tokio/runtime/io/scheduled_io.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
use crate::io::interest::Interest;
use crate::io::ready::Ready;
use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::Mutex;
use crate::runtime::io::{Direction, ReadyEvent, Tick};
use crate::util::bit;
use crate::util::linked_list::{self, LinkedList};
use crate::util::WakeList;
use std::cell::UnsafeCell;
use std::future::Future;
use std::marker::PhantomPinned;
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::{AcqRel, Acquire};
use std::task::{Context, Poll, Waker};
/// Stored in the I/O driver resource slab.
#[derive(Debug)]
// # This struct should be cache padded to avoid false sharing. The cache padding rules are copied
// from crossbeam-utils/src/cache_padded.rs
//
// Starting from Intel's Sandy Bridge, spatial prefetcher is now pulling pairs of 64-byte cache
// lines at a time, so we have to align to 128 bytes rather than 64.
//
// Sources:
// - https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
// - https://github.com/facebook/folly/blob/1b5288e6eea6df074758f877c849b6e73bbb9fbb/folly/lang/Align.h#L107
//
// ARM's big.LITTLE architecture has asymmetric cores and "big" cores have 128-byte cache line size.
//
// Sources:
// - https://www.mono-project.com/news/2016/09/12/arm64-icache/
//
// powerpc64 has 128-byte cache line size.
//
// Sources:
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_ppc64x.go#L9
#[cfg_attr(
any(
target_arch = "x86_64",
target_arch = "aarch64",
target_arch = "powerpc64",
),
repr(align(128))
)]
// arm, mips, mips64, sparc, and hexagon have 32-byte cache line size.
//
// Sources:
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_arm.go#L7
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mips.go#L7
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mipsle.go#L7
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mips64x.go#L9
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/sparc/include/asm/cache.h#L17
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/hexagon/include/asm/cache.h#L12
#[cfg_attr(
any(
target_arch = "arm",
target_arch = "mips",
target_arch = "mips64",
target_arch = "sparc",
target_arch = "hexagon",
),
repr(align(32))
)]
// m68k has 16-byte cache line size.
//
// Sources:
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/m68k/include/asm/cache.h#L9
#[cfg_attr(target_arch = "m68k", repr(align(16)))]
// s390x has 256-byte cache line size.
//
// Sources:
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_s390x.go#L7
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/s390/include/asm/cache.h#L13
#[cfg_attr(target_arch = "s390x", repr(align(256)))]
// x86, riscv, wasm, and sparc64 have 64-byte cache line size.
//
// Sources:
// - https://github.com/golang/go/blob/dda2991c2ea0c5914714469c4defc2562a907230/src/internal/cpu/cpu_x86.go#L9
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_wasm.go#L7
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/sparc/include/asm/cache.h#L19
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/riscv/include/asm/cache.h#L10
//
// All others are assumed to have 64-byte cache line size.
#[cfg_attr(
not(any(
target_arch = "x86_64",
target_arch = "aarch64",
target_arch = "powerpc64",
target_arch = "arm",
target_arch = "mips",
target_arch = "mips64",
target_arch = "sparc",
target_arch = "hexagon",
target_arch = "m68k",
target_arch = "s390x",
)),
repr(align(64))
)]
pub(crate) struct ScheduledIo {
pub(super) linked_list_pointers: UnsafeCell<linked_list::Pointers<Self>>,
/// Packs the resource's readiness and I/O driver latest tick.
readiness: AtomicUsize,
waiters: Mutex<Waiters>,
}
type WaitList = LinkedList<Waiter, <Waiter as linked_list::Link>::Target>;
#[derive(Debug, Default)]
struct Waiters {
/// List of all current waiters.
list: WaitList,
/// Waker used for `AsyncRead`.
reader: Option<Waker>,
/// Waker used for `AsyncWrite`.
writer: Option<Waker>,
}
#[derive(Debug)]
struct Waiter {
pointers: linked_list::Pointers<Waiter>,
/// The waker for this task.
waker: Option<Waker>,
/// The interest this waiter is waiting on.
interest: Interest,
is_ready: bool,
/// Should never be `!Unpin`.
