Tr::Key<'a>, Tr::Val<'a>, &V2)->D+'static,
174    {
175        let arranged2 = other.arrange_by_key();
176        self.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
177    }
178
179    fn semijoin<R2: ExchangeData+Semigroup>(&self, other: &VecCollection<G, K, R2>) -> VecCollection<G, (K, V), <Tr::Diff as Multiply<R2>>::Output>
180    where Tr::Diff: Multiply<R2, Output: Semigroup+'static> {
181        let arranged2 = other.arrange_by_self();
182        self.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
183    }
184
185    fn antijoin<R2: ExchangeData+Semigroup>(&self, other: &VecCollection<G, K, R2>) -> VecCollection<G, (K, V), Tr::Diff>
186    where Tr::Diff: Multiply<R2, Output=Tr::Diff>, Tr::Diff: Abelian+'static {
187        self.as_collection(|k,v| (k.clone(), v.clone()))
188            .concat(&self.semijoin(other).negate())
189    }
190}
191
192/// Matches the elements of two arranged traces.
193///
194/// This method is used by the various `join` implementations, but it can also be used
195/// directly in the event that one has a handle to an `Arranged<G,T>`, perhaps because
196/// the arrangement is available for re-use, or from the output of a `reduce` operator.
197pub trait JoinCore<G: Scope<Timestamp: Lattice+Ord>, K: 'static + ?Sized, V: 'static + ?Sized, R: Semigroup> {
198
199    /// Joins two arranged collections with the same key type.
200    ///
201    /// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
202    /// which produces something implementing `IntoIterator`, where the output collection will have an entry for
203    /// every value returned by the iterator.
204    ///
205    /// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
206    /// contains the implementations for collections.
207    ///
208    /// # Examples
209    ///
210    /// ```
211    /// use differential_dataflow::input::Input;
212    /// use differential_dataflow::operators::arrange::ArrangeByKey;
213    /// use differential_dataflow::operators::join::JoinCore;
214    /// use differential_dataflow::trace::Trace;
215    ///
216    /// ::timely::example(|scope| {
217    ///
218    ///     let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
219    ///                  .arrange_by_key();
220    ///     let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
221    ///                  .arrange_by_key();
222    ///
223    ///     let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
224    ///
225    ///     x.join_core(&y, |_key, &a, &b| Some((a, b)))
226    ///      .assert_eq(&z);
227    /// });
228    /// ```
229    fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> VecCollection<G,I::Item,<R as Multiply<Tr2::Diff>>::Output>
230    where
231        Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
232        R: Multiply<Tr2::Diff, Output: Semigroup+'static>,
233        I: IntoIterator<Item: Data>,
234        L: FnMut(&K,&V,Tr2::Val<'_>)->I+'static,
235        ;
236
237    /// An unsafe variant of `join_core` where the `result` closure takes additional arguments for `time` and
238    /// `diff` as input and returns an iterator over `(data, time, diff)` triplets. This allows for more
239    /// flexibility, but is more error-prone.
240    ///
241    /// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
242    /// which produces something implementing `IntoIterator`, where the output collection will have an entry
243    /// for every value returned by the iterator.
244    ///
245    /// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
246    /// contains the implementations for collections.
