zerocopy/
util.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

#[path = "third_party/rust/layout.rs"]
pub(crate) mod core_layout;

use core::{mem, num::NonZeroUsize};

pub(crate) mod ptr {
    use core::{
        fmt::{Debug, Formatter},
        marker::PhantomData,
        ptr::NonNull,
    };

    use crate::{util::AsAddress, KnownLayout, _CastType};

    /// A raw pointer with more restrictions.
    ///
    /// `Ptr<T>` is similar to `NonNull<T>`, but it is more restrictive in the
    /// following ways:
    /// - It must derive from a valid allocation
    /// - It must reference a byte range which is contained inside the
    ///   allocation from which it derives
    ///   - As a consequence, the byte range it references must have a size
    ///     which does not overflow `isize`
    /// - It must satisfy `T`'s alignment requirement
    ///
    /// Thanks to these restrictions, it is easier to prove the soundness of
    /// some operations using `Ptr`s.
    ///
    /// `Ptr<'a, T>` is [covariant] in `'a` and `T`.
    ///
    /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
    pub struct Ptr<'a, T: 'a + ?Sized> {
        // INVARIANTS:
        // 1. `ptr` is derived from some valid Rust allocation, `A`
        // 2. `ptr` has the same provenance as `A`
        // 3. `ptr` addresses a byte range which is entirely contained in `A`
        // 4. `ptr` addresses a byte range whose length fits in an `isize`
        // 5. `ptr` addresses a byte range which does not wrap around the address
        //     space
        // 6. `ptr` is validly-aligned for `T`
        // 7. `A` is guaranteed to live for at least `'a`
        // 8. `T: 'a`
        ptr: NonNull<T>,
        _lifetime: PhantomData<&'a ()>,
    }

    impl<'a, T: ?Sized> Copy for Ptr<'a, T> {}
    impl<'a, T: ?Sized> Clone for Ptr<'a, T> {
        #[inline]
        fn clone(&self) -> Self {
            *self
        }
    }

    impl<'a, T: ?Sized> Ptr<'a, T> {
        /// Returns a shared reference to the value.
        ///
        /// # Safety
        ///
        /// For the duration of `'a`:
        /// - The referenced memory must contain a validly-initialized `T` for
        ///   the duration of `'a`.
        /// - The referenced memory must not also be referenced by any mutable
        ///   references.
        /// - The referenced memory must not be mutated, even via an
        ///   [`UnsafeCell`].
        /// - There must not exist any references to the same memory region
        ///   which contain `UnsafeCell`s at byte ranges which are not identical
        ///   to the byte ranges at which `T` contains `UnsafeCell`s.
        ///
        /// [`UnsafeCell`]: core::cell::UnsafeCell
        // TODO(#429): The safety requirements are likely overly-restrictive.
        // Notably, mutation via `UnsafeCell`s is probably fine. Once the rules
        // are more clearly defined, we should relax the safety requirements.
        // For an example of why this is subtle, see:
        // https://github.com/rust-lang/unsafe-code-guidelines/issues/463#issuecomment-1736771593
        #[allow(unused)]
        pub(crate) unsafe fn as_ref(&self) -> &'a T {
            // SAFETY:
            // - By invariant, `self.ptr` is properly-aligned for `T`.
            // - By invariant, `self.ptr` is "dereferenceable" in that it points
            //   to a single allocation.
            // - By invariant, the allocation is live for `'a`.
            // - The caller promises that no mutable references exist to this
            //   region during `'a`.
            // - The caller promises that `UnsafeCell`s match exactly.
            // - The caller promises that no mutation will happen during `'a`,
            //   even via `UnsafeCell`s.
            // - The caller promises that the memory region contains a
            //   validly-intialized `T`.
            unsafe { self.ptr.as_ref() }
        }