_p: PhantomPinned,
}
generate_addr_of_methods! {
impl<> Waiter {
unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> {
&self.pointers
}
}
}
/// Future returned by `readiness()`.
struct Readiness<'a> {
scheduled_io: &'a ScheduledIo,
state: State,
/// Entry in the waiter `LinkedList`.
waiter: UnsafeCell<Waiter>,
}
enum State {
Init,
Waiting,
Done,
}
// The `ScheduledIo::readiness` (`AtomicUsize`) is packed full of goodness.
//
// | shutdown | driver tick | readiness |
// |----------+-------------+-----------|
// | 1 bit | 15 bits + 16 bits |
const READINESS: bit::Pack = bit::Pack::least_significant(16);
const TICK: bit::Pack = READINESS.then(15);
const SHUTDOWN: bit::Pack = TICK.then(1);
// ===== impl ScheduledIo =====
impl Default for ScheduledIo {
fn default() -> ScheduledIo {
ScheduledIo {
linked_list_pointers: UnsafeCell::new(linked_list::Pointers::new()),
readiness: AtomicUsize::new(0),
waiters: Mutex::new(Waiters::default()),
}
}
}
impl ScheduledIo {
pub(crate) fn token(&self) -> mio::Token {
// use `expose_addr` when stable
mio::Token(self as *const _ as usize)
}
/// Invoked when the IO driver is shut down; forces this `ScheduledIo` into a
/// permanently shutdown state.
pub(super) fn shutdown(&self) {
let mask = SHUTDOWN.pack(1, 0);
self.readiness.fetch_or(mask, AcqRel);
self.wake(Ready::ALL);
}
/// Sets the readiness on this `ScheduledIo` by invoking the given closure on
/// the current value, returning the previous readiness value.
///
/// # Arguments
/// - `tick`: whether setting the tick or trying to clear readiness for a
/// specific tick.
/// - `f`: a closure returning a new readiness value given the previous
/// readiness.
pub(super) fn set_readiness(&self, tick: Tick, f: impl Fn(Ready) -> Ready) {
let mut current = self.readiness.load(Acquire);
// If the io driver is shut down, then you are only allowed to clear readiness.
debug_assert!(SHUTDOWN.unpack(current) == 0 || matches!(tick, Tick::Clear(_)));
loop {
// Mask out the tick bits so that the modifying function doesn't see
// them.
let current_readiness = Ready::from_usize(current);
let new = f(current_readiness);
let new_tick = match tick {
Tick::Set => {
let current = TICK.unpack(current);
current.wrapping_add(1) % (TICK.max_value() + 1)
}
Tick::Clear(t) => {
if TICK.unpack(current) as u8 != t {
// Trying to clear readiness with an old event!
return;
}
t as usize
}
};
let next = TICK.pack(new_tick, new.as_usize());
match self
.readiness
.compare_exchange(current, next, AcqRel, Acquire)
{
Ok(_) => return,
// we lost the race, retry!
Err(actual) => current = actual,
}
}
}
/// Notifies all pending waiters that have registered interest in `ready`.
///
/// There may be many waiters to notify. Waking the pending task **must** be
/// done from outside of the lock otherwise there is a potential for a
/// deadlock.
///
/// A stack array of wakers is created and filled with wakers to notify, the
/// lock is released, and the wakers are notified. Because there may be more
/// than 32 wakers to notify, if the stack array fills up, the lock is
/// released, the array is cleared, and the iteration continues.
pub(super) fn wake(&self, ready: Ready) {
let mut wakers = WakeList::new();
let mut waiters = self.waiters.lock();
// check for AsyncRead slot
if ready.is_readable() {
if let Some(waker) = waiters.reader.take() {
wakers.push(waker);
}
}
// check for AsyncWrite slot
if ready.is_writable() {
if let Some(waker) = waiters.writer.take() {
wakers.push(waker);
}
}
'outer: loop {
let mut iter = waiters.list.drain_filter(|w| ready.satisfies(w.interest));
while wakers.can_push() {
match iter.next() {
Some(waiter) => {
let waiter = unsafe { &mut *waiter.as_ptr() };
if let Some(waker) = waiter.waker.take() {
waiter.is_ready = true;
wakers.push(waker);
}
}
None => {
break 'outer;
}
}
}
drop(waiters);
wakers.wake_all();
// Acquire the lock again.