247    ///
248    /// # Examples
249    ///
250    /// ```
251    /// use differential_dataflow::input::Input;
252    /// use differential_dataflow::operators::arrange::ArrangeByKey;
253    /// use differential_dataflow::operators::join::JoinCore;
254    /// use differential_dataflow::trace::Trace;
255    ///
256    /// ::timely::example(|scope| {
257    ///
258    ///     let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
259    ///                  .arrange_by_key();
260    ///     let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
261    ///                  .arrange_by_key();
262    ///
263    ///     let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b'), (3, 'b'), (3, 'b')]).1;
264    ///
265    ///     // Returned values have weight `a`
266    ///     x.join_core_internal_unsafe(&y, |_key, &a, &b, &t, &r1, &r2| Some(((a, b), t.clone(), a)))
267    ///      .assert_eq(&z);
268    /// });
269    /// ```
270    fn join_core_internal_unsafe<Tr2,I,L,D,ROut> (&self, stream2: &Arranged<G,Tr2>, result: L) -> VecCollection<G,D,ROut>
271    where
272        Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
273        D: Data,
274        ROut: Semigroup+'static,
275        I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
276        L: for<'a> FnMut(&K,&V,Tr2::Val<'_>,&G::Timestamp,&R,&Tr2::Diff)->I+'static,
277        ;
278}
279
280
281impl<G, K, V, R> JoinCore<G, K, V, R> for VecCollection<G, (K, V), R>
282where
283    G: Scope<Timestamp: Lattice+Ord>,
284    K: ExchangeData+Hashable,
285    V: ExchangeData,
286    R: ExchangeData+Semigroup,
287{
288    fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> VecCollection<G,I::Item,<R as Multiply<Tr2::Diff>>::Output>
289    where
290        Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
291        R: Multiply<Tr2::Diff, Output: Semigroup+'static>,
292        I: IntoIterator<Item: Data>,
293        L: FnMut(&K,&V,Tr2::Val<'_>)->I+'static,
294    {
295        self.arrange_by_key()
296            .join_core(stream2, result)
297    }
298
299    fn join_core_internal_unsafe<Tr2,I,L,D,ROut> (&self, stream2: &Arranged<G,Tr2>, result: L) -> VecCollection<G,D,ROut>
300    where
301        Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
302        I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
303        L: FnMut(&K,&V,Tr2::Val<'_>,&G::Timestamp,&R,&Tr2::Diff)->I+'static,
304        D: Data,
305        ROut: Semigroup+'static,
306    {
307        self.arrange_by_key().join_core_internal_unsafe(stream2, result)
308    }
309}
310
311/// The session passed to join closures.
312pub type JoinSession<'a, 'b, T, CB, CT> = Session<'a, 'b, T, EffortBuilder<CB>, CT>;
313
314/// A container builder that tracks the length of outputs to estimate the effort of join closures.
315#[derive(Default, Debug)]
316pub struct EffortBuilder<CB>(pub std::cell::Cell<usize>, pub CB);
317
318impl<CB: ContainerBuilder> timely::container::ContainerBuilder for EffortBuilder<CB> {
319    type Container = CB::Container;
320
321    #[inline]
322    fn extract(&mut self) -> Option<&mut Self::Container> {
323        let extracted = self.1.extract();
324        self.0.replace(self.0.take() + extracted.as_ref().map_or(0, |e| e.record_count() as usize));
325        extracted
326    }
327
328    #[inline]
329    fn finish(&mut self) -> Option<&mut Self::Container> {
330        let finished = self.1.finish();
331        self.0.replace(self.0.take() + finished.as_ref().map_or(0, |e| e.record_count() as usize));
332        finished
333    }
334}
335
336impl<CB: PushInto<D>, D> PushInto<D> for EffortBuilder<CB> {
337    #[inline]
338    fn push_into(&mut self, item: D) {
339        self.1.push_into(item);
340    }
341}
342
343/// An equijoin of two traces, sharing a common key type.
344///
345/// This method exists to provide join functionality without opinions on the specific input types, keys and values,
346/// that should be presented. The two traces here can have arbitrary key and value types, which can be unsized and
347/// even potentially unrelated to the input collection data. Importantly, the key and value types could be generic
348/// associated types (GATs) of the traces, and we would seemingly struggle to frame these types as trait arguments.
349///
350/// The implementation produces a caller-specified container. Implementations can use [`AsCollection`] to wrap the
351/// output stream in a collection.
352///
353/// The "correctness" of this method depends heavily on the behavior of the supplied `result` function.