        /// Casts to a different (unsized) target type.
        ///
        /// # Safety
        ///
        /// The caller promises that
        /// - `cast(p)` is implemented exactly as follows: `|p: *mut T| p as
        ///   *mut U`.
        /// - The size of the object referenced by the resulting pointer is less
        ///   than or equal to the size of the object referenced by `self`.
        /// - The alignment of `U` is less than or equal to the alignment of
        ///   `T`.
        pub(crate) unsafe fn cast_unsized<U: 'a + ?Sized, F: FnOnce(*mut T) -> *mut U>(
            self,
            cast: F,
        ) -> Ptr<'a, U> {
            let ptr = cast(self.ptr.as_ptr());
            // SAFETY: Caller promises that `cast` is just an `as` cast. We call
            // `cast` on `self.ptr.as_ptr()`, which is non-null by construction.
            let ptr = unsafe { NonNull::new_unchecked(ptr) };
            // SAFETY:
            // - By invariant, `self.ptr` is derived from some valid Rust
            //   allocation, and since `ptr` is just `self.ptr as *mut U`, so is
            //   `ptr`.
            // - By invariant, `self.ptr` has the same provenance as `A`, and so
            //   the same is true of `ptr`.
            // - By invariant, `self.ptr` addresses a byte range which is
            //   entirely contained in `A`, and so the same is true of `ptr`.
            // - By invariant, `self.ptr` addresses a byte range whose length
            //   fits in an `isize`, and so the same is true of `ptr`.
            // - By invariant, `self.ptr` addresses a byte range which does not
            //   wrap around the address space, and so the same is true of
            //   `ptr`.
            // - By invariant, `self.ptr` is validly-aligned for `T`. Since
            //   `ptr` has the same address, and since the caller promises that
            //   the alignment of `U` is less than or equal to the alignment of
            //   `T`, `ptr` is validly-aligned for `U`.
            // - By invariant, `A` is guaranteed to live for at least `'a`.
            // - `U: 'a`
            Ptr { ptr, _lifetime: PhantomData }
        }
    }

    impl<'a> Ptr<'a, [u8]> {
        /// Attempts to cast `self` to a `U` using the given cast type.
        ///
        /// Returns `None` if the resulting `U` would be invalidly-aligned or if
        /// no `U` can fit in `self`. On success, returns a pointer to the
        /// largest-possible `U` which fits in `self`.
        ///
        /// # Safety
        ///
        /// The caller may assume that this implementation is correct, and may
        /// rely on that assumption for the soundness of their code. In
        /// particular, the caller may assume that, if `try_cast_into` returns
        /// `Some((ptr, split_at))`, then:
        /// - If this is a prefix cast, `ptr` refers to the byte range `[0,
        ///   split_at)` in `self`.
        /// - If this is a suffix cast, `ptr` refers to the byte range
        ///   `[split_at, self.len())` in `self`.
        ///
        /// # Panics
        ///
        /// Panics if `U` is a DST whose trailing slice element is zero-sized.
        pub(crate) fn try_cast_into<U: 'a + ?Sized + KnownLayout>(
            &self,
            cast_type: _CastType,
        ) -> Option<(Ptr<'a, U>, usize)> {
            // PANICS: By invariant, the byte range addressed by `self.ptr` does
            // not wrap around the address space. This implies that the sum of
            // the address (represented as a `usize`) and length do not overflow
            // `usize`, as required by `validate_cast_and_convert_metadata`.
            // Thus, this call to `validate_cast_and_convert_metadata` won't
            // panic.
            let (elems, split_at) = U::LAYOUT.validate_cast_and_convert_metadata(
                AsAddress::addr(self.ptr.as_ptr()),
                self.len(),
                cast_type,
            )?;
            let offset = match cast_type {
                _CastType::_Prefix => 0,
                _CastType::_Suffix => split_at,
            };