waiters = self.waiters.lock();
}
// Release the lock before notifying
drop(waiters);
wakers.wake_all();
}
pub(super) fn ready_event(&self, interest: Interest) -> ReadyEvent {
let curr = self.readiness.load(Acquire);
ReadyEvent {
tick: TICK.unpack(curr) as u8,
ready: interest.mask() & Ready::from_usize(READINESS.unpack(curr)),
is_shutdown: SHUTDOWN.unpack(curr) != 0,
}
}
/// Polls for readiness events in a given direction.
///
/// These are to support `AsyncRead` and `AsyncWrite` polling methods,
/// which cannot use the `async fn` version. This uses reserved reader
/// and writer slots.
pub(super) fn poll_readiness(
&self,
cx: &mut Context<'_>,
direction: Direction,
) -> Poll<ReadyEvent> {
let curr = self.readiness.load(Acquire);
let ready = direction.mask() & Ready::from_usize(READINESS.unpack(curr));
let is_shutdown = SHUTDOWN.unpack(curr) != 0;
if ready.is_empty() && !is_shutdown {
// Update the task info
let mut waiters = self.waiters.lock();
let slot = match direction {
Direction::Read => &mut waiters.reader,
Direction::Write => &mut waiters.writer,
};
// Avoid cloning the waker if one is already stored that matches the
// current task.
match slot {
Some(existing) => {
if !existing.will_wake(cx.waker()) {
existing.clone_from(cx.waker());
}
}
None => {
*slot = Some(cx.waker().clone());
}
}
// Try again, in case the readiness was changed while we were
// taking the waiters lock
let curr = self.readiness.load(Acquire);
let ready = direction.mask() & Ready::from_usize(READINESS.unpack(curr));
let is_shutdown = SHUTDOWN.unpack(curr) != 0;
if is_shutdown {
Poll::Ready(ReadyEvent {
tick: TICK.unpack(curr) as u8,
ready: direction.mask(),
is_shutdown,
})
} else if ready.is_empty() {
Poll::Pending
} else {
Poll::Ready(ReadyEvent {
tick: TICK.unpack(curr) as u8,
ready,
is_shutdown,
})
}
} else {
Poll::Ready(ReadyEvent {
tick: TICK.unpack(curr) as u8,
ready,
is_shutdown,
})
}
}
pub(crate) fn clear_readiness(&self, event: ReadyEvent) {
// This consumes the current readiness state **except** for closed
// states. Closed states are excluded because they are final states.
let mask_no_closed = event.ready - Ready::READ_CLOSED - Ready::WRITE_CLOSED;
self.set_readiness(Tick::Clear(event.tick), |curr| curr - mask_no_closed);
}
pub(crate) fn clear_wakers(&self) {
let mut waiters = self.waiters.lock();
waiters.reader.take();
waiters.writer.take();
}
}
impl Drop for ScheduledIo {
fn drop(&mut self) {
self.wake(Ready::ALL);
}
}
unsafe impl Send for ScheduledIo {}
unsafe impl Sync for ScheduledIo {}
impl ScheduledIo {
/// An async version of `poll_readiness` which uses a linked list of wakers.
pub(crate) async fn readiness(&self, interest: Interest) -> ReadyEvent {
self.readiness_fut(interest).await
}
// This is in a separate function so that the borrow checker doesn't think
// we are borrowing the `UnsafeCell` possibly over await boundaries.