354///
355/// [`AsCollection`]: crate::collection::AsCollection
356pub fn join_traces<G, T1, T2, L, CB>(arranged1: &Arranged<G,T1>, arranged2: &Arranged<G,T2>, mut result: L) -> StreamCore<G, CB::Container>
357where
358    G: Scope<Timestamp=T1::Time>,
359    T1: TraceReader+Clone+'static,
360    T2: for<'a> TraceReader<Key<'a>=T1::Key<'a>, Time=T1::Time>+Clone+'static,
361    L: FnMut(T1::Key<'_>,T1::Val<'_>,T2::Val<'_>,&G::Timestamp,&T1::Diff,&T2::Diff,&mut JoinSession<T1::Time, CB, Capability<T1::Time>>)+'static,
362    CB: ContainerBuilder,
363{
364    // Rename traces for symmetry from here on out.
365    let mut trace1 = arranged1.trace.clone();
366    let mut trace2 = arranged2.trace.clone();
367
368    arranged1.stream.binary_frontier(&arranged2.stream, Pipeline, Pipeline, "Join", move |capability, info| {
369
370        // Acquire an activator to reschedule the operator when it has unfinished work.
371        use timely::scheduling::Activator;
372        let activations = arranged1.stream.scope().activations().clone();
373        let activator = Activator::new(info.address, activations);
374
375        // Our initial invariants are that for each trace, physical compaction is less or equal the trace's upper bound.
376        // These invariants ensure that we can reference observed batch frontiers from `_start_upper` onward, as long as
377        // we maintain our physical compaction capabilities appropriately. These assertions are tested as we load up the
378        // initial work for the two traces, and before the operator is constructed.
379
380        // Acknowledged frontier for each input.
381        // These two are used exclusively to track batch boundaries on which we may want/need to call `cursor_through`.
382        // They will drive our physical compaction of each trace, and we want to maintain at all times that each is beyond
383        // the physical compaction frontier of their corresponding trace.
384        // Should we ever *drop* a trace, these are 1. much harder to maintain correctly, but 2. no longer used.
385        use timely::progress::frontier::Antichain;
386        let mut acknowledged1 = Antichain::from_elem(<G::Timestamp>::minimum());
387        let mut acknowledged2 = Antichain::from_elem(<G::Timestamp>::minimum());
388
389        // deferred work of batches from each input.
390        let mut todo1 = std::collections::VecDeque::new();
391        let mut todo2 = std::collections::VecDeque::new();
392
393        // We'll unload the initial batches here, to put ourselves in a less non-deterministic state to start.
394        trace1.map_batches(|batch1| {
395            acknowledged1.clone_from(batch1.upper());
396            // No `todo1` work here, because we haven't accepted anything into `batches2` yet.
397            // It is effectively "empty", because we choose to drain `trace1` before `trace2`.
398            // Once we start streaming batches in, we will need to respond to new batches from
399            // `input1` with logic that would have otherwise been here. Check out the next loop
400            // for the structure.
401        });
402        // At this point, `ack1` should exactly equal `trace1.read_upper()`, as they are both determined by
403        // iterating through batches and capturing the upper bound. This is a great moment to assert that
404        // `trace1`'s physical compaction frontier is before the frontier of completed times in `trace1`.
405        // TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
406        assert!(PartialOrder::less_equal(&trace1.get_physical_compaction(), &acknowledged1.borrow()));
407
408        // We capture batch2 cursors first and establish work second to avoid taking a `RefCell` lock
409        // on both traces at the same time, as they could be the same trace and this would panic.
410        let mut batch2_cursors = Vec::new();
411        trace2.map_batches(|batch2| {
412            acknowledged2.clone_from(batch2.upper());
413            batch2_cursors.push((batch2.cursor(), batch2.clone()));
414        });
415        // At this point, `ack2` should exactly equal `trace2.read_upper()`, as they are both determined by
416        // iterating through batches and capturing the upper bound. This is a great moment to assert that
417        // `trace2`'s physical compaction frontier is before the frontier of completed times in `trace2`.