            let ptr = self.ptr.cast::<u8>().as_ptr();
            // SAFETY: `offset` is either `0` or `split_at`.
            // `validate_cast_and_convert_metadata` promises that `split_at` is
            // in the range `[0, self.len()]`. Thus, in both cases, `offset` is
            // in `[0, self.len()]`. Thus:
            // - The resulting pointer is in or one byte past the end of the
            //   same byte range as `self.ptr`. Since, by invariant, `self.ptr`
            //   addresses a byte range entirely contained within a single
            //   allocation, the pointer resulting from this operation is within
            //   or one byte past the end of that same allocation.
            // - By invariant, `self.len() <= isize::MAX`. Since `offset <=
            //   self.len()`, `offset <= isize::MAX`.
            // - By invariant, `self.ptr` addresses a byte range which does not
            //   wrap around the address space. This means that the base pointer
            //   plus the `self.len()` does not overflow `usize`. Since `offset
            //   <= self.len()`, this addition does not overflow `usize`.
            let base = unsafe { ptr.add(offset) };
            // SAFETY: Since `add` is not allowed to wrap around, the preceding line
            // produces a pointer whose address is greater than or equal to that of
            // `ptr`. Since `ptr` is a `NonNull`, `base` is also non-null.
            let base = unsafe { NonNull::new_unchecked(base) };
            let ptr = U::raw_from_ptr_len(base, elems);
            // SAFETY:
            // - By invariant, `self.ptr` is derived from some valid Rust
            //   allocation, `A`, and has the same provenance as `A`. All
            //   operations performed on `self.ptr` and values derived from it
            //   in this method preserve provenance, so:
            //   - `ptr` is derived from a valid Rust allocation, `A`.
            //   - `ptr` has the same provenance as `A`.
            // - `validate_cast_and_convert_metadata` promises that the object
            //   described by `elems` and `split_at` lives at a byte range which
            //   is a subset of the input byte range. Thus:
            //   - Since, by invariant, `self.ptr` addresses a byte range
            //     entirely contained in `A`, so does `ptr`.
            //   - Since, by invariant, `self.ptr` addresses a range whose
            //     length is not longer than `isize::MAX` bytes, so does `ptr`.
            //   - Since, by invariant, `self.ptr` addresses a range which does
            //     not wrap around the address space, so does `ptr`.
            // - `validate_cast_and_convert_metadata` promises that the object
            //   described by `split_at` is validly-aligned for `U`.
            // - By invariant on `self`, `A` is guaranteed to live for at least
            //   `'a`.
            // - `U: 'a` by trait bound.
            Some((Ptr { ptr, _lifetime: PhantomData }, split_at))
        }

        /// Attempts to cast `self` into a `U`, failing if all of the bytes of
        /// `self` cannot be treated as a `U`.
        ///
        /// In particular, this method fails if `self` is not validly-aligned
        /// for `U` or if `self`'s size is not a valid size for `U`.
        ///
        /// # Safety
        ///
        /// On success, the caller may assume that the returned pointer
        /// references the same byte range as `self`.
        #[allow(unused)]
        #[inline(always)]
        pub(crate) fn try_cast_into_no_leftover<U: 'a + ?Sized + KnownLayout>(
            &self,
        ) -> Option<Ptr<'a, U>> {
            // TODO(#67): Remove this allow. See NonNulSlicelExt for more
            // details.
            #[allow(unstable_name_collisions)]
            match self.try_cast_into(_CastType::_Prefix) {
                Some((slf, split_at)) if split_at == self.len() => Some(slf),
                Some(_) | None => None,
            }
        }
    }