//
// Go figure.
fn readiness_fut(&self, interest: Interest) -> Readiness<'_> {
Readiness {
scheduled_io: self,
state: State::Init,
waiter: UnsafeCell::new(Waiter {
pointers: linked_list::Pointers::new(),
waker: None,
is_ready: false,
interest,
_p: PhantomPinned,
}),
}
}
}
unsafe impl linked_list::Link for Waiter {
type Handle = NonNull<Waiter>;
type Target = Waiter;
fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> {
*handle
}
unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
ptr
}
unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
Waiter::addr_of_pointers(target)
}
}
// ===== impl Readiness =====
impl Future for Readiness<'_> {
type Output = ReadyEvent;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
use std::sync::atomic::Ordering::SeqCst;
let (scheduled_io, state, waiter) = unsafe {
let me = self.get_unchecked_mut();
(&me.scheduled_io, &mut me.state, &me.waiter)
};
loop {
match *state {
State::Init => {
// Optimistically check existing readiness
let curr = scheduled_io.readiness.load(SeqCst);
let ready = Ready::from_usize(READINESS.unpack(curr));
let is_shutdown = SHUTDOWN.unpack(curr) != 0;
// Safety: `waiter.interest` never changes
let interest = unsafe { (*waiter.get()).interest };
let ready = ready.intersection(interest);
if !ready.is_empty() || is_shutdown {
// Currently ready!
let tick = TICK.unpack(curr) as u8;
*state = State::Done;
return Poll::Ready(ReadyEvent {
tick,
ready,
is_shutdown,
});
}
// Wasn't ready, take the lock (and check again while locked).
let mut waiters = scheduled_io.waiters.lock();
let curr = scheduled_io.readiness.load(SeqCst);
let mut ready = Ready::from_usize(READINESS.unpack(curr));
let is_shutdown = SHUTDOWN.unpack(curr) != 0;
if is_shutdown {
ready = Ready::ALL;
}
let ready = ready.intersection(interest);
if !ready.is_empty() || is_shutdown {
// Currently ready!
let tick = TICK.unpack(curr) as u8;
*state = State::Done;
return Poll::Ready(ReadyEvent {
tick,
ready,
is_shutdown,
});
}
// Not ready even after locked, insert into list...
// Safety: called while locked
unsafe {
(*waiter.get()).waker = Some(cx.waker().clone());
}
// Insert the waiter into the linked list
//
// safety: pointers from `UnsafeCell` are never null.
waiters
.list
.push_front(unsafe { NonNull::new_unchecked(waiter.get()) });
*state = State::Waiting;
}
State::Waiting => {
// Currently in the "Waiting" state, implying the caller has
// a waiter stored in the waiter list (guarded by
// `notify.waiters`). In order to access the waker fields,
// we must hold the lock.
let waiters = scheduled_io.waiters.lock();
// Safety: called while locked
let w = unsafe { &mut *waiter.get() };
if w.is_ready {
// Our waker has been notified.
*state = State::Done;
} else {
// Update the waker, if necessary.
if !w.waker.as_ref().unwrap().will_wake(cx.waker()) {
w.waker = Some(cx.waker().clone());
}
return Poll::Pending;
}
// Explicit drop of the lock to indicate the scope that the
// lock is held. Because holding the lock is required to
// ensure safe access to fields not held within the lock, it
// is helpful to visualize the scope of the critical
// section.
drop(waiters);
}
State::Done => {
// Safety: State::Done means it is no longer shared
let w = unsafe { &mut *waiter.get() };
let curr = scheduled_io.readiness.load(Acquire);
let is_shutdown = SHUTDOWN.unpack(curr) != 0;
// The returned tick might be newer than the event
// which notified our waker. This is ok because the future
// still didn't return `Poll::Ready`.
let tick = TICK.unpack(curr) as u8;
// The readiness state could have been cleared in the meantime,
// but we allow the returned ready set to be empty.
let curr_ready = Ready::from_usize(READINESS.unpack(curr));
let ready = curr_ready.intersection(w.interest);
return Poll::Ready(ReadyEvent {
tick,
ready,
is_shutdown,
});
}
}
}
}
}
impl Drop for Readiness<'_> {
fn drop(&mut self) {
let mut waiters = self.scheduled_io.waiters.lock();
// Safety: `waiter` is only ever stored in `waiters`
unsafe {
waiters
.list
.remove(NonNull::new_unchecked(self.waiter.get()))
};
}
}
unsafe impl Send for Readiness<'_> {}
unsafe impl Sync for Readiness<'_> {}