418        // TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
419        assert!(PartialOrder::less_equal(&trace2.get_physical_compaction(), &acknowledged2.borrow()));
420
421        // Load up deferred work using trace2 cursors and batches captured just above.
422        for (batch2_cursor, batch2) in batch2_cursors.into_iter() {
423            // It is safe to ask for `ack1` because we have confirmed it to be in advance of `distinguish_since`.
424            let (trace1_cursor, trace1_storage) = trace1.cursor_through(acknowledged1.borrow()).unwrap();
425            // We could downgrade the capability here, but doing so is a bit complicated mathematically.
426            // TODO: downgrade the capability by searching out the one time in `batch2.lower()` and not
427            // in `batch2.upper()`. Only necessary for non-empty batches, as empty batches may not have
428            // that property.
429            todo2.push_back(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone()));
430        }
431
432        // Droppable handles to shared trace data structures.
433        let mut trace1_option = Some(trace1);
434        let mut trace2_option = Some(trace2);
435
436        move |(input1, frontier1), (input2, frontier2), output| {
437
438            // 1. Consuming input.
439            //
440            // The join computation repeatedly accepts batches of updates from each of its inputs.
441            //
442            // For each accepted batch, it prepares a work-item to join the batch against previously "accepted"
443            // updates from its other input. It is important to track which updates have been accepted, because
444            // we use a shared trace and there may be updates present that are in advance of this accepted bound.
445            //
446            // Batches are accepted: 1. in bulk at start-up (above), 2. as we observe them in the input stream,
447            // and 3. if the trace can confirm a region of empty space directly following our accepted bound.
448            // This last case is a consequence of our inability to transmit empty batches, as they may be formed
449            // in the absence of timely dataflow capabilities.
450
451            // Drain input 1, prepare work.
452            input1.for_each(|capability, data| {
453                // This test *should* always pass, as we only drop a trace in response to the other input emptying.
454                if let Some(ref mut trace2) = trace2_option {
455                    let capability = capability.retain();
456                    for batch1 in data.drain(..) {
457                        // Ignore any pre-loaded data.
458                        if PartialOrder::less_equal(&acknowledged1, batch1.lower()) {
459                            if !batch1.is_empty() {
460                                // It is safe to ask for `ack2` as we validated that it was at least `get_physical_compaction()`
461                                // at start-up, and have held back physical compaction ever since.
462                                let (trace2_cursor, trace2_storage) = trace2.cursor_through(acknowledged2.borrow()).unwrap();
463                                let batch1_cursor = batch1.cursor();
464                                todo1.push_back(Deferred::new(trace2_cursor, trace2_storage, batch1_cursor, batch1.clone(), capability.clone()));
465                            }
466
467                            // To update `acknowledged1` we might presume that `batch1.lower` should equal it, but we
468                            // may have skipped over empty batches. Still, the batches are in-order, and we should be
469                            // able to just assume the most recent `batch1.upper`
470                            debug_assert!(PartialOrder::less_equal(&acknowledged1, batch1.upper()));
471                            acknowledged1.clone_from(batch1.upper());
472                        }
473                    }
474                }
475                else { panic!("`trace2_option` dropped before `input1` emptied!"); }
476            });
477
478            // Drain input 2, prepare work.
479            input2.for_each(|capability, data| {
480                // This test *should* always pass, as we only drop a trace in response to the other input emptying.
481                if let Some(ref mut trace1) = trace1_option {
482                    let capability = capability.retain();
483                    for batch2 in data.drain(..) {
484                        // Ignore any pre-loaded data.
485                        if PartialOrder::less_equal(&acknowledged2, batch2.lower()) {
486                            if !batch2.is_empty() {
487                                // It is safe to ask for `ack1` as we validated that it was at least `get_physical_compaction()`
488                                // at start-up, and have held back physical compaction ever since.