    impl<'a, T> Ptr<'a, [T]> {
        /// The number of slice elements referenced by `self`.
        ///
        /// # Safety
        ///
        /// Unsafe code my rely on `len` satisfying the above contract.
        fn len(&self) -> usize {
            #[allow(clippy::as_conversions)]
            let slc = self.ptr.as_ptr() as *const [()];
            // SAFETY:
            // - `()` has alignment 1, so `slc` is trivially aligned.
            // - `slc` was derived from a non-null pointer.
            // - The size is 0 regardless of the length, so it is sound to
            //   materialize a reference regardless of location.
            // - By invariant, `self.ptr` has valid provenance.
            let slc = unsafe { &*slc };
            // This is correct because the preceding `as` cast preserves the
            // number of slice elements. Per
            // https://doc.rust-lang.org/nightly/reference/expressions/operator-expr.html#slice-dst-pointer-to-pointer-cast:
            //
            //   For slice types like `[T]` and `[U]`, the raw pointer types
            //   `*const [T]`, `*mut [T]`, `*const [U]`, and `*mut [U]` encode
            //   the number of elements in this slice. Casts between these raw
            //   pointer types preserve the number of elements. Note that, as a
            //   consequence, such casts do *not* necessarily preserve the size
            //   of the pointer's referent (e.g., casting `*const [u16]` to
            //   `*const [u8]` will result in a raw pointer which refers to an
            //   object of half the size of the original). The same holds for
            //   `str` and any compound type whose unsized tail is a slice type,
            //   such as struct `Foo(i32, [u8])` or `(u64, Foo)`.
            //
            // TODO(#429),
            // TODO(https://github.com/rust-lang/reference/pull/1417): Once this
            // text is available on the Stable docs, cite those instead of the
            // Nightly docs.
            slc.len()
        }

        pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T>> {
            // TODO(#429): Once `NonNull::cast` documents that it preserves
            // provenance, cite those docs.
            let base = self.ptr.cast::<T>().as_ptr();
            (0..self.len()).map(move |i| {
                // TODO(https://github.com/rust-lang/rust/issues/74265): Use
                // `NonNull::get_unchecked_mut`.

                // SAFETY: If the following conditions are not satisfied
                // `pointer::cast` may induce Undefined Behavior [1]:
                // > 1. Both the starting and resulting pointer must be either
                // >    in bounds or one byte past the end of the same allocated
                // >    object.
                // > 2. The computed offset, in bytes, cannot overflow an
                // >    `isize`.
                // > 3. The offset being in bounds cannot rely on “wrapping
                // >    around” the address space. That is, the
                // >    infinite-precision sum must fit in a `usize`.
                //
                // [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add
                //
                // We satisfy all three of these conditions here:
                // 1. `base` (by invariant on `self`) points to an allocated
                //    object. By contract, `self.len()` accurately reflects the
                //    number of elements in the slice. `i` is in bounds of
                //   `c.len()` by construction, and so the result of this
                //   addition cannot overflow past the end of the allocation
                //   referred to by `c`.
                // 2. By invariant on `Ptr`, `self` addresses a byte range whose
                //    length fits in an `isize`. Since `elem` is contained in
                //    `self`, the computed offset of `elem` must fit within
                //    `isize.`
                // 3. By invariant on `Ptr`, `self` addresses a byte range which
                //    does not wrap around the address space. Since `elem` is
                //    contained in `self`, the computed offset of `elem` must
                //    wrap around the address space.
                //
                // TODO(#429): Once `pointer::add` documents that it preserves
                // provenance, cite those docs.
                let elem = unsafe { base.add(i) };

                // SAFETY:
                //  - `elem` must not be null. `base` is constructed from a
                //    `NonNull` pointer, and the addition that produces `elem`
                //    must not overflow or wrap around, so `elem >= base > 0`.
                //
                // TODO(#429): Once `NonNull::new_unchecked` documents that it
                // preserves provenance, cite those docs.
                let elem = unsafe { NonNull::new_unchecked(elem) };

                // SAFETY: The safety invariants of `Ptr` (see definition) are
                // satisfied:
                // 1. `elem` is derived from a valid Rust allocation, because
                //    `self` is derived from a valid Rust allocation, by
                //    invariant on `Ptr`
                // 2. `elem` has the same provenance as `self`, because it
                //    derived from `self` using a series of
                //    provenance-preserving operations
                // 3. `elem` is entirely contained in the allocation of `self`
                //    (see above)
                // 4. `elem` addresses a byte range whose length fits in an
                //    `isize` (see above)
                // 5. `elem` addresses a byte range which does not wrap around
                //    the address space (see above)
                // 6. `elem` is validly-aligned for `T`. `self`, which
                //    represents a `[T]` is validly aligned for `T`, and `elem`
                //    is an element within that `[T]`
                // 7. The allocation of `elem` is guaranteed to live for at
                //    least `'a`, because `elem` is entirely contained in
                //    `self`, which lives for at least `'a` by invariant on
                //    `Ptr`.
                // 8. `T: 'a`, because `elem` is an element within `[T]`, and
                //    `[T]: 'a` by invariant on `Ptr`
                Ptr { ptr: elem, _lifetime: PhantomData }
            })
        }
    }

    impl<'a, T: 'a + ?Sized> From<&'a T> for Ptr<'a, T> {
        #[inline(always)]
        fn from(t: &'a T) -> Ptr<'a, T> {
            // SAFETY: `t` points to a valid Rust allocation, `A`, by
            // construction. Thus:
            // - `ptr` is derived from `A`
            // - Since we use `NonNull::from`, which preserves provenance, `ptr`
            //   has the same provenance as `A`
            // - Since `NonNull::from` creates a pointer which addresses the
            //   same bytes as `t`, `ptr` addresses a byte range entirely
            //   contained in (in this case, identical to) `A`
            // - Since `t: &T`, it addresses no more than `isize::MAX` bytes [1]
            // - Since `t: &T`, it addresses a byte range which does not wrap
            //   around the address space [2]
            // - Since it is constructed from a valid `&T`, `ptr` is
            //   validly-aligned for `T`
            // - Since `t: &'a T`, the allocation `A` is guaranteed to live for
            //   at least `'a`
            // - `T: 'a` by trait bound
            //
            // TODO(#429),
            // TODO(https://github.com/rust-lang/rust/issues/116181): Once it's
            // documented, reference the guarantee that `NonNull::from`
            // preserves provenance.
            //
            // TODO(#429),
            // TODO(https://github.com/rust-lang/unsafe-code-guidelines/issues/465):
            // - [1] Where does the reference document that allocations fit in
            //   `isize`?
            // - [2] Where does the reference document that allocations don't
            //   wrap around the address space?
            Ptr { ptr: NonNull::from(t), _lifetime: PhantomData }
        }
    }

    impl<'a, T: 'a + ?Sized> Debug for Ptr<'a, T> {
        #[inline]
        fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
            self.ptr.fmt(f)
        }
    }

    #[cfg(test)]
    mod tests {
        use core::mem::{self, MaybeUninit};

        use super::*;
        use crate::{util::testutil::AU64, FromBytes};

        #[test]
        fn test_ptrtry_cast_into_soundness() {
            // This test is designed so that if `Ptr::try_cast_into_xxx` are
            // buggy, it will manifest as unsoundness that Miri can detect.

            // - If `size_of::<T>() == 0`, `N == 4`
            // - Else, `N == 4 * size_of::<T>()`
            fn test<const N: usize, T: ?Sized + KnownLayout + FromBytes>() {
                let mut bytes = [MaybeUninit::<u8>::uninit(); N];
                let initialized = [MaybeUninit::new(0u8); N];
                for start in 0..=bytes.len() {
                    for end in start..=bytes.len() {
                        // Set all bytes to uninitialized other than those in
                        // the range we're going to pass to `try_cast_from`.
                        // This allows Miri to detect out-of-bounds reads
                        // because they read uninitialized memory. Without this,
                        // some out-of-bounds reads would still be in-bounds of
                        // `bytes`, and so might spuriously be accepted.
                        bytes = [MaybeUninit::<u8>::uninit(); N];
                        let bytes = &mut bytes[start..end];
                        // Initialize only the byte range we're going to pass to
                        // `try_cast_from`.
                        bytes.copy_from_slice(&initialized[start..end]);