489                                let (trace1_cursor, trace1_storage) = trace1.cursor_through(acknowledged1.borrow()).unwrap();
490                                let batch2_cursor = batch2.cursor();
491                                todo2.push_back(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone()));
492                            }
493
494                            // To update `acknowledged2` we might presume that `batch2.lower` should equal it, but we
495                            // may have skipped over empty batches. Still, the batches are in-order, and we should be
496                            // able to just assume the most recent `batch2.upper`
497                            debug_assert!(PartialOrder::less_equal(&acknowledged2, batch2.upper()));
498                            acknowledged2.clone_from(batch2.upper());
499                        }
500                    }
501                }
502                else { panic!("`trace1_option` dropped before `input2` emptied!"); }
503            });
504
505            // Advance acknowledged frontiers through any empty regions that we may not receive as batches.
506            if let Some(trace1) = trace1_option.as_mut() {
507                trace1.advance_upper(&mut acknowledged1);
508            }
509            if let Some(trace2) = trace2_option.as_mut() {
510                trace2.advance_upper(&mut acknowledged2);
511            }
512
513            // 2. Join computation.
514            //
515            // For each of the inputs, we do some amount of work (measured in terms of number
516            // of output records produced). This is meant to yield control to allow downstream
517            // operators to consume and reduce the output, but it it also means to provide some
518            // degree of responsiveness. There is a potential risk here that if we fall behind
519            // then the increasing queues hold back physical compaction of the underlying traces
520            // which results in unintentionally quadratic processing time (each batch of either
521            // input must scan all batches from the other input).
522
523            // Perform some amount of outstanding work.
524            let mut fuel = 1_000_000;
525            while !todo1.is_empty() && fuel > 0 {
526                todo1.front_mut().unwrap().work(
527                    output,
528                    |k,v2,v1,t,r2,r1,c| result(k,v1,v2,t,r1,r2,c),
529                    &mut fuel
530                );
531                if !todo1.front().unwrap().work_remains() { todo1.pop_front(); }
532            }
533
534            // Perform some amount of outstanding work.
535            let mut fuel = 1_000_000;
536            while !todo2.is_empty() && fuel > 0 {
537                todo2.front_mut().unwrap().work(
538                    output,
539                    |k,v1,v2,t,r1,r2,c| result(k,v1,v2,t,r1,r2,c),
540                    &mut fuel
541                );
542                if !todo2.front().unwrap().work_remains() { todo2.pop_front(); }
543            }
544
545            // Re-activate operator if work remains.
546            if !todo1.is_empty() || !todo2.is_empty() {
547                activator.activate();
548            }
549
550            // 3. Trace maintenance.
551            //
552            // Importantly, we use `input.frontier()` here rather than `acknowledged` to track
553            // the progress of an input, because should we ever drop one of the traces we will
554            // lose the ability to extract information from anything other than the input.
555            // For example, if we dropped `trace2` we would not be able to use `advance_upper`
556            // to keep `acknowledged2` up to date wrt empty batches, and would hold back logical
557            // compaction of `trace1`.
558
559            // Maintain `trace1`. Drop if `input2` is empty, or advance based on future needs.
560            if let Some(trace1) = trace1_option.as_mut() {
561                if frontier2.is_empty() { trace1_option = None; }
562                else {
563                    // Allow `trace1` to compact logically up to the frontier we may yet receive,
564                    // in the opposing input (`input2`). All `input2` times will be beyond this
565                    // frontier, and joined times only need to be accurate when advanced to it.
566                    trace1.set_logical_compaction(frontier2.frontier());
567                    // Allow `trace1` to compact physically up to the upper bound of batches we
568                    // have received in its input (`input1`). We will not require a cursor that
569                    // is not beyond this bound.
570                    trace1.set_physical_compaction(acknowledged1.borrow());
571                }
572            }
573
574            // Maintain `trace2`. Drop if `input1` is empty, or advance based on future needs.