                        let bytes = {
                            let bytes: *const [MaybeUninit<u8>] = bytes;
                            #[allow(clippy::as_conversions)]
                            let bytes = bytes as *const [u8];
                            // SAFETY: We just initialized these bytes to valid
                            // `u8`s.
                            unsafe { &*bytes }
                        };

                        /// # Safety
                        ///
                        /// - `slf` must reference a byte range which is
                        ///   entirely initialized.
                        /// - `slf` must reference a byte range which is only
                        ///   referenced by shared references which do not
                        ///   contain `UnsafeCell`s during its lifetime.
                        unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>(
                            slf: Ptr<'_, T>,
                        ) -> usize {
                            // SAFETY:
                            // - Since all bytes in `slf` are initialized and
                            //   `T: FromBytes`, `slf` contains a valid `T`.
                            // - The caller promises that the referenced memory
                            //   is not also referenced by any mutable
                            //   references.
                            // - The caller promises that the referenced memory
                            //   is not also referenced as a type which contains
                            //   `UnsafeCell`s.
                            let t = unsafe { slf.as_ref() };

                            let bytes = {
                                let len = mem::size_of_val(t);
                                let t: *const T = t;
                                // SAFETY:
                                // - We know `t`'s bytes are all initialized
                                //   because we just read it from `slf`, which
                                //   points to an initialized range of bytes. If
                                //   there's a bug and this doesn't hold, then
                                //   that's exactly what we're hoping Miri will
                                //   catch!
                                // - Since `T: FromBytes`, `T` doesn't contain
                                //   any `UnsafeCell`s, so it's okay for `t: T`
                                //   and a `&[u8]` to the same memory to be
                                //   alive concurrently.
                                unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
                            };

                            // This assertion ensures that `t`'s bytes are read
                            // and compared to another value, which in turn
                            // ensures that Miri gets a chance to notice if any
                            // of `t`'s bytes are uninitialized, which they
                            // shouldn't be (see the comment above).
                            assert_eq!(bytes, vec![0u8; bytes.len()]);

                            mem::size_of_val(t)
                        }

                        for cast_type in [_CastType::_Prefix, _CastType::_Suffix] {
                            if let Some((slf, split_at)) =
                                Ptr::from(bytes).try_cast_into::<T>(cast_type)
                            {
                                // SAFETY: All bytes in `bytes` have been
                                // initialized.
                                let len = unsafe { validate_and_get_len(slf) };
                                match cast_type {
                                    _CastType::_Prefix => assert_eq!(split_at, len),
                                    _CastType::_Suffix => assert_eq!(split_at, bytes.len() - len),
                                }
                            }
                        }

                        if let Some(slf) = Ptr::from(bytes).try_cast_into_no_leftover::<T>() {
                            // SAFETY: All bytes in `bytes` have been
                            // initialized.
                            let len = unsafe { validate_and_get_len(slf) };
                            assert_eq!(len, bytes.len());
                        }
                    }
                }
            }

            macro_rules! test {
            ($($ty:ty),*) => {
                $({
                    const S: usize = core::mem::size_of::<$ty>();
                    const N: usize = if S == 0 { 4 } else { S * 4 };
                    test::<N, $ty>();
                    // We don't support casting into DSTs whose trailing slice
                    // element is a ZST.
                    if S > 0 {
                        test::<N, [$ty]>();
                    }
                    // TODO: Test with a slice DST once we have any that
                    // implement `KnownLayout + FromBytes`.
                })*
            };
        }

            test!(());
            test!(u8, u16, u32, u64, u128, usize, AU64);
            test!(i8, i16, i32, i64, i128, isize);
            test!(f32, f64);
        }
    }
}

pub(crate) trait AsAddress {
    fn addr(self) -> usize;
}

impl<'a, T: ?Sized> AsAddress for &'a T {
    #[inline(always)]
    fn addr(self) -> usize {
        let ptr: *const T = self;
        AsAddress::addr(ptr)
    }
}

impl<'a, T: ?Sized> AsAddress for &'a mut T {
    #[inline(always)]
    fn addr(self) -> usize {
        let ptr: *const T = self;
        AsAddress::addr(ptr)
    }
}

impl<T: ?Sized> AsAddress for *const T {
    #[inline(always)]
    fn addr(self) -> usize {
        // TODO(#181), TODO(https://github.com/rust-lang/rust/issues/95228): Use
        // `.addr()` instead of `as usize` once it's stable, and get rid of this
        // `allow`. Currently, `as usize` is the only way to accomplish this.
        #[allow(clippy::as_conversions)]
        #[cfg_attr(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS, allow(lossy_provenance_casts))]
        return self.cast::<()>() as usize;
    }
}

impl<T: ?Sized> AsAddress for *mut T {
    #[inline(always)]
    fn addr(self) -> usize {
        let ptr: *const T = self;
        AsAddress::addr(ptr)
    }
}

/// Is `t` aligned to `mem::align_of::<U>()`?
#[inline(always)]
pub(crate) fn aligned_to<T: AsAddress, U>(t: T) -> bool {
    // `mem::align_of::<U>()` is guaranteed to return a non-zero value, which in
    // turn guarantees that this mod operation will not panic.
    #[allow(clippy::arithmetic_side_effects)]
    let remainder = t.addr() % mem::align_of::<U>();
    remainder == 0
}

/// Round `n` down to the largest value `m` such that `m <= n` and `m % align ==
/// 0`.
///
/// # Panics
///
/// May panic if `align` is not a power of two. Even if it doesn't panic in this
/// case, it will produce nonsense results.
#[inline(always)]
pub(crate) const fn round_down_to_next_multiple_of_alignment(
    n: usize,
    align: NonZeroUsize,
) -> usize {
    let align = align.get();
    debug_assert!(align.is_power_of_two());

    // Subtraction can't underflow because `align.get() >= 1`.
    #[allow(clippy::arithmetic_side_effects)]
    let mask = !(align - 1);
    n & mask
}

pub(crate) const fn max(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
    if a.get() < b.get() {
        b
    } else {
        a
    }
}

pub(crate) const fn min(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
    if a.get() > b.get() {
        b
    } else {
        a
    }
}

/// Since we support multiple versions of Rust, there are often features which
/// have been stabilized in the most recent stable release which do not yet
/// exist (stably) on our MSRV. This module provides polyfills for those
/// features so that we can write more "modern" code, and just remove the
/// polyfill once our MSRV supports the corresponding feature. Without this,
/// we'd have to write worse/more verbose code and leave TODO comments sprinkled
/// throughout the codebase to update to the new pattern once it's stabilized.
///
/// Each trait is imported as `_` at the crate root; each polyfill should "just
/// work" at usage sites.
pub(crate) mod polyfills {
    use core::ptr::{self, NonNull};

    // A polyfill for `NonNull::slice_from_raw_parts` that we can use before our
    // MSRV is 1.70, when that function was stabilized.
    //
    // TODO(#67): Once our MSRV is 1.70, remove this.
    pub(crate) trait NonNullExt<T> {
        fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]>;
    }

    impl<T> NonNullExt<T> for NonNull<T> {
        #[inline(always)]
        fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]> {
            let ptr = ptr::slice_from_raw_parts_mut(data.as_ptr(), len);
            // SAFETY: `ptr` is converted from `data`, which is non-null.
            unsafe { NonNull::new_unchecked(ptr) }
        }
    }
}

#[cfg(test)]
pub(crate) mod testutil {
    use core::fmt::{self, Display, Formatter};

    use crate::*;