575            if let Some(trace2) = trace2_option.as_mut() {
576                if frontier1.is_empty() { trace2_option = None;}
577                else {
578                    // Allow `trace2` to compact logically up to the frontier we may yet receive,
579                    // in the opposing input (`input1`). All `input1` times will be beyond this
580                    // frontier, and joined times only need to be accurate when advanced to it.
581                    trace2.set_logical_compaction(frontier1.frontier());
582                    // Allow `trace2` to compact physically up to the upper bound of batches we
583                    // have received in its input (`input2`). We will not require a cursor that
584                    // is not beyond this bound.
585                    trace2.set_physical_compaction(acknowledged2.borrow());
586                }
587            }
588        }
589    })
590}
591
592
593/// Deferred join computation.
594///
595/// The structure wraps cursors which allow us to play out join computation at whatever rate we like.
596/// This allows us to avoid producing and buffering massive amounts of data, without giving the timely
597/// dataflow system a chance to run operators that can consume and aggregate the data.
598struct Deferred<T, C1, C2>
599where
600    T: Timestamp+Lattice+Ord,
601    C1: Cursor<Time=T>,
602    C2: for<'a> Cursor<Key<'a>=C1::Key<'a>, Time=T>,
603{
604    trace: C1,
605    trace_storage: C1::Storage,
606    batch: C2,
607    batch_storage: C2::Storage,
608    capability: Capability<T>,
609    done: bool,
610}
611
612impl<T, C1, C2> Deferred<T, C1, C2>
613where
614    C1: Cursor<Time=T>,
615    C2: for<'a> Cursor<Key<'a>=C1::Key<'a>, Time=T>,
616    T: Timestamp+Lattice+Ord,
617{
618    fn new(trace: C1, trace_storage: C1::Storage, batch: C2, batch_storage: C2::Storage, capability: Capability<T>) -> Self {
619        Deferred {
620            trace,
621            trace_storage,
622            batch,
623            batch_storage,
624            capability,
625            done: false,
626        }
627    }
628
629    fn work_remains(&self) -> bool {
630        !self.done
631    }
632
633    /// Process keys until at least `fuel` output tuples produced, or the work is exhausted.
634    #[inline(never)]
635    fn work<L, CB: ContainerBuilder>(&mut self, output: &mut OutputBuilderSession<T, EffortBuilder<CB>>, mut logic: L, fuel: &mut usize)
636    where
637        L: for<'a> FnMut(C1::Key<'a>, C1::Val<'a>, C2::Val<'a>, &T, &C1::Diff, &C2::Diff, &mut JoinSession<T, CB, Capability<T>>),
638    {
639
640        let meet = self.capability.time();
641
642        let mut effort = 0;
643        let mut session = output.session_with_builder(&self.capability);
644
645        let trace_storage = &self.trace_storage;
646        let batch_storage = &self.batch_storage;
647
648        let trace = &mut self.trace;
649        let batch = &mut self.batch;
650
651        let mut thinker = JoinThinker::new();
652
653        while let (Some(batch_key), Some(trace_key), true) = (batch.get_key(batch_storage), trace.get_key(trace_storage), effort < *fuel) {
654
655            match trace_key.cmp(&batch_key) {
656                Ordering::Less => trace.seek_key(trace_storage, batch_key),
657                Ordering::Greater => batch.seek_key(batch_storage, trace_key),
658                Ordering::Equal => {
659
660                    thinker.history1.edits.load(trace, trace_storage, |time| {
661                        let mut time = C1::owned_time(time);
662                        time.join_assign(meet);
663                        time
664                    });
665                    thinker.history2.edits.load(batch, batch_storage, |time| C2::owned_time(time));
666
667                    // populate `temp` with the results in the best way we know how.
668                    thinker.think(|v1,v2,t,r1,r2| {
669                        logic(batch_key, v1, v2, &t, r1, r2, &mut session);
670                    });
671
672                    // TODO: Effort isn't perfectly tracked as we might still have some data in the
673                    // session at the moment it's dropped.
674                    effort += session.builder().0.take();
675                    batch.step_key(batch_storage);
676                    trace.step_key(trace_storage);
677
678                    thinker.history1.clear();
679                    thinker.history2.clear();
680                }
681            }
682        }
683        self.done = !batch.key_valid(batch_storage) || !trace.key_valid(trace_storage);
684
685        if effort > *fuel { *fuel = 0; }
686        else              { *fuel -= effort; }
687    }
688}
689
690struct JoinThinker<'a, C1, C2>
691where
692    C1: Cursor,
693    C2: Cursor<Time = C1::Time>,
694{
695    pub history1: ValueHistory<'a, C1>,
696    pub history2: ValueHistory<'a, C2>,
697}
698
699impl<'a, C1, C2> JoinThinker<'a, C1, C2>
700where
701    C1: Cursor,
702    C2: Cursor<Time = C1::Time>,
703{
704    fn new() -> Self {
705        JoinThinker {
706            history1: ValueHistory::new(),
707            history2: ValueHistory::new(),
708        }
709    }
710
711    fn think<F: FnMut(C1::Val<'a>,C2::Val<'a>,C1::Time,&C1::Diff,&C2::Diff)>(&mut self, mut results: F) {
712
713        // for reasonably sized edits, do the dead-simple thing.
714        if self.history1.edits.len() < 10 || self.history2.edits.len() < 10 {
715            self.history1.edits.map(|v1, t1, d1| {
716                self.history2.edits.map(|v2, t2, d2| {
717                    results(v1, v2, t1.join(t2), d1, d2);
718                })
719            })
720        }
721        else {
722
723            let mut replay1 = self.history1.replay();
724            let mut replay2 = self.history2.replay();
725
726            // TODO: It seems like there is probably a good deal of redundant `advance_buffer_by`
727            //       in here. If a time is ever repeated, for example, the call will be identical
728            //       and accomplish nothing. If only a single record has been added, it may not
729            //       be worth the time to collapse (advance, re-sort) the data when a linear scan
730            //       is sufficient.
731
732            while !replay1.is_done() && !replay2.is_done() {
733
734                if replay1.time().unwrap().cmp(replay2.time().unwrap()) == ::std::cmp::Ordering::Less {
735                    replay2.advance_buffer_by(replay1.meet().unwrap());
736                    for &((val2, ref time2), ref diff2) in replay2.buffer().iter() {
737                        let (val1, time1, diff1) = replay1.edit().unwrap();
738                        results(val1, val2, time1.join(time2), diff1, diff2);
739                    }
740                    replay1.step();
741                }
742                else {
743                    replay1.advance_buffer_by(replay2.meet().unwrap());
744                    for &((val1, ref time1), ref diff1) in replay1.buffer().iter() {
745                        let (val2, time2, diff2) = replay2.edit().unwrap();
746                        results(val1, val2, time1.join(time2), diff1, diff2);
747                    }
748                    replay2.step();
749                }
750            }
751
752            while !replay1.is_done() {
753                replay2.advance_buffer_by(replay1.meet().unwrap());
754                for &((val2, ref time2), ref diff2) in replay2.buffer().iter() {
755                    let (val1, time1, diff1) = replay1.edit().unwrap();
756                    results(val1, val2, time1.join(time2), diff1, diff2);
757                }
758                replay1.step();
759            }
760            while !replay2.is_done() {
761                replay1.advance_buffer_by(replay2.meet().unwrap());
762                for &((val1, ref time1), ref diff1) in replay1.buffer().iter() {
763                    let (val2, time2, diff2) = replay2.edit().unwrap();
764                    results(val1, val2, time1.join(time2), diff1, diff2);
765                }
766                replay2.step();
767            }
768        }
769    }
770}