    /// A `T` which is aligned to at least `align_of::<A>()`.
    #[derive(Default)]
    pub(crate) struct Align<T, A> {
        pub(crate) t: T,
        _a: [A; 0],
    }

    impl<T: Default, A> Align<T, A> {
        pub(crate) fn set_default(&mut self) {
            self.t = T::default();
        }
    }

    impl<T, A> Align<T, A> {
        pub(crate) const fn new(t: T) -> Align<T, A> {
            Align { t, _a: [] }
        }
    }

    // A `u64` with alignment 8.
    //
    // Though `u64` has alignment 8 on some platforms, it's not guaranteed.
    // By contrast, `AU64` is guaranteed to have alignment 8.
    #[derive(
        KnownLayout,
        FromZeroes,
        FromBytes,
        AsBytes,
        Eq,
        PartialEq,
        Ord,
        PartialOrd,
        Default,
        Debug,
        Copy,
        Clone,
    )]
    #[repr(C, align(8))]
    pub(crate) struct AU64(pub(crate) u64);

    impl AU64 {
        // Converts this `AU64` to bytes using this platform's endianness.
        pub(crate) fn to_bytes(self) -> [u8; 8] {
            crate::transmute!(self)
        }
    }

    impl Display for AU64 {
        fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
            Display::fmt(&self.0, f)
        }
    }

    #[derive(
        FromZeroes, FromBytes, Eq, PartialEq, Ord, PartialOrd, Default, Debug, Copy, Clone,
    )]
    #[repr(C)]
    pub(crate) struct Nested<T, U: ?Sized> {
        _t: T,
        _u: U,
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_round_down_to_next_multiple_of_alignment() {
        fn alt_impl(n: usize, align: NonZeroUsize) -> usize {
            let mul = n / align.get();
            mul * align.get()
        }

        for align in [1, 2, 4, 8, 16] {
            for n in 0..256 {
                let align = NonZeroUsize::new(align).unwrap();
                let want = alt_impl(n, align);
                let got = round_down_to_next_multiple_of_alignment(n, align);
                assert_eq!(got, want, "round_down_to_next_multiple_of_alignment({n}, {align})");
            }
        }
    }
}

#[cfg(kani)]
mod proofs {
    use super::*;

    #[kani::proof]
    fn prove_round_down_to_next_multiple_of_alignment() {
        fn model_impl(n: usize, align: NonZeroUsize) -> usize {
            assert!(align.get().is_power_of_two());
            let mul = n / align.get();
            mul * align.get()
        }

        let align: NonZeroUsize = kani::any();
        kani::assume(align.get().is_power_of_two());
        let n: usize = kani::any();

        let expected = model_impl(n, align);
        let actual = round_down_to_next_multiple_of_alignment(n, align);
        assert_eq!(expected, actual, "round_down_to_next_multiple_of_alignment({n}, {align})");
    }

    // Restricted to nightly since we use the unstable `usize::next_multiple_of`
    // in our model implementation.
    #[cfg(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)]
    #[kani::proof]
    fn prove_padding_needed_for() {
        fn model_impl(len: usize, align: NonZeroUsize) -> usize {
            let padded = len.next_multiple_of(align.get());
            let padding = padded - len;
            padding
        }

        let align: NonZeroUsize = kani::any();
        kani::assume(align.get().is_power_of_two());
        let len: usize = kani::any();
        // Constrain `len` to valid Rust lengths, since our model implementation
        // isn't robust to overflow.
        kani::assume(len <= isize::MAX as usize);
        kani::assume(align.get() < 1 << 29);

        let expected = model_impl(len, align);
        let actual = core_layout::padding_needed_for(len, align);
        assert_eq!(expected, actual, "padding_needed_for({len}, {align})");

        let padded_len = actual + len;
        assert_eq!(padded_len % align, 0);
        assert!(padded_len / align >= len / align);
    }
}